首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The primary objective of this study was to ascertain whether children living in close proximity to mill tailings and a former lead smelter site were currently exhibiting elevated blood lead (PbB) concentrations. To address this issue, the mean PbB for community children and the relationship between PbB and the proximity of the child's residence to the site was estimated. A secondary objective was to identify and quantify accessible lead (Pb) and arsenic (As) in the environment (e.g. Pb in soil, dust, paint and water or As in soil and dust). A third objective was to test for association between specific sources of environmental Pb and PbB and to estimate the relative contribution of these proximate sources of lead to the children's PbB. The data analytic methods allowed estimation of both direct and indirect impact of environmentally accessible Pb. The average PbB level of all children screened in Midvale was 5.2 μg dL?1. Three percent exceeded 15 μg dL?1; 12.7% exceeded 10 μg dL?1. Pb-based house paint and Pb contaminated soil were identified as principal contributors to PbB. PbB was found to increase 1.25 μg dL?1 per 1,000 ppm increase in lead in soil. Proximity of residence to the mill and smelter site was found to be a strong predictor of Pb in soil, and therefore indirectly related to increases in PbB.  相似文献   

2.
Carl L. Strojan 《Oecologia》1978,32(2):203-212
Summary Concentrations of about 26,000 ppm Zn, 10,000 ppm Fe, 2,300 ppm Pb, 900 ppm Cd, 340 ppm Cu, and 0.40% S were measured in the O2 litter horizon about 1 km from a zinc smelter at Palmerton, Pennsylvania. Samples taken about 6 km east of the smelter had concentrations of about 15,000 ppm Zn, 6,500 ppm Fe, 970 ppm Pb, 250 ppm Cd, 170 ppm Cu, and 0.26% S. Samples from a control area about 40 km east of the smelter had concentrations of 2,800 ppm Fe, 650 ppm Zn, 260 ppm Pb, 50 ppm Cu, 9 ppm Cd, and 0.13% S.Litter bags were used to estimate first-year weight loss in sassafras leaves and a mixture of chestnut oak/red oak leaves in the three sites. At the end of one year, average weight loss for sassafras was 39.3% in the control site, 21.8% at 6 km, and 17.5% at the 1 km site. For the chestnut oak/red oak mixture, average weight loss was 36.8% (40 km), 25.7% (6 km), and 19.1% (1 km). Numbers and diversity of soil microarthropods inhabiting the litter bags showed a corresponding decline at sites near the smelter. Concentrations of Ca, Cd, Cr, Cu, Fe, Mg, Mn, N, Na, Ni, P, Pb, S and Zn in the decomposing litter were also measured.The average amount of organic matter on the forest floor was estimated to be 3.8 kg/m2 in the control site, about 3.8 kg/m2 at 6 km, and about 8.1 kg/m2 1 km from the smelter. Average thickness of the litter horizons in these three sites was 6.0 cm (40 km), 7.0 cm (6 km), and 12.4 cm (1 km), suggesting a long-term depression of decomposition and mineral cycling near the smelter.  相似文献   

3.
The mathematical model of soil mixing after atmospheric surface deposition developed in Drivas et al. (2011) is expanded here and applied to a case study of soil recontamination in areas near a lead smelter in Herculaneum, Missouri. Soil lead samples collected from the yards of several residences in Herculaneum between 2001 and 2009 show that recontamination of previously remediated yards has taken place. The model is used to predict a relative soil lead recontamination trend with time, based on the remediation date and decreasing smelter emissions over time. An average scaling factor between relative and absolute soil lead levels is derived based on over 1600 data points from 24 properties, using modeled air lead levels and the remediation date for each property. The scaling factor was used to predict soil lead recontamination trends at an additional six properties that were remediated in the mid-1990s. The predicted soil lead concentration vs. time curves match the time-trends in the soil data, explaining the observations that soil lead levels increased during the 2000s for properties remediated in 2001–2002, but decreased during the same time frame for properties remediated in the 1990s. The model can be used to predict expected recontamination trends under differing air deposition scenarios and to extrapolate expected recontamination trends into the future.  相似文献   

4.
This paper describes development of a multi-pathway arsenic exposure model. The model uses information on arsenic concentrations in food, water, soil, and dust, combined with estimates of intake and medium-specific absorption. Urinary arsenic is predicted assuming that 60% of absorbed arsenic is excreted in urine under steady state conditions. Fecal arsenic is predicted assuming all unabsorbed arsenic is excreted in feces. We applied this model at a former copper smelter site. Site specific distributions were available for the following parameters: soil and dust arsenic concentration (geometric mean approximately 100 to 200?ppm and 50 to 100?ppm, respectively); the combined childhood soil and dust ingestion rate (geometric mean of 20?mg/d); soil and dust arsenic relative bioavailability (geometric mean 0.20 and 0.28, respectively); exposure duration; water arsenic concentration; air arsenic concentration; and total arsenic in food. Monte Carlo simulation was used to predict daily arsenic uptake and excretion in urine and feces for children. Predicted urine arsenic levels were less than measured levels (73% to 88% of measured values, depending on region of site). On the other hand, predicted fecal arsenic levels exceeded measured levels by a factor of 1.7 to 4.6. We were able to improve the correspondence between predicted and measured arsenic excretion rates by decreasing the assumed value of the combined soil and dust ingestion rate, and increasing the assumed bioavailability of arsenic in soil and dust.  相似文献   

5.
A broad range of soil pollutants were found to decrease with distance from a zinc smelter from 35,000 to 77, 8270 to 40 and from 190 to less than 1 ppm for zinc, lead and cadmium, respectively. Along this gradient, observed species richness of soil macro-organisms seemed to be more affected by the land-use type than by soil pollution--minimum in crops (21), maximum in woody sites (126). IndVal index allowed isolation of 21 indicator species from the 339 morphospecies identified. Most of these indicator species were characteristic of the unpolluted sites: only two diplopods and one gastropod from polluted poplar plantations, and none from the most polluted site. Since soil invertebrates respond to different environmental factors, including direct effect of heavy metals, we suggest there may be some confounding factors generating spurious relationships between the values of species as bioindicators and the pollution status they are supposed to indicate.  相似文献   

6.
Summary Chemical analysis of samples of needles of Aleppo pine (Pinus halepensis), humus and mineral soil collected in the vicinity of the Pb-smelter in Lavrion, Attica, showed that an area of about 2 km around the smelter is heavily polluted primarily with Pb and also with Zn, S and F. Most of the Pb was found accumulated in the humus and the top layer of the mineral soil.About 50% of the Pb found in the samples of Aleppo pine needles could be removed by washing them in a dilute detergent solution. One and 15% of the total Pb from Pb-polluted soil and humus samples, respectively, was extracted with normal ammonium acetate solution. No Pb or a very small amount was extracted with distilled H2O from humus and soil samples treated with concentrations of Pb as high as 3000 ppm and incubated in the laboratory for 30 days.Humus samples treated with up to 1500 ppm Pb or Pb-polluted humus samples collected from points leeward of the smelter had no adverse effects on the germination of Aleppo pine seeds. When the germination experiment was conducted on Pb-polluted humus samples from points windward of the smelter, where a temporary pine needle death had been observed, the percentage seed germination, for two years, was found reduced and negatively correlated to the distance of the humus sampling point from the Pb-smelter.In nursery experiments Pb concentrations of up to 2000 ppm, added to a calcareous soil, had no adverse effect on height increase of Aleppo pine seedlings. Very little Pb was transported from the roots to the needles after seven months growth of the seedlings on either Pb-amended soil or on Pb-polluted soil from Lavrion. Concentrations of Pb in the roots of the seedlings, however, were found high in both cases and almost proportional to concentrations of Pb in the soil.  相似文献   

7.
Abstract

A survey was conducted to determine the distribution and determinants of environmental and blood lead levels near a conventional and several cottage lead smelters and to assess the relationship between environmental and blood lead levels in a tropical, developing-country setting. Fifty-eight households were studied in the Red Pond community, the site of the established smelter and several backyard smelters, and 21 households were studied in the adjacent, upwind Ebony Vale community in Saint Catherine Parish, Jamaica. Elevated levels of lead in soil and housedust and elevated blood lead levels in children were largely confined to the Red Pond community. In that community, soil lead was the strongest predictor of PbB among Red Pond subjects under 12 years of age. The blood lead—soil lead relationship in children differed from that reported in developed countries; blood lead levels were higher than expected for the household- specific soil lead levels that were observed.  相似文献   

8.
LEAD LEVELS IN NORTH AMERICAN CHILDREN AND ADULTS have declined in the past 3 decades, but lead persists in the environment in lead paint, old plumbing and contaminated soil. There are also a number of occupations and hobbies that carry a high risk of lead exposure. There is no evidence for a threshold below which lead has no adverse health effects. Blood lead levels previously considered safe are now known to cause subtle, chronic health effects. The health effects of lead exposure include developmental neurotoxicity, reproductive dysfunction and toxicity to the kidneys, blood and endocrine systems. Most lead exposures are preventable, and diagnosing lead poisoning is relatively simple compared with diagnosing health effects of exposures to other environmental toxins. Accurate assessment of lead poisoning requires specific knowledge of the sources, high-risk groups and relevant laboratory tests. In this article we review the multiple, systemic toxic effects of lead and provide current information on groups at risk, prevention, diagnosis and clinical treatment. We illustrate how the CH2OPD2 mnemonic (Community, Home, Hobbies, Occupation, Personal habits, Diet and Drugs) and specific screening questions are useful tools for physicians to quickly obtain an environmental exposure history and identify patients at high risk of lead exposure. By applying effective primary prevention, case-finding and treatment interventions for lead exposure, both the individual patient and the larger community reap the benefits of better health.CaseA previously healthy 2-year-old girl and her mother visit their family physician because of the daughter''s 2-month history of intermittent complaints of a mild “tummy ache.” There is no associated vomiting, weight loss, or change in appetite, bowels or diet. There are no abnormal findings on physical examination. When asked about symptom onset the mother reports that it began shortly after the family started to renovate their kitchen. They live in an old farmhouse on the outskirts of town and drink water from a drilled well on the property. The physician decides to take an environmental exposure history using the CH2OPD2 mnemonic (Community, Home, Hobbies, Occupation, Personal habits, Diet and Drugs; for children, the occupation question refers to workplace contaminants brought into the child''s environment).1 The child''s exposure history (Open in a separate windowQuestions surrounding this case: Is the family at risk of health effects from lead exposure? Who else might be at risk? Are other laboratory tests indicated? Where can the physician get advice on the significance of the family''s blood lead levels? How should this case of lead exposure be treated?To some extent lead is one of the small success stories of environmental health. The association of lead poisoning with cognitive impairment is well established2 and has resulted in the removal of lead from gasoline, paint and food cans. Despite these preventive measures, however, silent, low-level lead exposure continues to present a problem for many communities and populations. In 1997, data from the US National Health and Nutrition Examination Surveys showed that 4.4% of children in the United States had elevated blood lead levels.3 Black children living in older housing, children living in metropolitan areas with populations of 1 million or more and poor children living in older housing were at highest risk of exposure.3In Canada children living near a point-source smelter in the South Riverdale area of Toronto were tested in 1973 and found to have an unusually high mean lead level (1.34 μmol/L).4 Canada''s Federal–Provincial Committee on Environmental and Occupational Health suggested in 1994 that 5%–10% of Canadian children living in urban areas have blood lead levels exceeding 0.48 μmol/L, even though they are not exposed to point sources.5 The Ontario government estimated in 1994 that 4% of children in the province still had blood lead levels above 0.48 μmol/L;6 a 1992 study found that the mean level in Ontario children had fallen from 0.91 μmol/L in 1972 to 0.29 μmol/L in 1988.7 A study of Vancouver children using blood lead levels collected in 1989 found that 8% had elevated levels (mean 0.29 μmol/L).8 A later study of the children living in Trail, BC, the site of a lead and zinc smelter, demonstrated that 50% had an elevated blood lead level.9  相似文献   

9.
Abstract

The purpose of this study was to determine the extent of absorption of lead (Pb) in mining waste soil from Butte, Montana. It is the first study to fully investigate the bioavailability of lead in soils containing mine waste using a soil dose response approach. Young 7–8 week-old male and female Sprague-Dawley rats (5 animals/sex/group) were given mining waste soil [810 ppm lead (Test Soil I) or 3,908 ppm lead (Test Soil III)] mixed in a purified diet (AIN—76?) at four different dose levels (0.2, 0.5, 2 and 5% dietary soil) for 30 consecutive days. The test soil dose levels at 2 and 5% were chosen to bracket a pica-for-soil child's soil exposure levels. A pica-for-soil child is a young child who eats large quantities of soil (10 g day?1). Standard groups included untreated controls and dosed feed soluble lead acetate groups (1, 10, 25, 100 and 250 μg Pb g?1 feed). The concentrations of lead acetate were chosen to bracket the test soil dose levels of lead. Liver, blood and femur, representing the three compartments in which lead is distributed in the body, were analyzed for total lead concentration using graphite furnace atomic absorption spectroscopy. Clinical signs, body weight, food consumption and liver weights for treated and standard groups were similar to control. Tissue lead concentrations from test soil animals were significantly lower than the tissue concentrations for the dosed feed lead acetate group. Group mean whole blood, bone and liver lead concentrations increased with increasing dose levels for most treatment groups. The increases in blood, bone and liver lead concentrations were not proportional with increasing dose levels and plateaued at the high dose levels. Relative percent bioavailability values, based on dosed feed soluble lead as the standard, were independent of the two different test soils, dose levels or sex, and only slightly dependent on the tissue (blood > bone, liver). Overall relative percent bioavailability values were 20% based on the blood data; 9% based on the bone data; and 8% based on the liver data (2 and 5% dose levels only). The results of this study will provide the scientific validity needed to determine the significance of lead exposure from Butte soils in assessing human health risks as part of the Superfund Remedial Investigation/Feasibility Study process.  相似文献   

10.
Petroleum products are one of the major sources of energy for industry and daily life. Growth of the petroleum industry and shipping of petroleum products has resulted in the pollution. Populations living in the vicinity of oil refinery waste sites may be at greater risk of potential exposure to polycyclic aromatic hydrocarbons (PAH) through inhalation, ingestion, and direct contact with contaminated media. PAH have often been found to coexist with environmental pollutants including heavy metals due to similar pollution sources. The levels and distribution patterns of Σ16 PAH (sum of the 16 PAH) and heavy metals (lead, copper, nickel, cobalt, and chromium) were determined in soil and sediment in the vicinity (5 km radius) of an oil refinery in India. Concentrations of Σ16 PAH in the soils and sediments were found to be 60.36 and 241.23 ppm, respectively. Higher amount of PAH in sediments as compared to soil is due to low water solubility of PAH, settled in the bottom of aquatic bodies. The levels of lead, copper, nickel, cobalt, and chromium (total) in soil were 12.52, 13.52, 18.78, 4.84, and 8.29 ppm, while the concentrations of these metals in sediments were 16.38, 47.88, 50.15, 7.07, and 13.25 ppm, respectively. Molecular diagnostics indices of PAH (Ratio of Phenanthrene/Anthracene, Fluranthene/Pyrene) calculated for soil and sediment samples indicate that the oil refinery environment is contaminated with PAH from petrogenic as well as pyrolytic origin and heavy vehicular traffic on the Agra- Delhi National highway. Sixteen PAH priority pollutants were detected in the United States in entire samples collected near oil refinery areas and concentrations of Σ16 PAH in soil was found to be 1.20 times higher than the threshold value for PAH in soil by ICRCL (Inter-Departmental Committee on the Redevelopment of Contaminated Land). This concentration could lead to disastrous consequences for the biotic and abiotic components of the ecosystem and may affect the soil quality, thus impairing plant growth and its bioaccumulation in food chain.  相似文献   

11.
In the present work the extent and variation of Zn, Cd, Pb, Cu, and Hg loading in undisturbed surface soil (0–5 cm) and the vertical transport of the metals in soil profiles are studied in the vicinity of a zinc smelter in Norway. Three major controlling factors on the metal concentrations in soil have been assessed: 1) distance from the anthropogenic point source; 2) organic matter content (O.M.); and 3) the prevailing wind directions. Moreover metal distributions in proximal soil profiles in 1972 and 2003 are compared. Current concentrations of Zn, Cd, Pb, Cu, and Hg in surface soil reach 14000, 60, 980, 430, and 7.0 mg·kg ? 1 , respectively, near the smelter and decrease regularly with distance in the northerly direction according to the regression model (y = ax? b ). The Zn concentrations are significantly different from the background range up to 30 km from the smelter, whereas the other metals approach background at only 10 km distance. Subsurface concentration peaks of Pb, Cu, and Hg are found at greater depth in soil profiles than peaks of Zn and Cd. Levels of Zn, Cd, and Pb in surface soil seem to have decreased from 1972 to 2003, whereas for Cu the levels appear not to be significantly different.  相似文献   

12.
Summary Alfalfa (Medicago sativa L.), cv. Iroquois, was grown in the greenhouse in soils amended with additions of either lead, cadmium, or nickel. Metals, at rates varying from 0–250 ppm, were not uniformly mixed but were placed close to the soil surface so as to simulate surface deposition. In one series of experiments the sulphate salt of each metal and two soils were used. In a second series of experiments the nitrate salts and one soil were used. Neither salt of lead significantly depressed alfalfa yields. Both salts of either cadmium or nickel significantly depressed yields. Additions of all metals to the soil resulted in both increased metal uptake and concentrations in alfalfa tissue, particularly for cadmium and nickel. The highest tissue concentrations of cadmium and nickel were associated with plant stunting and necrosis. However, at rates of 125 ppm and less, substantial increases in cadmium and nickel concentrations were obtained frequently without serious yield reductions. Generally, metal concentrations were greatest in the first harvest following metal application. Concentration and uptake of lead and cadmium were greater when the metal was applied to the soil as nitrate than when applied as the sulphate salt.  相似文献   

13.
Exposure of children to lead in the environment was assessed at the Murray Smelter Superfund site using both a deterministic risk assessment approach, the Integrated Exposure Uptake Biokinetic (IEUBK) model, and a probabilistic approach, the Integrated Stochastic Exposure (ISE) model. When site-specific data on lead in environmental media were input as point estimates into the IEUBK model, unacceptable risks were predicted for children living within five of eight study zones. The predicted soil cleanup goal was 550?ppm. Concentration and exposure data were then input into the ISE model as probability distribution functions and a one-dimensional Monte Carlo analysis (ID MCA) was run to predict the expected distribution of exposures and blood lead values. Uncertainty surrounding these predictions was examined in a two-dimensional Monte Carlo analysis (2-D MCA). The ISE model predicted risks that were in the same rank order as those predicted by the IEUBK model, although the probability estimates of exceeding a blood lead level of 10?µg/dl (referred to as the P10) from the ISE model were uniformly lower than those predicted by the IEUBK model. The 2-D MCA allowed evaluation of the confidence around each P10 level, and identified the main sources of both uncertainty and variability in exposure estimates. The ISE model suggested cleanup goals ranging from 1300 to 1500 ppm might be protective at this site.  相似文献   

14.
湖南柿竹园矿区土壤重金属含量及植物吸收特征   总被引:54,自引:1,他引:53  
矿区重金属污染十分严重,寻找和发现适合当地气候与土壤条件的重金属耐性植物是矿区植被恢复和污染土壤修复的前提。对我国湖南柿竹园有色金属矿区调查发现,该地区选矿厂的重金属污染问题普遍比尾砂库严重。选矿厂土壤砷、镉、铅、锌严重超标,尾砂库周围也受到不同程度的重金属污染。土壤重金属胁迫效应影响着植物物种分布,选矿厂物种分布较少,相比之下尾砂库的植物多样性较为丰富。柿竹园矿区植物对重金属的吸收表现为富集型(如蜈蚣草Pteris Vittata L .和苎麻Boehmerianivea (L .) Gaud.)、根部囤积型(如攀倒甑Patrinia villosa和木贼Equisetum hyemale)和规避型(如蔓出卷柏Selaginelladavidii Franch和芒草Miscanthus sinensis Andlerss)等3种类型。  相似文献   

15.
土壤中镉、铅、锌及其相互作用对作物的影响   总被引:18,自引:0,他引:18       下载免费PDF全文
通过作物盆栽模拟试验(砂壤质褐土、pH值8.2)揭示:土壤中分别施入镉(CdCl2)、铅[Pb(CH3COO)2]或锌(ZnSO4)其影响表现为,植物各器官镉的含量超过对照植物的数倍至500倍。土壤镉浓度<5ppm和<10ppm分别造成某些蔬菜和水稻的污染。铅主要积累在植物根部,土壤铅污染对作物的影响较小。锌主要积累在植物叶片和根部,对水稻产生生长抑制的土壤锌浓度临界值不大于200ppm,此浓度对旱作无影响。土壤中同时施入镉和铅,植物对镉的吸收增加。而土壤中镉的增加却减少了植物体内铅的含量。土壤中由于镉、锌或铅、锌相互作用的结果,水稻对它们的吸收都有增加。在旱地土壤锌浓度的增高,降低了植物对镉、铅的吸收。镉、铅、锌同时施入土壤由于相互作用的结果,除锌之外,植物对镉、铅的吸收有明显下降。评价土壤重金属污染,不仅要看它们的含量及其存在形态,而且要分析它们之间的相互作用(促进或拮抗)特点。  相似文献   

16.
Lead still remains one of the most thoroughly investigated heavy metals in the environment. Although the identification of lead in soil is a routine matter, its environmental consequence is still much debated because of its potential mobility. We have investigated leadand copper-contaminated soil from two different areas. One was in an urban area, which formerly had a lead smelter within the city. The other a firing range, in which hundreds of thousands of rounds were fired into a very large mound known as a berm. Homogeneity tests, depth profiles, and Pb-Cu correlations are discussed.  相似文献   

17.
Organisms inhabiting metal-contaminated areas can be stressed by metal exposure and are possibly subject to selection, resulting in increased metal tolerance and changes in growth and/or reproduction characteristics. In a previous study it was found that in the terrestrial isopod Porcellio scaber, sampled from the vicinity of a zine smelter, the body size was small and the brood size was large compared to isopods from a reference area. To assess whether these differences were due to genetic differentiation between strains, isopods collected from a reference wood, a zinc smelter area and a lead mine were cultured on non-polluted food, while growth, reproduction and metal concentrations were studied in first and second laboratory generations. The isopods from the three populations differed in age and weight at first reproduction, although there were hardly any differences in growth. The females of the mine and the smelter population started to reproduce earlier, at a lower weight, which resulted in fewer young per female. However, reproductive allocation (=wight of young relative to the weight of the mother) was higher in mine and smelter isopods. We conclude that the isopods at the metal-contaminated sites have been selected for early reproduction and increased reproductive allocation. The results indicate that populations inhabiting metal-polluted sites have probably undergone evolutionary changes. This study showed that growth and reproduction characteristics of different populations under laboratory conditions may provide information on selection processes in the field.  相似文献   

18.
The effects of long-term heavy metal deposition on microbial community structure and the level of bacterial community tolerance were studied along two different gradients in Scandinavian coniferous forest soils. One was near the Harjavalta smelter in Finland, and one was at Ronnskar in Sweden. Phospholipid fatty acid (PLFA) analysis revealed a gradual change in soil microbial communities along both pollution gradients, and most of the individual PLFAs changed similarly to metal pollution at both sites. The relative quantities of the PLFAs br18:0, br17:0, i16:0, and i16:1 increased with increasing heavy metal concentration, while those of 20:4 and 18:2(omega)6, which is a predominant PLFA in many fungi, decreased. The fungal part of the microbial biomass was found to be more sensitive to heavy metals. This resulted in a decreased fungal/bacterial biomass ratio along the pollution gradient towards the smelters. The thymidine incorporation technique was used to study the heavy metal tolerance of the bacteria. The bacterial community at the Harjavalta smelter, exposed mainly to Cu deposition, exhibited an increased tolerance to Cu but not to Cd, Ni, and Zn. At the Ronnskar smelter the deposition consisting of a mixture of metals increased the bacterial community tolerance to all tested metals. Both the PLFA pattern and the bacterial community tolerance were affected at lower soil metal concentrations than were bacterial counts and bacterial activities. At Harjavalta the increased Cu tolerance of the bacteria and the change in the PLFA pattern of the microbial community were found at the same soil Cu concentrations. This indicated that the altered PLFA pattern was at least partly due to an altered, more metal-tolerant bacterial community. At Ronnskar, where the PLFA data varied more, a correlation between bacterial community tolerance and an altered PLFA pattern was found up to 10 to 15 km from the smelter. Farther away changes in the PLFA pattern could not be explained by an increased community tolerance to metals.  相似文献   

19.
From 1960 to 1993, a primary lead smelter operated in the Santo Amaro region, close to Todos os Santos Bay in Brazil, using the classical sinter-roasting process followed by smelting and refining. A high lead content was found in the sediments from Todos os Santos Bay, which has a large circulation and receives the discharge from three rivers. Lead stable isotope ratios provide information about the ore mineralization and can be used to evaluate the origin and fate of the lead pollution. The objective of this study is to identify the isotopic signature of the major effluents of this lead smelter and correlate it with the origin of the galena concentrate that generated it. The X-ray microanalysis confirms that the lead occurs in the slag in the metallic state. The soil has a high lead content (about 0.90%) of oxidized lead. The lead isotopic ratios indicated that the slag isotopic ratios (208Pb/204Pb = 34.8; 207Pb/204Pb = 15.3; 206Pb/204Pb = 15.1) are close to the soil value (208Pb/204Pb = 36.2; 207Pb/204Pb = 15.9; 206Pb/204Pb = 16.4) and both agree with the values for the galena from the Boquira mine region (208Pb/204Pb = 34.6±1.1; 207Pb/204Pb = 15.3±0.4; 206Pb/204Pb = 14.7±0.2). These results indicate that no isotopic fractionation occurred in the roasting-smelting process, therefore the original Boquira isotope ratios can be used as the isotopic signature of the lead dispersed from the Santo Amaro smelter.  相似文献   

20.
Abstract

This paper considers selected field examples of physical and chemical properties of soil and some of the interactions with gut physiological processes that are related to lead bioavailability. The blood lead response to quantity of lead in mining and milling environments compared with urban and lead smelter conditions appears to be different. The emphasis of this paper is to understand the complexity of the urban environment.

Bioavailability appears to be related to physical and chemical qualities other than mere quantity of lead. Particle size is one physical quality that influences bioavailability. Compared to intact lead—based paint, small particle emissions from vehicles govern the general soil lead pattern in urban environments. Lead has accumulated in soils in proportion to city size, with the inner—city generally measuring the highest lead levels. The soil lead situation is further exacerbated by the chemical influence of other toxic substances such as zinc. In several cities, zinc levels of 1,500 ppm and higher, plus acid conditions (pH 5.4 and lower) have been observed. This condition is phytotoxic to plants and the deficiency of plant cover increases the likelihood for soil lead ingestion. After ingestion, nutritional status becomes an important factor with both iron and calcium deficiencies increasing lead bioavailability.

To complement the other discussions of the Gl tract and bioavailability in this volume, the following physiological responses of the gut that either increase or decrease soil lead bioavailability are described: (1) The role of the ‘normal’ microbial flora in altering baseline gut function, (2) effect of pH, (3) intestinal transit time, (4) role of mucus, and (5) barriers to lead transport. Physiologically there are nine physical and/or chemical barriers to soil lead absorption which tend to decrease bioavailability: any breakdown of or increased permeability in these barriers would have the opposite effect. The addition of a soil amendment, such as pathogen free processed sludge, would be expected to be a practical means for reducing soil lead bioavailability. The amendment should serve to bind lead and thus increase effective particle size. It would also have the benefit of improving plant growth as shown in the laboratory. Further study is needed to conduct toxicity testing and undertake field evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号