首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nuclear localization signal (NLS) of spliceosomal U snRNPs is composed of the U snRNA's 2,2,7-trimethyl-guanosine (m3G)-cap and the Sm core domain. The m3G-cap is specifically bound by snurportin1, which contains an NH2-terminal importin-beta binding (IBB) domain and a COOH-terminal m3G-cap--binding region that bears no structural similarity to known import adaptors like importin-alpha (impalpha). Here, we show that recombinant snurportin1 and importin-beta (impbeta) are not only necessary, but also sufficient for U1 snRNP transport to the nuclei of digitonin-permeabilized HeLa cells. In contrast to impalpha-dependent import, single rounds of U1 snRNP import, mediated by the nuclear import receptor complex snurportin1-impbeta, did not require Ran and energy. The same Ran- and energy-independent import was even observed for U5 snRNP, which has a molecular weight of more than one million. Interestingly, in the presence of impbeta and a snurportin1 mutant containing an impalpha IBB domain (IBBimpalpha), nuclear U1 snRNP import was Ran dependent. Furthermore, beta-galactosidase (betaGal) containing a snurportin1 IBB domain, but not IBBimpalpha-betaGal, was imported into the nucleus in a Ran-independent manner. Our results suggest that the nature of the IBB domain modulates the strength and/or site of interaction of impbeta with nucleoporins of the nuclear pore complex, and thus whether or not Ran is required to dissociate these interactions.  相似文献   

2.
Molecular basis for the recognition of snurportin 1 by importin beta   总被引:1,自引:0,他引:1  
The nuclear import of uridine-rich ribonucleoproteins is mediated by the transport adaptor snurportin 1 (SNP1). Similar to importin alpha, SNP1 uses an N-terminal importin beta binding (sIBB) domain to recruit the receptor importin beta and gain access to the nucleus. In this study, we demonstrate that the sIBB domain has a bipartite nature, which contains two distinct binding determinants for importin beta. The first determinant spans residues 25-65 and includes the previously identified importin alpha IBB (alphaIBB) region of homology. The second binding determinant encompasses residues 1-24 and resembles region 1011-1035 of the nucleoporin 153 (Nup153). The two binding determinants synergize within the sIBB domain to confer a low nanomolar binding affinity for importin beta (K(d) approximately 2 nm) in an interaction that, in vitro, is displaced by RanGTP. We propose that in vivo the synergy of Nup153 and nuclear RanGTP promotes translocation of uridine-rich ribonucleoproteins into the nucleus.  相似文献   

3.
4.
5.
The 5′-cap of spliceosomal small nuclear RNAs, some small nucleolar RNAs and of telomerase RNA was found to be hypermethylated in vivo. The Trimethylguanosine Synthase 1 (TGS1) mediates this conversion of the 7-methylguanosine-cap to the 2,2,7-trimethylguanosine (m3G)-cap during maturation of the RNPs. For mammalian UsnRNAs the generated m2,2,7G-cap is one part of a bipartite import signal mediating the transport of the UsnRNP-core complex into the nucleus. In order to understand the structural organization of human TGS1 as well as substrate binding and recognition we solved the crystal structure of the active TGS1 methyltransferase domain containing both, the minimal substrate m7GTP and the reaction product S-adenosyl-l-homocysteine (AdoHcy). The methyltransferase of human TGS1 harbors the canonical class 1 methyltransferase fold as well as an unique N-terminal, α-helical domain of 40 amino acids, which is essential for m7G-cap binding and catalysis. The crystal structure of the substrate bound methyltransferase domain as well as mutagenesis studies provide insight into the catalytic mechanism of TGS1.  相似文献   

6.
The yeast nucleoporin Nup2p is associated primarily with the nuclear basket of nuclear pore complexes and is required for efficient importin-alpha:beta-mediated nuclear protein import as well as efficient nuclear export of Kap60p/importin-alpha. Residues 1-51 of Nup2p bind tightly to Kap60p and are required for Nup2p function in vivo. We have determined the 2.6 A resolution crystal structure of a complex between this region of Nup2p and the armadillo repeat domain of Kap60p. Nup2p binds along the inner concave groove of Kap60p, but its interaction interface is different from that employed for nuclear localization signal (NLS) recognition although there is some overlap between them. Nup2p binds Kap60p more strongly than NLSs and accelerates release of NLSs from Kap60p. Nup2p itself is released from Kap60p by Cse1p:RanGTP only in the presence of the importin-beta binding (IBB) domain of Kap60p. These data indicate that Nup2p increases the overall rate of nuclear trafficking by coordinating nuclear import termination and importin recycling as a concerted process.  相似文献   

7.
8.
The nuclear import of assembled spliceosomal subunits, the uridine-rich small nuclear ribonucleoprotein particles (U snRNPs), is mediated by a nuclear import receptor adaptor couple of importinβ (Impβ) and snurportin1 (SPN1). In contrast to any other characterized active nuclear import, the Impβ/SPN1/U snRNP complex does not require RanGTP for the terminal release from the nuclear basket of the nuclear pore complex (NPC). The crystal structure of Impβ (127-876) in complex with the Impβ-binding (IBB) domain of SPN1 (1-65) at 2.8-Å resolution reveals that Impβ adopts an open conformation, which is unique for a functional Impβ/cargo complex, and rather surprisingly, it resembles the conformation of the Impβ/RanGTP complex. As binding of RanGTP to Impβ usually triggers the release of import complexes from the NPC, we propose that by already mimicking a conformation similar to Impβ/RanGTP the independent dissociation of Impβ/SPN1 from the nuclear basket is energetically aided.  相似文献   

9.
The nuclear import of the spliceosomal snRNPs U1, U2, U4 and U5, is dependent on the presence of a complex nuclear localization signal (NLS). The latter is composed of the 5'-2,2,7-terminal trimethylguanosine (m3G) cap structure of the U snRNA and the Sm core domain. Here, we describe the isolation and cDNA cloning of a 45 kDa protein, termed snurportin1, which interacts specifically with m3G-cap but not m7G-cap structures. Snurportin1 enhances the m3G-capdependent nuclear import of U snRNPs in both Xenopus laevis oocytes and digitonin-permeabilized HeLa cells, demonstrating that it functions as an snRNP-specific nuclear import receptor. Interestingly, solely the m3G-cap and not the Sm core NLS appears to be recognized by snurportin1, indicating that at least two distinct import receptors interact with the complex snRNP NLS. Snurportin1 represents a novel nuclear import receptor which contains an N-terminal importin beta binding (IBB) domain, essential for function, and a C-terminal m3G-cap-binding region with no structural similarity to the arm repeat domain of importin alpha.  相似文献   

10.
The 7-methyl guanosine cap structure of RNA is essential for key aspects of RNA processing, including pre-mRNA splicing, 3' end formation, U snRNA transport, nonsense-mediated decay and translation. Two cap-binding proteins mediate these effects: cytosolic eIF-4E and nuclear cap-binding protein complex (CBC). The latter consists of a CBP20 subunit, which binds the cap, and a CBP80 subunit, which ensures high-affinity cap binding. Here we report the 2.1 A resolution structure of human CBC with the cap analog m7GpppG, as well as the structure of unliganded CBC. Comparisons between these structures indicate that the cap induces substantial conformational changes within the N-terminal loop of CBP20, enabling Tyr 20 to join Tyr 43 in pi-pi stacking interactions with the methylated guanosine base. CBP80 stabilizes the movement of the N-terminal loop of CBP20 and locks the CBC into a high affinity cap-binding state. The structure for the CBC bound to m7GpppG highlights interesting similarities and differences between CBC and eIF-4E, and provides insights into the regulatory mechanisms used by growth factors and other extracellular stimuli to influence the cap-binding state of the CBC.  相似文献   

11.
The orphan nuclear receptors SF-1 and LRH-1 are constitutively active, but it remains uncertain whether their activation is hormone dependent. We report the crystal structure of the LRH-1 ligand binding domain to 2.4 A resolution and find the receptor to be a monomer that adopts an active conformation with a large but empty hydrophobic pocket. Adding bulky side chains into this pocket resulted in full or greater activity suggesting that, while LRH-1 could accommodate potential ligands, these are dispensable for basal activity. Constitutive LRH-1 activity appears to be conferred by a distinct structural element consisting of an extended helix 2 that provides an additional layer to the canonical LBD fold. Mutating the conserved arginine in helix 2 reduced LRH-1 receptor activity and coregulator recruitment, consistent with the partial loss-of-function phenotype exhibited by an analogous SF-1 human mutant. These findings illustrate an alternative structural strategy for nuclear receptor stabilization in the absence of ligand binding.  相似文献   

12.
Ubiquitin-fold modifier 1 (Ufm1) is a newly identified ubiquitin-like protein. Like ubiquitin and other ubiquitin-like proteins, Ufm1 is synthesized as a precursor that needs to be processed to expose the conserved C-terminal glycine prior to its conjugation to target proteins. Two novel proteases, named UfSP1 and UfSP2, have been shown to be responsible for the release of Ufm1 from Ufm1-conjugated cellular proteins as well as for the processing of its precursor. They show no sequence homology with known proteases. Here, we describe the 1.7A resolution crystal structure of mouse UfSP1, consisting of 217 amino acids. The structure reveals that it is a novel cysteine protease having a papain-like fold, with Cys(53), Asp(175), and His(177) that form a catalytic triad, and Tyr(41) that participates in the formation of the oxyanion hole. This differs from the canonical catalytic triad of papain-like proteases in that the aspartate and the histidine residues are from the "Asp-Pro-His" box. The Asp-Pro-His configuration seen in UfSP1, together with Atg4B and M48(USP), seem to form a new subfamily of the cysteine protease superfamily. The mutagenesis study of the active site residues confirms structural basis for catalysis. The interaction between UfSP1 and Ufm1 appears quite substantial, since the K(D) value was estimated to be 1.6 mum by the isothermal titration calorimetry analysis. Furthermore, the NMR data shows that the loop between beta3 and alpha2 in addition to the C-terminal region of Ufm1 plays a role in binding to UfSP1.  相似文献   

13.
14.
Meister G  Fischer U 《The EMBO journal》2002,21(21):5853-5863
Although spliceosomal Sm proteins can assemble spontaneously onto UsnRNA in vitro, this process requires assisting factors in vivo. SMN, the protein involved in spinal muscular atrophy, is part of a complex that contains the Sm proteins and serves as a critical factor for this reaction. Here, we have reconstituted the SMN-dependent assembly of UsnRNPs in vitro. We demonstrate that the SMN complex is necessary and sufficient for the assembly reaction. The PRMT5 complex, previously implicated in methylation and storage of Sm proteins, interacts with the SMN complex and enhances its activity in an ATP-dependent manner. These data uncover the SMN-PRMT5 complex as a functional entity that promotes the assisted assembly of spliceosomal UsnRNPs, and potentially other, RNA-protein complexes.  相似文献   

15.
Abe Y  Shodai T  Muto T  Mihara K  Torii H  Nishikawa S  Endo T  Kohda D 《Cell》2000,100(5):551-560
Most mitochondrial proteins are synthesized in the cytosol as precursor proteins with a cleavable N-terminal presequence and are imported into mitochondria. We report here the NMR structure of a general import receptor, rat Tom20, in a complex with a presequence peptide derived from rat aldehyde dehydrogenase. The cytosolic domain of Tom20 forms an all alpha-helical structure with a groove to accommodate the presequence peptide. The bound presequence forms an amphiphilic helical structure with hydrophobic leucines aligned on one side to interact with a hydrophobic patch in the Tom20 groove. Although the positive charges of the presequence are essential for import ability, presequence binding to Tom20 is mediated mainly by hydrophobic rather than ionic interactions.  相似文献   

16.
17.
Inhibition of nuclear import by the proapoptotic protein CC3   总被引:4,自引:0,他引:4       下载免费PDF全文
We report here that the normal cellular protein CC3/TIP30, when in excess, inhibits nuclear import in vitro and in vivo. CC3 binds directly to the karyopherins of the importin beta family in a RanGTP-insensitive manner and associates with nucleoporins in vivo. CC3 inhibits the nuclear import of proteins possessing either the classical nuclear localization signal or the M9 signal recognized by transportin. CC3 also inhibits nuclear translocation of transportin itself. Cells modified to express higher levels of CC3 have a slower rate of nuclear import and, as described earlier, show an increased sensitivity to death signals. A mutant CC3 protein lacking proapoptotic activity has a lower affinity for transportin, is displaced from it by RanGTP, and fails to inhibit nuclear import in vitro and in vivo. Together, our results support a correlation between the ability of CC3 to form a RanGTP-resistant complex with importins, inhibit nuclear import, and induce apoptosis. Significantly, a dominant-negative form of importin beta1 shown previously to inhibit multiple transport pathways induces rapid cell death, strongly indicating that inhibition of nuclear transport serves as a potent apoptotic signal.  相似文献   

18.
Structural basis for ubiquitin recognition by SH3 domains   总被引:1,自引:0,他引:1  
The SH3 domain is a protein-protein interaction module commonly found in intracellular signaling and adaptor proteins. The SH3 domains of multiple endocytic proteins have been recently implicated in binding ubiquitin, which serves as a signal for diverse cellular processes including gene regulation, endosomal sorting, and protein destruction. Here we describe the solution NMR structure of ubiquitin in complex with an SH3 domain belonging to the yeast endocytic protein Sla1. The ubiquitin binding surface of the Sla1 SH3 domain overlaps substantially with the canonical binding surface for proline-rich ligands. Like many other ubiquitin-binding motifs, the SH3 domain engages the Ile44 hydrophobic patch of ubiquitin. A phenylalanine residue located at the heart of the ubiquitin-binding surface of the SH3 domain serves as a key specificity determinant. The structure of the SH3-ubiquitin complex explains how a subset of SH3 domains has acquired this non-traditional function.  相似文献   

19.
Importin-alpha is the nuclear import receptor that recognizes cargo proteins carrying conventional basic monopartite and bipartite nuclear localization sequences (NLSs) and facilitates their transport into the nucleus. Bipartite NLSs contain two clusters of basic residues, connected by linkers of variable lengths. To determine the structural basis of the recognition of diverse bipartite NLSs by mammalian importin-alpha, we co-crystallized a non-autoinhibited mouse receptor protein with peptides corresponding to the NLSs from human retinoblastoma protein and Xenopus laevis phosphoprotein N1N2, containing diverse sequences and lengths of the linker. We show that the basic clusters interact analogously in both NLSs, but the linker sequences adopt different conformations, whereas both make specific contacts with the receptor. The available data allow us to draw general conclusions about the specificity of NLS binding by importin-alpha and facilitate an improved definition of the consensus sequence of a conventional basic/bipartite NLS (KRX10-12KRRK) that can be used to identify novel nuclear proteins.  相似文献   

20.
Structural basis for Chk1 inhibition by UCN-01   总被引:5,自引:0,他引:5  
Chk1 is a serine-threonine kinase that plays an important role in the DNA damage response, including G(2)/M cell cycle control. UCN-01 (7-hydroxystaurosporine), currently in clinical trials, has recently been shown to be a potent Chk1 inhibitor that abrogates the G(2)/M checkpoint induced by DNA-damaging agents. To understand the structural basis of Chk1 inhibition by UCN-01, we determined the crystal structure of the Chk1 kinase domain in complex with UCN-01. Chk1 structures with staurosporine and its analog SB-218078 were also determined. All three compounds bind in the ATP-binding pocket of Chk1, producing only slight changes in the protein conformation. Selectivity of UCN-01 toward Chk1 over cyclin-dependent kinases can be explained by the presence of a hydroxyl group in the lactam moiety interacting with the ATP-binding pocket. Hydrophobic interactions and hydrogen-bonding interactions were observed in the structures between UCN-01 and the Chk1 kinase domain. The high structural complementarity of these interactions is consistent with the potency and selectivity of UCN-01.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号