首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ia specificities on parental and hybrid cells of an I-A mutant mouse strain   总被引:3,自引:0,他引:3  
Splenic B cells and B cell blasts from the I-A mutant mouse strain B6.C-H-2bm12 were tested by serology with a series of new monoclonal anti-Iab antibodies. Four out of 5 of those monoclonal antibody-defined specificities that are determined by wild-type I-Ab antigens were undetectable on B6.C-H-2bm12 cells. Specificities both present and absent on mutant cells appear to be determinants on the same wild-type molecule, as indicated by sequential precipitation experiments with soluble H-2b antigens. The lack of expression of certain Ia specificities on mutant cells was found not to be the result of disparate control by the Xid gene, which was previously shown to control the expression of Ia.W39, another specificity absent in B6.C-H-2bm12 mice. Serologic testing of Ia specificities on cells and blasts from F1-hybrid mice suggested that the Iabm12 antigens are codominantly expressed, indicating a failure to detect trans regulation or complementation of the mutant phenotype. Another monoclonal antibody-defined Ia specificity dependent on the expression of the E beta polypeptide was normally expressed in B6.C-H-2bm12 mice. These data thus suggest that the lesion of these mutant mice occurred in the A alpha and/or A beta structural gene, resulting in the loss of several Ia specificities.  相似文献   

2.
A cloned, antigen-specific T suppressor cell line derived from a CBA mouse expresses large amounts of I-A and I-E antigens. Comparative two-dimensional polyacrylamid gel electrophoresis of biosynthetically labeled I-A antigens immunoprecipitated with a variety of monoclonal I-Ak-specific antibodies suggested that alpha, beta and Ii polypeptide chains are identical with B-cell-derived I-A. Dimeric complexes formed by I-A chains derived from B or T suppressor cells were also similar with two major exceptions. Pulse-labeled T-cell-derived Ia antigen was complexed with two additional unknown components of about 31K. These components were not visible in pulse-chased (processed) materials. In addition, T suppressor-cell-derived I-A antigens did not contain S-S linked dimers consisting of processed alpha and beta chains, which are usually formed during solubilization of B cells. We consider the possibility that in T cells these chains are associated with other structures, thus preventing S-S linkage between alpha and beta chains.  相似文献   

3.
The allospecific T cell recognition of the I-Ek molecule was assessed by using eight A. TH anti-A. TL proliferative T cell clones, all of which expressed the Thy-1-2+, Lyt-1+, Lyt-2-, Ia-, and p94,180+ cell surface phenotype. The use of panels of stimulating cells from homozygous of F1 hybrid strains indicated each T cell clone exhibited specificity for distinct alloactivating determinants including: i) a private E beta k-controlled determinant expressed in cis- or trans-complementing E beta kE alpha strains; ii) an apparently nonpolymorphic E alpha determinant resembling the serologic specificity Ia.7, i.e., present in all strains carrying E alpha and E beta expressor alleles; and iii) a series of conformational I-E determinants, the expression of which required a precisely defined combinatorial association of E beta plus E alpha chains. Two clones were found to be reactivated by cis- but not trans-complementing E beta k E alpha k strains, and another recognized an allodeterminant shared by the I-Ab molecule. Various I-Ek-reactive monoclonal antibodies (mAb) directed to epitopes presumably expressed on either E alpha (epitope clusters I and II) or E beta (epitope cluster III) chains inhibited the proliferative responses of seven clones recognizing private E beta k or unique E beta E alpha conformational activating determinants. By contrast, the restimulation of the clone directed to a nonpolymorphic E alpha determinant was selectively blocked by anti-Ia.7 mAb defining epitopes on the E alpha chains but not by those directed to the E beta chain. On the basis of these data, it was concluded that the recognition sites of most anti-I-Ek proliferative T cells were expressed on the E beta chain or the E beta plus E alpha interaction products, and that a minority of such alloreactive T cells could be activated through recognition of the E alpha chain per se.  相似文献   

4.
Cells of the human monocyte cell line U937 are generally considered devoid of any Ia antigens on their surface. In analyzing U937 cells with a large panel of monoclonal anti-human Ia antibodies by flow cytometry, we detected a small number of cells that appeared to react with antibodies to HLA-DR and HLA-DS/DC molecules. These Ia-positive cells were isolated and were cloned, resulting in a human monocyte cell line that expresses high levels of Ia antigens. We analyzed these antigens by one- and two-dimensional polyacrylamide gel electrophoresis, after radiolabeling and immunoprecipitation. Three distinct Ia molecules, alpha 1 beta 1, alpha 1 beta 3 (HLA-DR-like), and alpha 2 beta 2 (HLA-DC/DS-like) are synthesized by I937 cells, alpha 1 beta 3 molecule being the predominant species. The Ia antigen-bearing human monocyte cell line is expected to be useful for studying events involved in antigen presentation.  相似文献   

5.
The specificity of interspecies Ia cross-reactions has been analyzed by testing a panel of monoclonal antibodies (mAb) to mouse I-E and I-A antigens for reactivity with pig Ia antigens. Our earlier studies showed that mouse anti-I-E alloantisera recognized common determinants on Ia antigens of other species, whereas anti-I-A alloantisera showed much more limited cross-reactivity. These results were confirmed using a panel of 17 anti-I-E mAb, 10 of which were cytotoxic to pig cells. 2D gel electrophoretic analyses of precipitates with these mAb of 35S-labeled, NP40 solubilized pig cells revealed a limited set of protein spots that appeared to be identical to the subset of pig Ia antigens precipitated by A.TH anti-A.TL alloantiserum. Because the cross-reactive mouse sera were produced in mouse strains that do not express an I-E molecule (H-2b and H-2s), it was anticipated that the cross-reacting antibodies would be reactive with the monomorphic determinant of the I-E molecule, Ia.7. However, comparison of the reactivity of these mAb with pig cells and mouse cells revealed that the cross-reactivity on pig cells correlated not with Ia.7 but rather with detection of epitope(s) of the I-E molecule associated with inter-strain polymorphism. Anti-I-A cross-reactions were also detected, but were weaker and more limited. These findings may have implications for the evolution of Ia antigens in mammalian species.  相似文献   

6.
Ia antigens seem to control immune responses on at least two levels. First, they influence the antigen recognition repertoire of the T cells. Second, their variable expression on certain antigen-presenting cells is a powerful regulatory mechanism for the local immune reaction. This is particularly important in the central nervous system (CNS) in which no Ia antigens are normally expressed. Recent experiments in this context have shown that astrocytes are able to express Ia antigens during interaction with T cells, and that they function as antigen-presenting cells. The Ia-inducing activity is produced by activated T cells, and can be replaced by immune interferon (IFN-gamma). In this study we report on the functional and kinetic relationship between Ia antigen expression on astrocytes and the immune-specific activation of T cells by astrocytes. Normal resting astrocytes were found to be negative for Ia antigens by immunofluorescence and by biochemical criteria. Moreover, they are only able to stimulate T cells after they have been induced to express Ia antigens by a signal from the T cells, which is probably mediated by IFN-gamma. In conclusion, the immune-specific interaction between astrocytes and T lymphocytes is a sensitively controlled system that might be pivotal to the development of immune responses in the brain. Malfunction of the system could be an important factor in the pathogenesis of aberrant immune reactions in the CNS, e.g., in multiple sclerosis.  相似文献   

7.
The in vivo activation of T cells by a variety of antigens can be inhibited by the administration of anti-I-A antibodies (Ab) at the time of antigen priming. This inhibition can partially be explained by the temporary loss of Ia molecules from Ia-bearing antigen-presenting cells (APC) in the spleen. In this study, the effects of i.p. injected monoclonal Ab specific for I-A glycoproteins of different H-2 haplotypes on Ia antigen expression and APC function of spleen cells and epidermal Langerhans cells were compared. It was found that anti-I-A Ab quickly bound to both spleen cell and Langerhans cell Ia antigens. Although spleen cell Ia antigens were modulated and thus temporarily disappeared, Ia antigen expression by epidermal Langerhans cells was not modulated. In functional studies, the capacity of spleen cells and epidermal cells from anti-I-A Ab treated vs control animals to function as APC for antigen-specific, I-A- or I-E-restricted T cell clones was tested. A single injection of anti-I-A Ab completely abolished the APC function of spleen cells as shown in several inbred mouse strains, F1 animals, and with the use of several different Ab and T cell clones. In contrast, Langerhans cell-dependent APC function of epidermal cells remained completely unaltered. Even multiple injections of high doses of Ab never caused any inhibition of Langerhans cell function. Experiments with anti-I-Ak or anti-I-Ad Ab in an (H-2k X H-2d)F1 animal showed abrogation of APC function of spleen cells, but again not of Langerhans cells. Thus in vivo anti-I-A Ab administration appears to differentially affect Ia antigen expression and APC function from spleen and epidermis: Ia antigens are modulated from spleen cells but not from epidermis, and APC function disappears in the spleen but not in the epidermis. The abrogation of splenic but not of Langerhans cell APC function with anti-I-A Ab will facilitate the dissection of the relative contributions of Langerhans cells as compared with other APC in the generation of cutaneous immune responses.  相似文献   

8.
Procedures are presented for the preparative isolation of murine Ia antigens directly from splenocyte detergent extracts with monoclonal immunoadsorbents. Utilizing these procedures, three Ia (I-A subregion) polypeptides (alpha, 31K, beta) were isolated and their m.w. and pI values characterized. Evidence is presented that indicates that: 1) the 31K polypeptide probably does not associate with the Ia alpha and beta chain complex during the Ia isolation procedure; 2) the 31K polypeptide is not tightly bound to the alpha/beta Ia complex and can be selectively removed by freezing and thawing and by washing the Ia-immunoadsorbent with buffers containing pyrrolidinone (a polar solvent); and (3) unlike the alpha and beta chains, the 31K polypeptide is not intrinsically radiolabeled with 3H fucose and 3H glucosamine, indicating that the 31K polypeptide either contains a carbohydrate structure that is different from that of the alpha and beta chains or it is not a glycopeptide. These data suggest that although Ia antigens are probably comprised of three polypeptides in the intact cell, only two (alpha and beta) are required to maintain alloantigenic determinants.  相似文献   

9.
Cloned, protein antigen-specific, Ia-restricted T cell lines frequently (approximately 20%) also respond strongly to stimulator cells from strains expressing stimulatory alleles at the chromosome 1-encoded Mls-locus. Furthermore, such responses are blocked by monoclonal antibodies specific for Ia antigens expressed by the stimulator rather than the responder cells. However, such responses show no specificity for polymorphic determinants on Ia molecules, although in such responses, as in primary and secondary T cell responses to stimulating Mls-locus alleles, I-E molecules appear to play a central role. These results, combined with the unique immunobiology of the primary T cell proliferative response to Mls-locus-disparate stimulator cells, suggest to us that this response involves the interaction of the receptor on T cells for antigen:self Ia with a relatively nonpolymorphic region of Ia glycoproteins. This hypothesis is supported by the observation that a monoclonal antibody to the T cell receptor will inhibit both responses, although the response to Mls-locus-disparate stimulators appears to be more sensitive to these antibodies. We propose that the interaction of the T cell receptor with Ia is stabilized by a cell interaction molecule encoded or regulated by the Mls-locus gene product permitting the T cell receptor:Ia glycoprotein interaction to lead to T cell activation.  相似文献   

10.
Two roles for Ia in antigen-specific T lymphocyte activation   总被引:1,自引:0,他引:1  
In this study we examined the mechanism by which a PPD-specific murine T cell hybridoma, 8B2, recognized PPD associated with antigen-presenting cells (APC) in a manner genetically restricted by I-Ad. It was found that PPD-pulsed APC that were glutaraldehyde-fixed and treated with anti-Ia monoclonal antibody (abbreviated as PGM) were unable to stimulate the 8B2 T cells, as expected, due to inhibition caused by antibody binding to the Ia. However, addition of non-antigen-treated, glutaraldehyde-fixed APC (abbreviated as G) to cultures containing 8B2 T cells and PGM restored T cell activation, as determined by IL 2 production. This second non-antigen-specific function provided by the additional APC, G, was attributed to Ia and could be substituted by APC plasma membranes and by soluble membrane extracts. Genetic restriction analysis in which a variety of Ia-positive and Ia-negative cell lines and B cell blasts from different mouse strains were used as PGM or as G showed that each APC provided different Ia determinants that were specifically recognized by the T cells. PGM cells had to express I-Ad in order to present the PPD determinant, whereas the non-antigen-specific function was specific for I-Ad or I-Ab. These results suggest that the anti-Ia antibody does not interfere with the PPD/I-Ad-specific determinant bound by the antigen-specific T cell receptor, but prevents a second non-antigen-specific interaction with another region of the Ia molecule, which is provided by G. These two roles for Ia (antigen-specific and non-antigen-specific) were also found for activation of normal polyclonal PPD-specific T cell responses; thus they are not unique to the 8B2 T cell, but are generally applicable. In addition, T cell interactions with PGM and with G each provide different intracellular activation signals. This was determined by substituting the PGM or the G with either the tumor promoter phorbol 12-myristate 13-acetate (PMA) or the Ca++ ionophore, ionomycin. It was found that 8B2 T cells cultured with PGM and ionomycin, but not with PGM and PMA, were activated for IL 2 production. Neither PMA nor ionomycin in conjunction with G resulted in T cell activation. Taken together, these results indicate that 8B2 T cell activation involves APC Ia antigens in two different ways: one is to contribute to the presentation of the foreign PPD antigen, and a second is a non-antigen-specific Ia-T cell interaction necessary to provide additional intracellular activation signals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The cell hybridization technique was used for the production of 12 monoclonal antibodies against H-2Kk, H-2Db, I-Ak and I-Ek antigens. The strain distribution pattern indicated that three antibodies reacted with new H-2 and Ia determinants, respectively, while the majority of determinants defined by the monoclonal antibodies showed good correlation with H-2 and Ia determinants described by conventional alloantisera.Monoclonal Ia antibodies showed strong reactivity with about 90% of surface IgM positive B cells, but not with T cells. In double fluorescence studies, both I-A and I-E determinants were always found to be coexpressed on the same B cells. When the high sensitivity of the fluorescence activated cell sorter was utilized, about 30 to 40% of purified lymph node T cells were found to carry both I-A and I-E antigens, although in a much lower density than B cells. In conclusion, monoclonal Ia antibodies appear to display the same serological and cellular reactivity pattern as do conventional antisera.  相似文献   

12.
A xenogeneic rat anti-mouse Ia monoclonal antibody, M5/114 (gamma 2b, kappa), was studied for its effects in vitro on T cell proliferative responses. Strain distribution studies revealed that M5/114 could inhibit I-A subregion-restricted T cell responses of the H-2b,d,q,u but not the H-2f,k,s haplotypes, indicating that this xenoantibody recognizes a polymorphic determinant on mouse Ia molecules. This same monoclonal antibody was found to inhibit BALB/c (H-2d) T cell proliferation to both G60A30T10 and G58L38 phi 4. The Ir genes regulating responses to these antigens map to either the I-A subregion (GAT), or the I-A and I-E subregions (GL phi), raising the possibility that M5/114 recognizes both I-A and I-E subregion-encoded Ia glycoproteins. It could be shown, using appropriate F1 responding cells, that M5/114 does in fact affect GAT and GL phi responses by interaction with both the I-A and the I-E subregion products, and not by any nonspecific effect resulting from binding to the I-A subregion product alone. These results are consistent with genetic and biochemical studies directly demonstrating that M5/114 recognizes A alpha A beta and E alpha E beta molecular complexes. The existence of a shared epitope on I-A and I-E subregion products suggests the possibility that these molecules arose by gene duplication. Finally, the precise correlation between the Ia molecules recognized by M5/114 and the ability of this antibody to block T cell responses under Ir gene control strengthens the hypothesis that Ia antigens are Ir gene products.  相似文献   

13.
The receptor specificity of H-2-restricted T lymphoblasts activated against trinitrobenzene sulfonate (TNBS)-coupled spleen cells was examined using an antigen binding assay. A population of Lyt-1+,2-T lymphoblasts acquired syngeneic Ia determinants during 4 days of primary culture with hapten-coupled stimulator cells. Syngeneic Ia was not reexpressed after trypsin treatment of the T cells, but was found after incubation with soluble Ia shed from lipopolysaccharide-activated blasts. Self-Ia binding was specific in that Lyt-1+,2- but not Lyt-1-,2+ cells acquired the antigen, and in that self-Ia bound more effectively than allogeneic Ia material. To determine the relationship of self-Ia binding to the recognition of foreign antigen, the binding of trinitrophenyl (TNP)-coupled plasma membrane vesicles by TNP-specific T cells was studied. TNP-vesicle binding occurred via TNP and H-2(Ia) molecules on the vesicles in that binding was inhibited with antibodies against TNP or H-2(Ia) molecules but not non-major histocompatibility complex (e.g., Ly-6.2) molecules on the vesicles. Complete inhibition of TNP-vesicle binding by an Iak-restricted TNP-specific T-cell line occurred with soluble TNP-lysine, but not an unrelated hapten, N-iodoacetyl-N-(5-sulfonic-1-naphthyl)ethylenediamine (I-AED)-cysteine. Conversely, I-AED-cysteine, but not TNP-lysine, inhibited binding of I-AED-coupled B6 vesicles by B6 anti-I-AED T cells. Significant, but weak inhibition of TNP-vesicle binding by the anti-TNP line was observed with glycoprotein preparations containing partially purified self-Ia molecules. However, inhibition was specific for I-Ak molecules, in that inhibition was lost after removal of I-Ak molecules from the glycoprotein preparation, and very little inhibition occurred with soluble glycoproteins prepared from thymocytes which contained very little Ia material or from LPS blasts of an unrelated H-2 haplotype. These results suggest a recognition model in which TNP and Ia determinants are recognized by neighboring receptor combining sites.  相似文献   

14.
A receptor on the surface of nonsensitized mouse spleen cells that recognizes a glycoprotein from transformed mouse L-929 cells is described. The interaction of the receptor and glycoprotein inducer results in the production of MoIFN alpha/beta. An assay was developed to assess certain biologic and physicochemical characteristics of the receptor. The receptor and glycoprotein inducer bound in a concentration-dependent manner, which tends to indicate a direct interaction between the two. The receptor was not ubiquitous; spleen cells but not normal mouse embryo cells appeared to be the source. It was specific for MoIFN alpha/beta inducers from transformed cells, but not from other MoIFN alpha/beta or gamma inducers such as NDV, LPS, PWM, or SEA. The receptor appeared to be a cell surface protein in that its activity was abolished by trypsinization of whole spleen cells. Previous studies indicated that the receptor was probably located on B cells. Gel filtration indicated that the receptor had a m.w. of 30,000 to 60,000. Because the receptor appeared to be: 1) B lymphocyte associated, 2) a surface protein, and 3) 30,000 to 60,000 daltons, a similarity to Ia antigen was suggested. This possibility was confirmed by showing binding of the receptor to an anti-IaK antibody-Sepharose affinity column. PAGE analysis of the affinity-purified receptor revealed a single protein band with a m.w. of approximately 60,000. ELISA of the above gel slices with anti-Ia antibody further confirmed the specificity of the column. A physical association of the receptor and inducer was demonstrated by showing binding of the glycoprotein inducer to a receptor (Ia antigen)-Sepharose affinity column. Furthermore, the receptor (Ia antigen) was highly purified by a glycoprotein inducer-Sepharose affinity column.  相似文献   

15.
Ribonucleotide reductase (RNR) is a key enzyme for the synthesis of the four DNA building blocks. Class Ia RNRs contain two subunits, denoted R1 (alpha) and R2 (beta). These enzymes are regulated via two nucleotide-binding allosteric sites on the R1 subunit, termed the specificity and overall activity sites. The specificity site binds ATP, dATP, dTTP, or dGTP and determines the substrate to be reduced, whereas the overall activity site binds dATP (inhibitor) or ATP. By using gas-phase electrophoretic mobility macromolecule analysis and enzyme assays, we found that the Escherichia coli class Ia RNR formed an inhibited alpha(4)beta(4) complex in the presence of dATP and an active alpha(2)beta(2) complex in the presence of ATP (main substrate: CDP), dTTP (substrate: GDP) or dGTP (substrate: ADP). The R1-R2 interaction was 30-50 times stronger in the alpha(4)beta(4) complex than in the alpha(2)beta(2) complex, which was in equilibrium with free alpha(2) and beta(2) subunits. Studies of a known E. coli R1 mutant (H59A) showed that deficient dATP inhibition correlated with reduced ability to form alpha(4)beta(4) complexes. ATP could also induce the formation of a generally inhibited alpha(4)beta(4) complex in the E. coli RNR but only when used in combination with high concentrations of the specificity site effectors, dTTP/dGTP. Both allosteric sites are therefore important for alpha(4)beta(4) formation and overall activity regulation. The E. coli RNR differs from the mammalian enzyme, which is stimulated by ATP also in combination with dGTP/dTTP and forms active and inactive alpha(6)beta(2) complexes.  相似文献   

16.
Human T cells, when activated by antigen or mitogen, express Ia antigens. We have examined the capacity of activated T cells to stimulate autologous and allogeneic T cells and their ability to present soluble antigen. Interleukin 2-dependent T-cell lines (TCL), free of accessory cells, were used for antigen-presenting cells. These activated T cells were potent stimulators in an autologous mixed lymphocyte reaction (AMLR), more so than autologous irradiated non-T mononuclear cells. Activated T cells were also able to stimulate proliferation of allogeneic T cells in the absence of any other accessory cells, and this stimulation was blocked by anti-Ia antibodies. Resting unstimulated T cells were unable to stimulate autologous or allogeneic responses. Thus, activated T cells were able to present self antigens and alloantigens. However, activated T cells could not present soluble antigens to autologous T cells or to antigen-specific TCL even if exogenous interleukin 1 was added to cultures. The ability of activated T cells to stimulate an AMLR in vitro may reflect an important immunologic amplification mechanism in vivo. The ability of activated T cells to present alloantigens but not soluble antigens suggests an inability to process antigen, and this may provide further insights into the complexities of antigen presentation.  相似文献   

17.
Ia antigens in mouse skin are predominantly expressed on Langerhans cells.   总被引:10,自引:0,他引:10  
We have investigated the expression of products of the mouse major histocompatibility complex (MHC) on BALB/c and A/J epidermal cells. By using reagents with specificity for various products of the MHC in an indirect immunofluorescence procedure, we found that H-2 antigens are expressed on the vast majority of epidermal cells. Ia antigens, by contrast, are present on only 2.4 to 6.9% of all epidermal cells. These Ia-bearing cells bear a receptor for the Fc portion of IgG and ultrastructurally exhibit the characteristics of Langerhans cells. Ia antigens on Langerhans cells are encoded for by at least the I-A and I-E/C subregions of the MHC.  相似文献   

18.
We have demonstrated that although intestinal epithelial cells in fetuses and young rats do not express Ia antigens, in adult rats intestinal epithelial cells do express Ia antigens, as indicated by immunoperoxidase staining with monoclonal antibodies. Ia expression by intestinal epithelial cells appeared to be related to an increase in the number of intraepithelial lymphocytes (IEL). Most of the IEL were T cells and expressed the phenotype associated with cytotoxic/suppressor T cells, and a large number contained cytoplasmic granules. To directly study a possible modulating effect of IEL on intestinal epithelium, an Ia-negative intestinal epithelial cell line (IEC 17) of rat origin was cultured in the presence of supernatants obtained from Con A- or PHA-stimulated lymphocytes. IEL, as well as spleen cells but not bone marrow cells, were able to secrete a factor(s) capable of inducing Ia antigens on IEC 17 cells, as judged by immunoperoxidase staining and radioimmunoassay. Ia-positive IEC 17 cells were detectable after 12 hr and maximum Ia expression was obtained by 48-hr incubation. Persistence of Ia expression by intestinal epithelial cells required the continued presence of Ia-inducing factor in the medium. Lymphocyte proliferation was not essential for the secretion of the Ia-inducing factor(s). The characteristics and the kinetics of secretion of the Ia-inducing factor were similar to that of an interferon-like activity, but not of interleukin 2. Con A-induced supernatants from IEL and spleen cells were also capable of suppressing the growth of IEC 17 cells. The results of this study indicate that IEL, because of their close association with intestinal epithelial cells, may be involved in modulating a variety of epithelial cell functions, including the expression of Ia antigens. This leads us to speculate that Ia-positive epithelial cells, like Ia-positive macrophages and dendritic cells, may be involved in antigen presentation to T lymphocytes.  相似文献   

19.
The activation of helper T lymphocytes has been proposed to result from the sum of low-affinity interactions between the specific immune receptor, as well as nonpolymorphic receptors such as L3T4 on the T cell surface, and nominal antigen and Ia displayed in a multivalent array on the antigen-presenting cell surface. The present work takes advantage of a T cell hybridoma specific for pigeon cytochrome c in the context of I-Ek, which responds to tobacco hornworm moth cytochrome c at one hundredth the concentration of the homologous antigen, to determine if the T cell's requirement for L3T4 and Ia is directly related to its functional affinity for antigen. The results demonstrate that the T cell's activation by pigeon cytochrome c was blocked by antibodies directed to L3T4 and to I-Ek, even at antigen concentrations twofold to fourfold above those required for maximal responses. In contrast, the response to tobacco hornworm moth cytochrome c was not as affected by these antibodies under equivalent superoptimal conditions. The same phenomenon was observed for the T cell's activation by the carboxyl-terminal peptide fragments of the two cytochromes c, which do not require processing, indicating that the differences were not due to the relative efficiency of processing and/or presentation of the antigens. Although both I-Ek- and L3T4-specific antibodies blocked the T cell response to pigeon cytochrome, antibodies to I-Ak had no effect, even though I-Ak had been considered to be a ligand for L3T4. Thus, either Ia does not bind L3T4 or, if it does, I-Ek must be a sufficient ligand for L3T4 for T cells that recognize their antigen in the context of I-Ek. These studies provide more definitive evidence that the T cell's requirement for the functions of Ia and of L3T4 is dependent on the T cell's functional affinity for its antigenic determinant. This data is consistent with a model of T cell activation in which, given a high enough affinity of the T cell receptor for the processed antigen, the requirement for other components of a stimulatory complex, such as Ia and L3T4, may diminish to undetectable levels.  相似文献   

20.
Isolation and characterization of murine Ia antigens   总被引:2,自引:2,他引:0  
The isolation and characterization of Ia antigens from both lymphoid and nonlymphoid cells was attempted by SDS-polyacrylamide gel electrophoresis of radiolabeled, NP-40 solubilized, and anti-Ia precipitated lysates. The profiles obtained indicate that membrane proteins with a molecular weight of approximately 30,000 can be isolated from peripheral B but not from peripheral T cells. Ia antigens cannot be immunoprecipitated from cortisone-resistant thymocytes, total thymocytes, allogeneically activated T cells, Con A stimulated T cells, and anti-Ig immunoadsorbent purified T cells. Ia antigens seem to comprise only 1%–2% of labeled splenic intracellular and membrane-associated proteins. They differ from H-2 antigens and immunoglobulin H and L chains with respect to size and serological reactivity. Ia antigens cannot be found to be secreted from lymph node cells or splenocytes into the extracellular incubation media. Tissue distribution studies indicate that Ia antigens are present on macrophages, fetal liver cells, epidermal cells, and bone marrow cells. They have not been found on such tumor cells as myelomas, teratomas, and lymphocytic leukemias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号