首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
L Tondelli  A Ricca  M Laus  M Lelli    G Citro 《Nucleic acids research》1998,26(23):5425-5431
c-myb antisense oligonucleotides (AS ODNs) were reversibly immobilized to a novel polymeric core shell nanosphere and their cellular uptake and inhibitory effect on HL60 leukemia cell proliferation studied. The nanosphere surface was so designed as to directly bind ODNs via ionic interactions and reversibly release them inside the cells. Compared with the cellular uptake of free oligonucleotide, the use of AS ODN (immobilized to the nanospheres) produced a 50-fold increase in the intracellular concentration. Specifically, a single dose of 320 nM of AS ODN immobilized to the nanospheres was capable of inhibiting HL60 cell proliferation with the same degree of efficiency obtained using a 50-fold higher dose of free AS ODN. Flow cytometric experiments with fluoresceinated ODNs showed a temperature-dependent uptake, which was detectable as early as 2 h after the beginning of treatment. The inhibitory effect on cell proliferation was maintained for up to 8 days of culture. Moreover, the level of c-Myb protein decreased by 24% after 2 days and by 60% after 4 days of treatment, thus indicating a continuous and sustained release of non-degraded AS ODN from the nanospheres inside the cells.  相似文献   

3.
BACKGROUND: The failure to respond to chemotherapy is a major obstacle in the successful treatment of breast cancer. We have previously shown that anti-HER-2 antisense oligonucleotide (AS HER-2 ODN) treatment was able to sensitize breast cancer cells to various chemotherapeutic agents in vitro irrespective of their HER-2 status, indicating that the use of AS HER-2 ODN therapy for breast cancer is not limited to tumors overexpressing the protein. One of the main drawbacks to the use of antisense therapy in the clinical setting is the lack of an efficient, tumor-targeting, systemic delivery method. We have developed a tumor-specific, ligand-targeting, cationic liposome delivery system designed for systemic gene therapy of cancer. In this study we employ this ligand-liposome strategy to enhance the delivery of the AS Her-2 ODN to breast cancer cells, including those that do not overexpress HER-2, in vitro and in vivo. MATERIALS AND METHODS: A cationic liposome complex that includes folate as the targeting ligand was designed and optimized for more efficient delivery of AS HER-2 ODN to breast tumors cells in vitro, and more significantly, for systemic delivery with tumor-specific targeting in vivo. Human breast cancer cell line MDA-MB-435, which does not overexpress HER-2, was used to compare the degree of chemosensitization to the taxanes of AS HER-2 ODN delivered via the optimized folate-liposome versuscommercial Lipofectin. MDA-MB-435 xenograft tumors were also used to evaluate the anti-tumor effect of the combination of systemically delivered folate-liposome-AS HER-2 ODN and docetaxel (Taxotere). RESULTS: The optimized folate-liposome-AS HER-2 ODN complex significantly increases the response of breast tumor cell lines to conventional chemotherapeutic agents in vitro as compared to AS HER-2 delivered via an unliganded commercially available reagent, Lipofectin. In vivo, the folate-liposome-AS HER-2 ODN complex has prolonged stability in blood and increased uptake in tumors. More significantly, the combination of intravenously administered ligand-liposome-AS HER-2 ODN and docetaxel resulted in a marked inhibition of xenograft growth in an aggressive breast cancer model that does not overexpress HER-2, even after treatment ended. CONCLUSIONS: Although there are other reports of liposomal delivery of AS ODNs, this is the first report of in vivo efficacy against human cancer cells using a tumor-targeting liposome delivery system for systemic AS therapy. Moreover, the increased stability in circulation and anti-tumor efficacy observed were obtained without the need for continuous intravenous infusion. HER-2 is an integral component within a network of cell growth pathways that can affect many different types of tumors where HER-2 may be a contributing factor, such as ovarian, esophageal, and GI malignancies including colon and pancreatic cancers. Therefore, the effectiveness of this therapy with xenograft tumors that do not overexpress HER-2 has the potential to expand the clinical usefulness of this efficacious form of therapy.  相似文献   

4.
It was demonstrated in the previous study that the microinjection of antisense oligodeoxynucleotide (AS ODN) against mu-opioid receptor (MOR) into periaqueductal gray (PAG) of rat brain selectively decreased the MOR mRNA content in PAG, and the decrease in MOR mRNA content was enhanced by pretreatment of the PAG with MOR AS ODN. In the present investigation, effects of the pretreatment of PAG with AS ODN against kappa- or delta-opioid receptor (KOR or DOR) on the decrease in the MOR mRNA content induced by MOR AS ODN were examined. Both KOR and DOR AS ODNs significantly decreased the target mRNA contents, while they did not significantly change MOR mRNA content. The decrease in MOR mRNA content induced by MOR AS ODN, however, was significantly enhanced by the pretreatment of PAG with either KOR or DOR AS ODNs. Results show that the AS ODN has both the specific target mRNA decreasing action and the nonspecific enhancing action on the AS-induced decrease in the mRNA content.  相似文献   

5.
6.
The role of Syk kinase in Fc gamma receptor (Fc gamma R) IIA-mediated phagocytosis was examined with two forms of antisense oligodeoxynucleotides (ODNs) designed to hybridize to human Syk mRNA. Monocytes were incubated with linear and stem-loop antisense ODNs targeted to Syk mRNA. When complexed with cationic liposomes, stem-loop Syk antisense ODN with phosphorothioate modification exhibited stability in fetal bovine and human serum. The stem-loop Syk antisense ODN at a concentration of 0.2 microM inhibited Fc gamma RIIA-mediated phagocytosis by 90% and completely eliminated Syk mRNA and protein in monocytes, whereas scrambled-control ODNs had no effect. The Syk antisense ODNs did not change beta-actin mRNA levels and Fc gamma RII cell-surface expression. In addition, stem-loop Syk antisense ODN inhibited Fc gamma RI and Fc gamma RIIIA-mediated phagocytosis. These data indicate the efficacy of stem-loop Syk antisense ODN for targeting and degrading Syk mRNA and protein and the importance of Syk kinase in Fc gamma receptor-mediated phagocytosis. Immunoblotting assay demonstrated that Fc gamma RII tyrosine phosphorylation after Fc gamma RII cross-linking did not change in the absence of Syk protein. These results indicate that Syk kinase is required for Fc gamma RIIA-mediated phagocytic signaling and that Fc gamma RII cross-linking leads to tyrosine phosphorylation of Fc gamma RII independent of Syk kinase.  相似文献   

7.
We have demonstrated that in vivo administration of phosphorothioate antisense oligodeoxynucleotides (AS[S]ODNs) to type I insulin-like growth factor receptor (IGF-IR) mRNA resulted in inhibition of C4HD breast cancer growth in BALB/c mice. The present study focused on whether in vivo administration of C4HD tumor cells pretreated with IGF-IR AS[S]ODN and irradiated could provide protection against C4HD wild-type tumor challenge and also on elucidating the mechanism mediating this effect. Our results showed that mice immunized with IGF-IR AS[S]ODN-treated C4HD cells experienced a growth inhibition of 53.4%, 61.6%, and 60.2% when compared with PBS-treated mice, wild-type C4HD cell-injected mice, or phosphorothioate sense oligodeoxynucleotide-treated C4HD cell-injected mice, respectively. The protective effect was C4HD-specific, because no cross-protection was observed against other syngeneic mammary tumor lines. The lack of protection against tumor formation in nude mice indicated that T cells were involved in the antitumoral response. Furthermore, cytotoxicity and splenocyte proliferation assays demonstrated that a cellular CD8(+)-dependent immune response, acting through the Fas/Fas ligand death pathway, could be mediating the antitumor effect induced by immunization with AS[S]ODN-treated cells. Immunization also induced splenocytes to produce Ag-dependent IFN-gamma, indicating the presence of a type 1 response. We demonstrated for the first time that IGF-IR AS[S]ODN treatment of breast cancer cells induced expression of CD86 and heat shock protein 70 molecules, both involved in the induction of the immunogenic phenotype. Immunization with these tumor immunogens imparted protection against parental tumor growth through activation of a specific immune response.  相似文献   

8.
The c-myc protooncogene plays a key role in the abnormal growth regulation of melanoma cells. We have targeted three polypurine sequences within the mouse myc mRNA with acridine-modified, clamp-forming antisense oligonucleotides (AS ODNs) in an effort to inhibit growth of murine melanoma cells. These ODNs are unique in that they hybridize to the target mRNA by both Watson–Crick and Hoogsteen hydrogen bond interactions, forming a triple-stranded structure. At a concentration of 3 µM E1C, E2C and E3C inhibit B16-F0 proliferation by 76, 66 and 78%, respectively. Both immunofluorescent staining and western blot analysis corroborate a proportional reduction in c-Myc expression by all three ODNs. There were clear distinctions in the ability of these ODNs to inhibit tumor progression in C57BL/6 mice as a function of Myc expression. There was no synergy demonstrated between ODN E1C with cisplatin (DDP), which inhibited tumor growth by 77% alone and 82% in combination. Although E2C inhibited growth by 54%, its effect was decreased to 32% with DDP, when compared with controls. E3C, on the other hand, demonstrated a synergistic effect with DDP, inhibiting growth by 72% in combination, but only by 1% as a single agent. Immunofluorescence analysis of tumors for each group revealed a concomitant reduction in c-Myc expression in tumors from mice treated with the most active clamp ODN alone (E1C) or clamp ODN + DDP (E1C/E3C + DDP). Western blot analysis confirmed this decrease in target protein expression. Our results document the growth-inhibitory activity of two myc-targeting antisense clamp ODNs; E1C, which has activity as a single agent, and E3C, which has in vivo synergy with DDP pretreatment. These data confirm the antiproliferative effects of these novel ODNs and document an interesting synergy with the chemotherapeutic agent DDP.  相似文献   

9.
10.
We have previously described how a 16 nucleotides ODN (termed 93del) is capable of inhibiting the activity of recombinant integrase in a cell-free system as well as HIV-1 replication in human-infected cells with IC(50) in the low nanomolar range. Intracellular HIV-1 replication was inhibited when the ODN was added at the onset of infection. These results raise several questions. Is a naked ODN able to enter the cell? Does the virus play a role in ODN entry? The uptake of several ODNs (93del, 60del(sc), TBA, T30923) was evaluated and then tracked by labeling the ODN with a fluorescent dye and assessing its intracellular localization by confocal microscopy. A significant level of cellular uptake of free ODN was observed in several cell lines: HeLa epithelial cells, Huh7 hepatic cells, and H9 lymphocytes, and was detected for all ODNs tested except for TBA. Striking differences were observed when naked ODNs were added to cell in the presence or absence of the virus. When HIV-1 virions were present a sharp increase in cellular fluorescence was observed. These results strongly suggest a role for HIV-1 virions in the uptake of certain ODNs.  相似文献   

11.
Successful application of antisense oligonucleotides (ODNs) in cell biology and therapy will depend on the ease of design, efficiency of (intra)cellular delivery, ODN stability, and target specificity. Equally essential is a detailed understanding of the mechanism of antisense action. To address these issues, we employed phosphorothioate ODNs directed against specific regions of the mRNA of the serotonin 5HT1A receptor, governed by sequence and structure. We demonstrate that rather than various intracellular factors, the gene sequence per se primarily determines the antisense effect, since 5HT1a autoreceptors expressed in RN46A cells, postsynaptic receptors expressed in SN48 cells, and receptors overexpressed in LLP-K1 cells are all efficiently downregulated following ODN delivery via a cationic lipid delivery system. The data also reveal that the delivery system as such is a relevant parameter in ODN delivery. Antisense ODNs bound extensively to the RNA matrix in the cell nuclei, thereby interacting with target mRNA and causing its subsequent degradation. Antisense delivery effectively diminished the mRNA pool, thus resulting in downregulation of newly synthesized 5HT1A proteins, without the appearance of truncated protein fragments. In conjunction with the selected mRNA target sequences of the ODNs, the latter data indicated that effective degradation rather than a steric blockage of the mRNA impedes protein expression. The specificity of the antisense approach, as described in this study, is reflected by the effective functional downregulation of the 5-HT1A receptor.  相似文献   

12.
Knock-out of the gene coding for caveolin-1, the main organizer of caveolae, has not yet been performed. We devised a strategy to knock-down caveolin-1 gene expression using antisense oligodeoxynucleotides (ODNs). Seven ODNs, covering different regions of caveolin-1 mRNA, were screened by Western blot analysis of caveolin-1 levels. The most active and specific was found to reduce caveolin-1 protein levels by 70% at 1 microM concentration and its action, as demonstrated by a marked reduction (about 50%) in caveolin-1 mRNA levels, was due to a true antisense mechanism. In HUVEC treated with the active ODN, caveolae were undetectable by confocal and electron microscopy, while their number was not affected when cells were treated with a scrambled ODN. Using the fibrin gel 3 D angiogenesis test we established that the active (but not the scrambled) ODN strongly suppressed capillary-like tube formation. Moreover, an antisense tailored against chicken caveolin-1 mRNA, when tested using the chorio-allantoic membrane technique, dramatically reduced vessel formation at doses (10-20 microg) under which control ODNs were ineffective and devoid of toxicity. Thus, it is likely that caveolin-1 down regulation, followed by caveolae disruption, impairs angiogenesis in vitro and in vivo.  相似文献   

13.
Activation of the ras oncogene has been implicated in many types of human tumors. It has been shown that downmodulation of ras expression can lead to the reversion of the transformed phenotype of these tumor cells. Antisense oligodeoxyribonucleotides (ODNs) can inhibit gene expression by hybridization to complementary mRNA sequences. To minimize toxicity associated with all-phosphorothioated ODNs and improve cellular uptake, we used partially phosphorothioate (PPS)-modified ODNs having an additional hydrophobic tail at the 3'-end (PPS-C(16)). The PPS ODNs are protected against degradation by PS internucleotide linkages at both the 3'- and 5'-ends and additionally stabilized at internal pyrimidine sites, which are the major sites of endonuclease cleavage. Here we show that anti-ras PPS-C(16) ODN retains the high sequence-specificity of PPS ODNs and provides maximal inhibition of Ras p21 synthesis with minimal toxicity even without the use of a cellular uptake enhancer. Moreover, treatment of T24, a radiation-resistant human tumor cell line that carries a mutant ras gene, with anti-ras PPS-C(16) ODN resulted in a reduction in the radiation resistance of the cells in vitro. We also demonstrate that the growth of RS504 (a human c-Ha-ras transformed NIH/3T3 cell line) mouse tumors was significantly inhibited by the combination of intratumoral injection of anti-ras PPS-C(16) ODN and radiation treatment. These findings indicate the potential of this combination of antisense and conventional radiation therapy as a highly effective cancer treatment modality.  相似文献   

14.
15.
16.
Sexual reproduction is an essential biological event for proliferation of plants. The pollen tube (PT) that contained male gametes elongates and penetrates into the pistils for successful fertilization. However, the molecular mechanisms of plant fertilization remain largely unknown. Here, we report a transient inhibition of gene function using phosphorothioate antisense oligodeoxynucleotides (AS‐ODNs) without cytofectin, which is a simple way to study gene function in Arabidopsis thaliana PTs. The PTs treated with AS‐ODNs against both ANX1 and ANX2 showed short, knotted, and ruptured morphology in vitro/semi‐in vitro, whereas normal PT growth was shown in its sense control in vitro/semi‐in vitro. PT growth was impaired in a manner dependent on the dose of AS‐ODNs against both ANX1 and ANX2 above 10 μm . The treatment with AS‐ODNs against ROP1 and CalS5 resulted in waving PTs and in short PTs with a few callose plugs, respectively. The expression levels of the target genes in PTs treated with their AS‐ODNs were lower than or similar to those in the sense control, indicating that the inhibition was directly or indirectly related to the expression of each mRNA. The AS‐ODN against fluorescent protein (sGFP) led to reduced sGFP expression, suggesting that the AS‐ODN suppressed protein expression. This method will enable the identification of reproductively important genes in Arabidopsis PTs.  相似文献   

17.
Abstract: Phosphodiester antisense oligodeoxynucleotides (ODNs) directed against various domains of the cloned mouse δ receptor DOR-1 reduce δ-opioid receptor binding in vivo and in vitro. The present study examines the stability of an antisense ODN (275 n M ) directed against the δ-opioid receptor and its effect on DOR-1 mRNA in cultured neuroblastoma cells and in vivo. When added to NG108-15 cells, much of the antisense ODN is degraded. However, >1% is intact, associated with cells, and stable for at least 72 h. Northern blot analysis demonstrates that treatment of NG108-15 cells with the antisense ODN reduces the levels of a species of DOR-1 mRNA by ∼25%. Similarly, intrathecal administration of the antisense ODN results in the accumulation of intact ODN within the spinal cord, which is stable for at least 72 h, although the levels of accumulation in vivo are lower than in vitro after either 4 or 72 h. Antisense ODN treatment lowers DOR-1 mRNA levels by ∼25%. The loss of mRNA both in vivo and in vitro corresponds quite well to the decreases in receptor binding previously observed by our laboratory and is consistent with reduction of δ-opioid receptor protein in vitro as determined by western blot with a monoclonal antibody selective for the δ-opioid receptor. In conclusion, these studies indicate that a small, but significant, proportion of ODN is taken up by cells and remains intact for up to 72 h. This appears to be sufficient to down-regulate mRNA levels of δ-opioid receptors and their expression.  相似文献   

18.
The subcellular localisation of oligodeoxynucleotides (ODN) is a major limitation for their use against nuclear targets. In this study we demonstrate that an antisense ODN directed against cytosolic phospholipase A(2) (cPLA2) mRNA is efficiently taken up and accumulates in the nuclei of endothelial cells (HUVEC), human monocytes and HeLa cells. Gel shift experiments and incubation of cells with oligonucleotide derivatives show that the anti-cPLA2 oligo binds a 37 kDa protein in nuclear extracts. The TAAAT sequence was identified as the major binding motif for the nuclear protein in competition experiments with mutated ODNs. Modification of the AAA triplet resulted in an ODN which failed to localise in the nucleus. Moreover, inserting a TAAAT motif into an ODN localising in the cytosol did not modify its localisation. The 37 kDa protein was purified and identified after peptide sequencing as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). It was shown by confocal microscopy that GAPDH co-localises with anti-cPLA2 ODN in the nucleus and commercial GAPDH effectively binds the oligo. Competition experiments with increasing concentration of NAD(+) co-factor indicate that the GAPDH Rossmann fold is a docking site for antisense oligonucleotides containing a TAAAT motif.  相似文献   

19.
To explore the physiological significance of AC133 expression on human haematopoietic cells, we phenotyped normal and malignant human haematopoietic cells for AC133 expression, evaluated the utility of AC133 for isolating human stem/progenitor cells in comparison to other known early haematopoietic cell markers, investigated the role of AC133 in regulating hematopoiesis, and evaluated the possibility that MYB might regulate AC133. We found that while human CD34+ progenitor cells expressed AC133, expression was rapidly downregulated during differentiation. In apparent contrast, AC133 mRNA was detectable in cells isolated from CFU-Mix, BFU-E, CFU-GM and CFU-Meg colonies. Human cord blood CD34+ cells expressed AC133 at higher levels than their normal bone marrow counterparts. In apparent contrast to normal primitive haematopoietic cells, the AC133 protein was undetectable on cells from 24 different human haematopoietic cells lines, even though the majority of these cells expressed AC133 mRNA. Since CD34, AC133 and the c-kit (KIT) receptor are all co-expressed on human stem/progenitor cells, we compared the ability of monoclonal antibodies directed against each of these proteins to isolate early progenitor cells. Using these antibodies and magnetized particles in a standard immunoaffinity isolation protocol, we found that anti-CD34 and anti-KIT MoAbs could isolate > 80-90% of the clonogeneic cell population present in a given marrow sample. Anti-AC133 MoAbs recovered approximately 75-80% of CFU-GM and CFU-Meg, but only about 30% of CFU-Mix and BFU-E. Perturbation of AC133 expression with antisense oligodeoxynucleotides (AS ODN) resulted in transient downregulation of AC133 protein on human CD34+ cells but no apparent effect on cell survival or cloning efficiency ex vivo. Finally, downregulation of MYB expression with AS ODN had no effect on the AC133 expression at either the mRNA or protein level. Based on these results, we conclude that AC133 offers no distinct advantage over CD34 or c-kit as a target for immunoaffinity based isolation of primitive hematopoietic cells, that AC133 expression is not required for normal hematopoietic progenitor cell development in vitro, and finally that AC133 expression may not be MYB-dependent.  相似文献   

20.
Insulin administration attenuates cardiac ischemia-reperfusion apoptosis via activation of Akt-mediated cell-survival signaling. As p70s6 kinase is a cognate Akt-mediated phosphorylation target we evaluated whether p70s6 kinase activation is a functional requirement in insulin-mediated cell survival program during post-ischemic reoxygenation. Human cardiac-derived girardi cells were subjected to 6h of simulated ischemia and 2h of reoxygenation+/-insulin treatment [0.3mU/ml]. Concurrently, cells were pre-treated with anti-sense oligodeoxynucleotides (ODNs) corresponding to the initiation start-site of human p70s6 kinase mRNA. Sense ODN and scrambled ODN were used as controls. Cell viability was measured using lactate dehydrogenase (LDH) release and propidium iodide (PI) exclusion. Insulin at reoxygenation enhanced cell viability with attenuated LDH release (>or=50% , p<0.001 vs. ischemic controls) and reduced PI uptake by >or=30% vs. ischemic controls. The protection afforded by insulin was abolished by anti-sense ODN targeting p70s6 kinase, but not by the sense or scrambled ODNs. In parallel, insulin administration at reoxygenation significantly increased p70s6 kinase levels and activity compared with controls. P70s6 kinase activity was abolished by pre-treatment with anti-sense ODNs. Collectively, these data demonstrate that p70s6 kinase activation is a functional target of Akt following insulin-activated cytoprotection during ischemia-reoxygenation-induced injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号