首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To genetically assess the Australian distribution and frequency of Eimeria species in wild rabbits, with a primary focus on Eimeria intestinalis and Eimeria flavescens as possible additional agents of rabbit biocontrol, the distal colon and faecal samples from wild rabbits sourced from 26 Australian locations with mean annual rainfalls of between 252 mm and 925 mm were analysed using amplicon sequencing of the ITS1 region. Contrary to previous microscopy studies which had only detected E. flavescens on mainland Australia at Wellstead in south-west Western Australia, we detected this species at all 23 effectively sampled sites. The more pathogenic E. intestinalis was only found at 52.2% of sites. Three unique Eimeria genotypes were detected that did not align to the 11 published sequences using a pairwise-match threshold of 90%, and may represent unsequenced known species or novel species. One genotype we termed E. Au19SH and was detected at 20 sites, E. Au19CO was detected at eight sites, and E. Au19CN was detected in one rabbit at Crows Nest (Qld). Site diversity ranged from only five Eimeria species at Boboyan (ACT) to 13 unique sequences at Cargo (NSW). Eimeria diversity in individual rabbits ranged from 11 unique sequences in a rabbit at Wellstead (WA) and a rabbit at Cargo (NSW), to one in 17 rabbits and zero in six rabbits. The three rabbit age classes averaged 4.3 Eimeria species per rabbit. No relationship was found between the number of Eimeria species detected and mean annual rainfall. As Eimeria species were found to be fairly ubiquitous at most sites they appear to be an unlikely additional candidate to assist the control of pest rabbits in Australia.  相似文献   

2.
The degree of host specificity, its phylogenetic conservativeness and origin are virtually unknown in Eimeria. This situation is largely due to the inadequate sample of eimerian molecular data available for reliable phylogenetic analyses. In this study, we extend the data set by adding 71 new sequences of coccidia infecting 16 small-mammal genera, mostly rodents. According to the respective feasibility of PCR gene amplification, the new samples are represented by one or more of the following genes: nuclear 18S rRNA, plastid ORF 470, and mitochondrial COI. Phylogenetic analyses of these sequences confirm the previous hypothesis that Eimeria, in its current morphology-based delimitation, is not a monophyletic group. Several samples of coccidia corresponding morphologically to other genera are scattered among the Eimeria lineages. More importantly, the distribution of eimerians from different hosts indicates that the clustering of eimerian species is influenced by their host specificity, but does not arise from a cophylogenetic/cospeciation process; while several clusters are specific to a particular host group, inner topologies within these clusters do not reflect host phylogeny. This observation suggests that the host specificity of Eimeria is caused by adaptive rather than cophylogenetic processes.  相似文献   

3.
Allium is a very diverse genus with over 600 species distributed worldwide. Haplotype analyses of 45S rRNA ITS, trnH-psbA spacer, and matK gene sequences in 9 Allium species were carried out, subsequent to which phylogenetic relations of the nine species were also analyzed. Of the three genes, the nuclear 45S rRNA ITS sequences showed the highest variation with one haplotype in each species. The other two chloroplast genes revealed that more than one haplotype was present in each species, and each haplotype was present in several of the species. In the matK gene, EcoRI restriction revealed heteroplasmy in which the functional gene retains the EcoRI recognition site while the nonfunctional, pseudogene does not. Phylogenetic patterns were not consistent among the haplotypes of the 45 rRNA ITS, trnH-psbA spacer, and matK genic regions. This phylogenetic incongruency might be due to the presence of multiple haplotypes in each of the chloroplast genes. However, the inconsistency of the phylogenetic relationships, based on the 45S rRNA ITS sequences makes a strong case for further analysis.  相似文献   

4.
Two 3-month-old goats (Capra aegagrus hircus and C. hircus coreanae) died after ataxia. In both goats, white nodules 3 mm in diameter were scattered from the duodenum to the ileum and well-raised white nodules 2–3 mm–diameter in the mucosa of the small intestine. Histopathologically, numerous mucosal polyps with coccidial oocysts were observed in the small intestine and several schizonts, macrogametocytes, microgametocytes, and macrogametes were observed in mucosal polyps in the jejunum. Based on fecal flotation tests, the oocysts morphologically resembled those of Eimeria christenseni and E. sundarbanensis; however, their sizes were different. The 18S rRNA gene and COI were phylogenetically analyzed for the molecular identification and characterization of Eimeria sp. Based on 18S rRNA gene similarity, the isolates formed an independent cluster within the related goat Eimeria clade, and the closest species were E. christenseni C2_42, E. hirci C2_99, and E. arloingi C2_119. Furthermore, these were also distinguished from other related goat Eimeria spp. in the phylogenetic tree based on the COI gene. Considering all histopathological, morphological, and phylogenetic analyses, the current study was diagnosed as fatal coccidiosis due to heavy infection with an unrecorded Eimeria species. Thus, we report in this study with caution regarding coccidiosis caused by an unrecorded Eimeria.  相似文献   

5.
More than 68 billion chickens were produced globally in 2018, emphasising their major contribution to the production of protein for human consumption and the importance of their pathogens. Protozoan Eimeria spp. are the most economically significant parasites of chickens, incurring global costs of more than UK £10.4 billion per annum. Seven Eimeria spp. have long been recognised to infect chickens, with three additional cryptic operational taxonomic units (OTUs) first described more than 10 years ago. As the world’s farmers attempt to reduce reliance on routine use of antimicrobials in livestock production, replacing drugs that target a wide range of microbes with precise species- and sometimes strain-specific vaccines, the breakthrough of cryptic genetic types can pose serious problems. Consideration of biological characteristics including oocyst morphology, pathology caused during infection and pre-patent periods, combined with gene-coding sequences predicted from draft genome sequence assemblies, suggest that all three of these cryptic Eimeria OTUs possess sufficient genetic and biological diversity to be considered as new and distinct species. The ability of these OTUs to compromise chicken bodyweight gain and escape immunity induced by current commercially available anticoccidial vaccines indicates that they could pose a notable threat to chicken health, welfare, and productivity. We suggest the names Eimeria lata n. sp., Eimeria nagambie n. sp. and Eimeria zaria n. sp. for OTUs x, y and z, respectively, reflecting their appearance (x) or the origins of the first isolates of these novel species (y, z).  相似文献   

6.
Eleven species of catfish (Siluriformes) found in Korean freshwater are economically important resources and include five endemic species. However, there are no studies on phylogenetic analysis of all catfish species in Korea at a molecular level. The species-level analysis of catfish species is usually carried out through morphological characters and controversial due to phenotypic variation. In this study, the partial sequences of 16S rRNA and cytochrome b mitochondrial genes were analyzed for species identification and phylogenetic relationships among 11 species of catfish from 10 different rivers in Korea. The nucleotide sequences of 16S rRNA and cytochrome b consisted of 587 and 441 nucleotide base pairs, respectively. Sequence analysis of both genes revealed that the 11 species fell into three distinct groups, which were genetically distinct from each other and exhibited identical phylogenetic resolution. Sequence divergences between congeneric species averaged 1.78% and 7.39% for 16S rRNA and cytochrome b, respectively. The phylogenetic relationships forming well-differentiated clades in the NJ, ML and BI trees were identical for both fragments. This research demonstrates that partial sequences of both the genes can efficiently identify the 11 species of catfish in Korea, indicating the usefulness of mtDNA-based approach in species identification.  相似文献   

7.
Previously, we characterized an undocumented strain of Eimeria krijgsmanni by morphological and biological features. Here, we present a detailed molecular phylogenetic analysis of this organism. Namely, 18S ribosomal RNA gene (rDNA) sequences of E. krijgsmanni were analyzed to incorporate this species into a comprehensive Eimeria phylogeny. As a result, partial 18S rDNA sequence from E. krijgsmanni was successfully determined, and two different types, Type A and Type B, that differed by 1 base pair were identified. E. krijgsmanni was originally isolated from a single oocyst, and thus the result show that the two types might have allelic sequence heterogeneity in the 18S rDNA. Based on phylogenetic analyses, the two types of E. krijgsmanni 18S rDNA formed one of two clades among murine Eimeria spp.; these Eimeria clades reflected morphological similarity among the Eimeria spp. This is the third molecular phylogenetic characterization of a murine Eimeria spp. in addition to E. falciformis and E. papillata.  相似文献   

8.
Madura cattle, which are native to Indonesia and mainly kept on Madura Island, East Java, are expected to contribute to improving the regional meat self-sufficiency. Eimeria spp. are the most pathogenic protozoans among gastrointestinal parasites in livestock but no molecular surveys of Eimeria spp. in Madura cattle have been conducted to date. In this study, a total of 183 fecal samples were collected from Madura cattle and 60 (32.8%) were positive for parasites of protozoans and nematodes by the sugar floatation method. Among the samples with parasites, Eimeria spp. oocysts were detected in 50 samples (27.3%) with an average OPG value of 1686.1. Eimeria spp. were successfully identified to the species level in 26 samples with Eimeria bovis being the most prevalent, followed by E. zuernii and E. aubrunensis. A total of 21 samples showed mixed infection of more than two species of Eimeria. E. bovis and E. zuernii have been recognized as having high virulency and, thus, these parasites are potential sources of severe coccidiosis and the cause of infections in other cattle. Although additional studies are warranted, these results can be helpful for improving the management and productivity of Madura cattle.  相似文献   

9.
Phylogenetic analysis of the genus Eimeria suggests that parasite and host have coevolved over broad evolutionary timescales. Here we extend this analysis by determining the 18S rDNA gene sequence of the marsupial coccidium, Eimeria trichosuri, and assessing its phylogenetic position relative to Eimeria from birds, reptiles and placental mammals. This analysis placed E. trichosuri clones in a clade that diverged before the major clade comprising species from placental mammals. The position of E.trichosuri is consistent with host phylogeny where marsupials represent an ancient evolutionary line that predates the placental mammal line.  相似文献   

10.

Faecal samples (n = 1,093) collected from the woylie Bettongia penicillata Gray, in south-western Australia were examined for the presence of coccidian parasites. Eimeria sp. oöcysts were detected in 15.2% of samples. Faecal samples obtained from the eastern bettong Bettongia gaimardi (Desmarest) (n = 4) and long-nosed potoroo Potorous tridactylus (Kerr) (n = 12) in Tasmania, were also screened for the presence of Eimeria spp. (prevalence 50% and 41.7%, respectively). Morphological and genetic comparison with other known species of Eimeria indicates that the material identified in woylies is novel. This study aimed to (i) morphologically describe and genetically characterise Eimeria woyliei n. sp. found in woylies; and (ii) genetically characterise Eimeria gaimardi Barker, O’Callaghan & Beveridge, 1988, Eimeria potoroi Barker, O’Callaghan & Beveridge, 1988, and Eimeria mundayi Barker, O’Callaghan & Beveridge, 1988, from other potoroid marsupials. Molecular phylogenetic analyses conducted at the 18S rDNA and mitochondrial cytochrome c oxidase subunit 1 (cox1) loci revealed that E. woyliei n. sp. was most closely related to Eimeria setonicis Barker, O’Callaghan & Beveridge, 1988, at the 18S rDNA locus, and Eimeria trichosuri O’Callaghan & O’Donoghue, 2001, at the cox1 locus. Eimeria woyliei n. sp. is the sixth species of Eimeria to be formally described from potoroid marsupials.

  相似文献   

11.
The Javan ferret-badger Melogale orientalis (Carnivora: Mustelidae: Helictidinae) is a small carnivore endemic to Indonesia. In the family Mustelidae, 10 Eimeria, 12 Cystoisopora, one Isospora, and one Hammondia species are known, but no eimeriid coccidia has been yet described in the subfamily Helictinidae (ferret badgers). Coproscopic examination of Javan ferret-badgers imported into the Czech Republic revealed the presence of coccidian oocysts. Sporulated oocysts differ from other Eimeria known in the family Mustelidae by their small size (12.4–16.1 × 10.4–13.4 μm) and ovoidal shape. Morphological data and phylogenetic analyses of 18S rRNA and COI genes indicated a new species of Eimeria found in faecal samples of Javan ferret badgers. The species is described as E. melogale n. sp.  相似文献   

12.
Vaccination with proteins from gametocytes of Eimeria maxima protects chickens, via transfer of maternal antibodies, against infection with several species of Eimeria. Antibodies to E. maxima gametocyte proteins recognise proteins in the wall forming bodies of macrogametocytes and oocyst walls of E. maxima, Eimeria tenella and Eimeria acervulina. Homologous genes for two major gametocyte proteins - GAM56 and GAM82 - were found in E. maxima, E. tenella and E. acervulina. Alignment of the predicted protein sequences of these genes reveals that, as well as sharing regions of tyrosine richness, strong homology exists in their amino-terminal regions, where protective antibodies bind. This study confirms the conservation of the roles of GAM56 and GAM82 in oocyst wall formation and shows that antibodies to gametocyte antigens of E. maxima cross-react with homologous proteins in other species, helping to explain cross-species maternal immunity.  相似文献   

13.
Eimeriatenella and Toxoplasmagondii are Apicomplexan protozoa and share many similarities in biology and genomics. While the latter parasites are easily cultured in vitro and genetically manipulated, many Eimeria species are difficult to grow in vitro. We hypothesised that molecular tools for the genetic manipulation of T. gondii could be applied to the study of Eimeria parasites. Here we show that three different promoter sequences originating from E. tenella could function effectively not only in other species of the Eimeria genus (histone H4) but also in T. gondii (histone H4, actin and tubulin). Similarly, promoters of the “housekeeping” gene (tubulin) and differentially regulated gene (surface antigen gene, sag1) of T. gondii were effective in driving the expression of the yellow fluorescent protein (YFP) maker gene in E. tenella. The transfection efficiency with heterologous regulatory sequences was similar to that with homologous promoters; while the promoter strength of heterologous vectors is slightly weaker than the homologous vectors in both E. tenella and T. gondii. The results suggest that 5′ regulatory sequences are functionally conserved not only among the Eimeria species, but also between T. gondii and E. tenella, and that T. gondii could be used as a novel transfection check system for Eimeria-rooted vectors, accelerating the development of reverse genetics in Eimeria spp.  相似文献   

14.
Recently, the availability of protocols supporting genetic complementation of Eimeria has raised the prospect of generating transgenic parasite lines which can function as vaccine vectors, expressing and delivering heterologous proteins. Complementation with sequences encoding immunoprotective antigens from other Eimeria spp. offers an opportunity to reduce the complexity of species/strains in anticoccidial vaccines. Herein, we characterise and evaluate EtAMA1 and EtAMA2, two members of the apical membrane antigen (AMA) family of parasite surface proteins from Eimeria tenella. Both proteins are stage-regulated, and the sporozoite-specific EtAMA1 is effective at inducing partial protection against homologous challenge with E. tenella when used as a recombinant protein vaccine, whereas the merozoite-specific EtAMA2 is not. In order to test the ability of transgenic parasites to confer heterologous protection, E. tenella parasites were complemented with EmAMA1, the sporozoite-specific orthologue of EtAMA1 from E. maxima, coupled with different delivery signals to modify its trafficking and improve antigen exposure to the host immune system. Vaccination of chickens using these transgenic parasites conferred partial protection against E. maxima challenge, with levels of efficacy comparable to those obtained using recombinant protein or DNA vaccines. In the present work we provide evidence for the first known time of the ability of transgenic Eimeria to induce cross protection against different Eimeria spp. Genetically complemented Eimeria provide a powerful tool to streamline the complex multi-valent anticoccidial vaccine formulations that are currently available in the market by generating parasite lines expressing vaccine targets from multiple eimerian species.  相似文献   

15.
This is the first study reporting the detection and molecular characterization of Eimeria in bats in Spain, specifically in 12 of 32 chiropteran species described in the Iberian Peninsula. A total of 76 faecal samples were collected from different bat roosting sites across Spanish territory. The DNA was extracted from the samples and sequenced by targeting the Eimeria SSU-rRNA gene. Two Eimeria species were detected in 29 of the 76 faecal samples (38%), and the bat-specific Eimeria rioarribaensis and rodent-specific Eimeria jerfinica were detected in 4 (5%) and 25 (33%) of the samples, respectively. This is the first report of E. rioarribaensis in the bats Rhinolophus euryale, Myotis myotis and Nyctalus lasiopterus, extending the host and geographical ranges for this bat coccidian parasite. The identification of the rodent-specific parasite species E. jerfinica in bats indicates the occurrence of this species in Spain, although its presence has not previously been reported in wild rodents in this country. Considering that most of the Eimeria spp. reported in bats were described only on the basis of morphometric data, molecular studies are required to determined which Eimeria species occur in bats, to complete the identification of these species and to clarify the phylogeny.  相似文献   

16.
The oocysts of some of the recognized species of chicken coccidiosis are difficult to distinguish morphologically. Diagnostic laboratories are increasingly utilizing DNA-based technologies for the specific identification of Eimeria species. This study reports a multiplex polymerase chain reaction (PCR) assay based on internal transcribed spacer-1 (ITS-1) for the simultaneous diagnosis of the Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria necatrix species, which infect domestic fowl. Primer pairs specific to each species were designed in order to generate a ladder of amplification products ranging from 20 to 25 bp, and a common optimum annealing temperature for these species was determined to be 52.5 °C. Sensitivity tests were performed for each species, showing a detection threshold of 1–5 pg. All the species were amplified homogeneously, and a homogenous band ladder was observed, indicating that the assay permitted the simultaneous detection of all the species in a single-tube reaction. In the phylogenic study, there was a clear species clustering, which was irrespective of geographical location, for all the ITS-1 sequences used. This multiplex PCR assay represents a rapid and potential cost-effective diagnostic method for the detection of some key Eimeria species that infect domestic fowl.  相似文献   

17.
18.
Reptiles are the animals with the most described coccidian species among all vertebrates. However, the co‐evolutionary relationships in this host–parasite system have been scarcely studied. Paperna & Landsberg (South African Journal of Zoology, 24, 1989, 345) proposed the independent evolutionary origin of the Eimeria‐like species isolated from reptiles based on morphological and developmental characteristics of their oocysts. Accordingly, they suggested the reclassification of these parasites in two new genera, Choleoeimeria and Acroeimeria. The validity of the genera proposed to classify reptilian Eimeria species remained unresolved due to the lack of species genetically characterized. In this study, we included 18S rRNA gene sequences from seven Eimeria‐like species isolated from five different lizard host families. The phylogenetic analyses confirmed the independent evolutionary origin of the Eimeria‐like species infecting lizards. Within this group, most species were placed into two monophyletic clades. One of them included the species with ellipsoidal oocysts (i.e. Choleoeimeria‐like oocysts), whereas the species with more spheroidal oocysts (i.e. Acroeimeria‐like oocysts) were included in the second one. This result supports the taxonomic validity of the genera Acroeimeria and Choleoeimeria.  相似文献   

19.
Background: Second internal transcribed spacer (ITS2) has proven to contain useful biological information at higher taxonomic levels. Objectives: This study was carried out to unravel the biological information in the ITS2 region of An. culicifacies and the internal relationships between the five species of Anopheles culicifacies. Methodology: In achieving these objectives, twenty two ITS2 sequences (~370bp) of An. culicifacies species were retrieved from GenBank and secondary structures were generated. For the refinement of the primary structures, i.e. nucleotide sequence of ITS2 sequences, generated secondary structures were used. The improved ITS2 primary structures sequences were then aligned and used for the construction of phylogenetic trees. Results and discussions: ITS2 secondary structures of culicifacies closely resembled near universal eukaryotes secondary structure and had three helices, and the structures of helix II and distal region of helix III of ITS2 of An. culicifacies were strikingly similar to those regions of other organisms strengthening possible involvement of these regions in rRNA biogenesis. Phylogenetic analysis of improved ITS2 sequences revealed two main clades one representing sibling B, C and E and A and D in the other. Conclusions: Near sequence identity of ITS2 regions of the members in a particular clade indicate that this region is undergoing parallel evolution to perform clade specific RNA biogenesis. The divergence of certain isolates of An. culicifacies from main clades in phylogenetic analyses suggests the possible existence of camouflaged sub-species within the complex of culicifacies. Using the fixed nucleotide differences, we estimate that these two clades have diverged nearly 3.3 million years ago, while the sibling species in clade 2 are under less evolutionary pressure, which may have evolved much later than the members in clade 1.  相似文献   

20.
An epizootiological survey was conducted to investigate the prevalence of hepatozoonosis in a population of 924 apparently asymptomatic dogs from different regions of Croatia. DNA was isolated from canine blood and screening PCR on the 666 bp fragment of 18S rRNA revealed that 108 (11.8%) of dogs were infected. Positive samples were confirmed by partial sequencing of the 18S rRNA gene. The consensus sequences, derived from various sequence data sets, were compared with sequences of 18S ssrRNA of Hepatozoon spp. available in GenBank. The alignments revealed 106 Hepatozoon canis and two Hepatozoon sp. sequences. Among H. canis isolates, we found a certain amount of heterogeneity, while both Hepatozoonsp. isolates were identical to the Spanish isolate (Accession No. AY600625) from Clethrionomys glareolus. On the basis of eight commonly mutated nucleotide positions in the partial 18S rRNA gene sequence, we divided the H. canis isolates into five groups. The results obtained indicate a higher prevalence and significance of hepatozoonosis in Croatia than previously believed and demonstrate that the organisms belonging to H. canis that infect European dogs are genetically very heterogeneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号