首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Sarcoplasmic reticulum isolated from moderately fast rabbit skeletal muscle contains intrinsic adenosine 3',5'-monophosphate (cAMP)-independent protein kinase activity and a substrate of 100 000 Mr. Phosphorylation of skeletal sarcoplasmic reticulum by either endogenous membrane bound or exogenous cAMP-dependent protein kinase results in stimulation of the initial rates of Ca2+ transport and Ca2+-ATPase activity. To determine the molecular mechanism by which protein kinase-dependent phosphorylation regulates the calcium pump in skeletal sarcoplasmic reticulum, we examined the effects of protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Skeletal sarcoplasmic reticulum vesicles were preincubated with cAMP and cAMP-dependent protein kinase in the presence (phosphorylated sarcoplasmic reticulum) and absence (control sarcoplasmic reticulum) of adenosine 5'-triphosphate (ATP). Control and phosphorylated sarcoplasmic reticulum were subsequently assayed for formation (5-100 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase. Protein kinase mediated phosphorylation of skeletal sarcoplasmic reticulum resulted in pronounced stimulation of initial rates and levels of E approximately P in sarcoplasmic reticulum preincubated with either ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) prior to assay (Ca2+-free sarcoplasmic reticulum), or with calcium/EGTA buffer (Ca2+-bound sarcoplasmic reticulum). These effects were evident within a wide range of ionized Ca2+. Phosphorylation of skeletal sarcoplasmic reticulum by protein kinase also increased the initial rate of E approximately P decomposition. These findings suggest that protein kinase-dependent phosphorylation of skeletal sarcoplasmic reticulum regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the active calcium transport observed at steady state.  相似文献   

2.
Canine cardiac sarcoplasmic reticulum (SR) is known to be phosphorylated by adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase on a 22,000-dalton protein, Phosphorylation is associated with an increase in both the initial rate of Ca2+ uptake and the Ca(2+)-ATPase activity which is partially due to an increase in the affinity of the Ca(2+)-Mg(2+)-ATPase (E) of sarcoplasmic reticulum for calcium. In this study, the effect of cAMP-dependent protein kinase phosphorylation on the binding of calcium to the SR and on the dissociation of calcium from the SR was examined. The rate of dissociation of the E x Ca2 was measured directly and was not found to be significantly altered by cAMP-dependent protein kinase phosphorylation. Since the affinity of the enzyme for Ca2+ is equal to the ratio of the on and off rates of calcium, these results demonstrate that the observed change in affinity must be due to an increase in the rate of calcium binding to the Ca(2+)-Mg(2+)-ATPase of SR. In addition, an increase in the degree of positive cooperativity between the two calcium binding sites was associated with protein kinase phosphorylation.  相似文献   

3.
Calmodulin has been shown to stimulate the initial rates of Ca2+-uptake and Ca2+-ATPase in cardiac sarcoplasmic reticulum, when it is present in the reaction assay media for these activities. To determine whether the stimulatory effect of calmodulin is mediated directly through its interaction with the Ca2+-ATPase, or indirectly through phosphorylation of phospholamban by an endogenous protein kinase, two approaches were taken in the present study. In the first approach, the effects of calmodulin were studied on a Ca2+-ATPase preparation, isolated from cardiac sarcoplasmic reticulum, which was essentially free of phospholamban. The enzyme was preincubated with various concentrations of calmodulin at 0 degrees C and 37 degrees C, but there was no effect on the Ca2+-ATPase activity assayed over a wide range of [Ca2+] (0.1-10 microM). In the second approach, cardiac sarcoplasmic reticulum vesicles were prephosphorylated by an endogenous protein kinase in the presence of calmodulin. Phosphorylation occurred predominantly on phospholamban, an oligomeric proteolipid. The sarcoplasmic reticulum vesicles were washed prior to assaying for Ca2+ uptake and Ca2+-ATPase activity in order to remove the added calmodulin. Phosphorylation of phospholamban enhanced the initial rates of Ca2+-uptake and Ca2+-ATPase, and this stimulation was associated with an increase in the affinity of the Ca2+-pump for calcium. The EC50 values for calcium activation of Ca2+-uptake and Ca2+-ATPase were 0.96 +/- 0.03 microM and 0.96 +/- 0.1 microM calcium by control vesicles, respectively. Phosphorylation decreased these values to 0.64 +/- 0.12 microM calcium for Ca2+-uptake and 0.62 +/- 0.11 microM calcium for Ca2+-ATPase. The stimulatory effect was associated with increases in the apparent initial rates of formation and decomposition of the phosphorylated intermediate of the Ca2+-ATPase. These findings suggest that calmodulin regulates cardiac sarcoplasmic reticulum function by protein kinase-mediated phosphorylation of phospholamban.  相似文献   

4.
Cardiac sarcoplasmic reticulum plays a critical role in the excitation-contraction cycle and hormonal regulation of heart cells. Catecholamines exert their ionotropic action through the regulation of calcium transport into the sarcoplasmic reticulum. Cyclic 3'-5'-adenosine monophosphate (cAMP) causes the cAMP-dependent protein kinase to phosphorylate the regulatory protein phospholamban, which results in the stimulation of calcium transport. Calmodulin also phosphorylates phospholamban by a calcium-dependent mechanism. We have reported the isolation and purification of phospholamban with low deoxycholate (DOC) concentrations (5 X 10(-6) M). We have also reported the isolation and purification of Ca2+ + Mg2+-ATPase with a similar procedure. Both phospholamban and Ca2+ + Mg2+-ATPase retained their native properties associated with sarcoplasmic reticulum vesicles. Further, we have shown that the removal of phospholamban from membranes of sarcoplasmic reticulum vesicles uncouples Ca2+-uptake from ATPase without any effect on Ca2+ + Mg2+-ATPase activity or Ca2+ efflux. Phospholamban appears to be the substrate for both the Ca2+-calmodulin system and the cAMP-dependent protein kinase system. It is found that the phosphorylation of phospholamban by the Ca2+-calmodulin system is required for the normal basal level of Ca2+ transport, and that the phosphorylation of phospholamban at another site by the cAMP-dependent protein kinase system causes the stimulation of Ca2+-transport above the basal level. The functional effects of the phosphorylation of phospholamban by cAMP-dependent protein kinase system are expressed only after the phosphorylation of phospholamban with Ca2+-calmodulin system. We propose a model for the cardiac Ca2+ + Mg2+-ATPase, whereby the enzyme is normally uncoupled from Ca2+ uptake. The enzyme becomes coupled to Ca2+ transport after the first site of phospholamban is phosphorylated with the Ca2+-calmodulin system. When the second site of phospholamban is phosphorylated with cAMP-dependent protein kinase both Ca2+ transport and ATPase are stimulated and phospholamban becomes inaccessible to DOC solubilization and trypsin.  相似文献   

5.
Highly purified sarcoplasmic reticulum (SR) has been prepared from dog hearts and has been incubated with the triplet probe erythrosinyl isothiocyanate to specifically label the Ca2+-stimulated ATPase (Ca2+-ATPase) of the SR. The rotational mobility of the Ca2+-ATPase has been studied in this erythrosin-labelled SR using time-resolved phosphorescence polarization. Qualitatively, the mobility of the cardiac Ca2+-ATPase resembles that of skeletal muscle SR Ca2+-ATPase. Addition of Ca2+ to SR affects the mobility of the Ca2+-ATPase in a way consistent with a segment of the ATPase altering its orientation relative to the plane of the membrane. Phosphorylation of phospholamban in cardiac SR by the purified catalytic subunit of cAMP-dependent protein kinase, which is known to increase the activity of the Ca2+-ATPase by deinhibition, also alters measured anisotropy. The changes observed are not compatible with dissociation of the Ca2+-ATPase from phospholamban after the latter is phosphorylated. The data are more consistent with phospholamban associating with the Ca2+-ATPase following phosphorylation, or more complex models in which only the hydrophilic domain of phospholamban binds with and dissociates from the Ca2+-ATPase.  相似文献   

6.
Studies were made on the mechanism of the effect of parathyroid hormone (PTH) on the activity of (Ca2++Mg2+)-ATPase, a membrane bound Ca2+-extrusion pump enzyme from the basolateral membranes (BLM) of canine kidney (Km for free Ca2+ = 1.3 X 10(-7) M, Vmax = 200 nmol Pi/mg/min). At 1 X 10(-7) M free Ca2+, both PTH (10(-7)-10(-6) M) and cAMP (10(-6)-10(-4) M) stimulated (Ca2++Mg2+)-ATPase activity dose-dependent and their stimulatory effects were inhibited completely by 5 microM H-8, an inhibitor of cAMP-dependent protein kinase. PTH (10(-7) M) also caused 40% increase in 32P incorporation into the BLM and 5 microM H-8 inhibited this increase too. PTH (10(-7) M) was found to stimulate phosphorylation of a protein of Mr 9000 by cAMP dependent protein kinase and 5 microM H-8 was found to block this stimulation also. From these results, it is proposed that PTH stimulates (Ca2++Mg2+)-ATPase activity by enhancing its affinity for free Ca2+ via cAMP-dependent phosphorylation of a BLM protein of Mr 9000.  相似文献   

7.
Rat liver soluble proteins were phosphorylated by endogenous protein kinase with [gamma-32P]ATP. Proteins were separated in dodecyl sulphate slab gels and detected with the aid of autoradiography. The relative role of cAMP-dependent, cAMP-independent and Ca2+-activated protein kinases in the phosphorylation of soluble proteins was investigated. Heat-stable inhibitor of cAMP-dependent protein kinase inhibits nearly completed the phosphorylation of seven proteins, including L-type pyruvate kinase. The phosphorylation of eight proteins is not influenced by protein kinase inhibitor. The phosphorylation of six proteins, including phosphorylase, is partially inhibited by protein kinase inhibitor. These results indicate that phosphoproteins of rat liver can be subdivided into three groups: phosphoproteins that are phosphorylated by (a) cAMP-dependent protein kinase or (b) cAMP-independent protein kinase; (c) phosphoproteins in which both cAMP-dependent and cAMP-independent protein kinase play a role in the phosphorylation. The relative phosphorylation rate of substrates for cAMP-dependent protein kinase is about 15-fold the phosphorylation rate of substrates for cAMP-independent protein kinase. The Km for ATP of cAMP-dependent protein kinase and phosphorylase kinase is 8 microM and 38 microM, respectively. Ca2+ in the micromolare range stimulates the phosphorylation of (a) phosphorylase, (b) a protein with molecular weight of 130 000 and (c) a protein with molecular weight of 15 000. The phosphate incorporation into a protein with molecular weight of 115 000 is inhibited by Ca2+. Phosphorylation of phosphorylase and the 15 000-Mr protein in the presence of 100 microM Ca2+ could be completely inhibited by trifluoperazine. It can be concluded that calmodulin is involved in the phosphorylation of at least two soluble proteins. No evidence for Ca2+-stimulated phosphorylation of subunits of glycolytic or gluconeogenic enzymes, including pyruvate kinase, was found. This indicates that it is unlikely that direct phosphorylation by Ca2+-dependent protein kinases is involved in the stimulation of gluconeogenesis by hormones that act through a cAMP-independent, Ca2+-dependent mechanism.  相似文献   

8.
Cyclic AMP-dependent autophosphorylation of canine cardiac sarcoplasmic reticulum (SR) vesicles occurred on a 22,000 Mr protein and it was maximum at pH 6.0. At pH 6.0 cAMP-dependent phosphorylation of cardiac SR resulted in stimulation of the depressed initial rate of formation and the levels of the acid stable phosphorylated intermediate of the Ca2+ ATPase (E~P). At pH 6.8 phosphorylation of cardiac SR had no effect on either the initial rate or levels of E~P formed. These findings indicate that cAMP-dependent phosphorylation of cardiac SR can compensate for the effect of acidosis on SR function.  相似文献   

9.
Adrenergic stimulation alters functional dynamics of the heart by mechanisms most likely involving cyclic AMP (cAMP)-dependent protein phosphorylation. In vitro studies indicate that the myofibrils and sarcoplasmic reticulum (SR) may act as effectors of the adrenergic stimulation. cAMP-dependent phosphorylation of troponin I (TnI), one of the regulatory proteins of cardiac myofibrils, results in a decreased steady-state affinity of troponin C (TnC) for calcium, an increase in the off-rate for Ca2+ exchange with TnC, and a rightward shift of the relation between free Ca2+ and myofibrillar force or ATPase. Phosphorylation of phospholamban, a regulatory protein of cardiac SR, results in an increased velocity of Ca2+ transport by SR vesicles, an increased affinity of the transport protein for Ca2+, and an increased turnover of elementary steps of the ATPase reaction. These in vitro findings support the hypothesis that the inotropic response of the heart to catecholamine stimulation involves phosphorylation of TnI and phospholamban. Our in vivo studies with perfused rabbit hearts show that during the peak of the inotropic response to isoproterenol there is a simultaneous phosphorylation of TnI and an 11,000-dalton protein in the SR, most likely the monomeric form of phospholamban.  相似文献   

10.
Phospholamban, a putative regulator of cardiac sarcoplasmic reticulum Ca2+ transport, has been shown to be phosphorylated in vitro by cAMP-dependent protein kinase and an intrinsic Ca2+-calmodulin-dependent protein kinase activity. This study was conducted to determine if Ca2+-calmodulin-dependent phosphorylation of phospholamban occurs in response to physiologic increases in intracellular Ca2+ in intact myocardium. Isolated guinea pig and rat ventricles were perfused with 32Pi after which membrane vesicles were isolated from individual hearts by differential centrifugation. Administration of isoproterenol (10 nM) to perfused hearts stimulated 32P incorporation into phospholamban, Ca2+-ATPase activity, and Ca2+ uptake of sarcoplasmic reticulum isolated from these hearts. These biochemical changes were associated with increases in contractility and shortening of the t 1/2 of relaxation. Elevated extracellular Ca2+ produced comparable increases in contractility but failed to stimulate phospholamban phosphorylation or Ca2+ transport and did not alter the t 1/2 of relaxation. Inhibition of trans-sarcolemmal Ca2+ influx by perfusing the ventricles with reduced extracellular Ca2+ (50 microM) attenuated the increases in 32P incorporation produced by 10 nM isoproterenol. Trifluoperazine (10 microM) also attenuated isoproterenol-induced increases in 32P incorporation into phospholamban. In both cases, Ca2+ transport was reduced to a degree comparable to the reduction in phospholamban phosphorylation. These results suggest that direct physiologic increases in intracellular Ca2+ concentration do not stimulate phospholamban phosphorylation in intact functioning myocardium. Ca2+-calmodulin-dependent phosphorylation of phospholamban may occur in response to agents which stimulate cAMP-dependent mechanisms in intact myocardium.  相似文献   

11.
The Ca2(+)-ATPase in cardiac sarcoplasmic reticulum (SR) is under regulation by phospholamban, an oligomeric proteolipid. To determine the molecular mechanism by which phospholamban regulates the Ca2(+)-ATPase, a reconstitution system was developed, using a freeze-thaw sonication procedure. The best rates of Ca2+ uptake (700 nmol/min/mg reconstituted vesicles compared with 800 nmol/min/mg SR vesicles) were observed when cholate and phosphatidylcholine were used at a ratio of cholate/phosphatidylcholine/Ca2(+)-ATPase of 2:80:1. The EC50 values for Ca2+ were 0.05 microM for both Ca2+ uptake and Ca2(+)-ATPase activity in the reconstituted vesicles compared with 0.63 microM Ca2+ in native SR vesicles. Inclusion of phospholamban in the reconstituted vesicles was associated with a significant inhibition of the initial rates of Ca2+ uptake at pCa 6.0. However, phosphorylation of phospholamban by the catalytic subunit of the cAMP-dependent protein kinase reversed the inhibitory effect on the Ca2+ pump. Similar findings were observed when a peptide, corresponding to amino acids 1-25 of phospholamban, was used. These findings indicate that phospholamban is an inhibitor of the Ca2(+)-ATPase in cardiac SR and phosphorylation of phospholamban relieves this inhibition. The mechanism by which phospholamban inhibits the Ca2+ pump is unknown, but our findings with the synthetic peptide suggest that a direct interaction between the Ca2(+)-ATPase and the hydrophilic portion of phospholamban may be one of the mechanisms for regulation.  相似文献   

12.
We have examined the effects of added cAMP-dependent protein kinase and endogenous calmodulin-dependent kinase on Ca2+ transport in purified internal membranes from human platelets. Both Ca2+ uptake and Ca2+-ATPase activity were maximally stimulated about 2-fold by addition of cAMP-dependent protein kinase. Cyclic AMP-dependent protein kinase inhibitor reduced both Ca2+ uptake and Ca2+-ATPase activities at concentrations which also inhibited cAMP-dependent protein phosphorylation. In addition, concerted stimulation of Ca2+-ATPase by exogenous calmodulin and added catalytic subunit of cAMP-dependent protein kinase was observed. A 22-kDa protein was phosphorylated by both cAMP-dependent and calmodulin-dependent kinases at the same rate as stimulation of the Ca2+-ATPase. Cyclic AMP-dependent phosphorylation of the 22-kDa polypeptide was inhibited by the protein kinase inhibitor and calmodulin-dependent phosphorylation was inhibited by chlorpromazine and EGTA. These results are consistent with the hypothesis that one mode of control of Ca2+ homeostasis in platelets may be similar to the phospholamban system in cardiac muscle.  相似文献   

13.
The purified membrane fragments of sarcoplasmic reticulum (SR) of rabbit fast skeletal muscles were found to incorporate 32P from[gamma-32P]ATP in endogenous membrane substrates and in histone H1. The existence of membrane-bound protein kinase of SR was demonstrated by steady state binding of [3H]-cAMP to the SR membranes. The constant of [3H]cAMP binding to the membranes is 2.5 +/- 0.003 x 10(6) M-1, the number of binding sites is 6.1 +/- 0.8 pmol per 1 mg of protein. The endogenous phosphorylation of SR components was inhibited by cAMP and cGMP at concentrations of 10(-7)-10(-6) and depended on Mg2+ and Ca2+. The thermostable protein inhibitor of cAMP-dependent protein kinase inhibited the endogenous phosphorylation of SR membranes by 30-40%. The protein phosphoproduct of SR membranes revealed the properties of a phosphoester. The membrane-bound protein kinase was active towards the exogenous substrate--histone H1. Phosphorylation in the presence of histones was independent of cyclic nucleotides, Mg2+ and Ca2+. Fractionation of 32P-labelled solubilized membranes in polyacrylamide gel in the presence of Na-SDS showed that the radioactivity is bound to protein zones with molecular weights of 95 000 and 6000.  相似文献   

14.
The phosphorylation of canine cardiac and skeletal muscle ryanodine receptors by the catalytic subunit of cAMP-dependent protein kinase has been studied. A high-molecular-weight protein (Mr 400,000) in cardiac microsomes was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. A monoclonal antibody against the cardiac ryanodine receptor immunoprecipitated this phosphoprotein. In contrast, high-molecular-weight proteins (Mr 400,000-450,000) in canine skeletal microsomes isolated from extensor carpi radialis (fast) or superficial digitalis flexor (slow) muscle fibers were not significantly phosphorylated. In agreement with these findings, the ryanodine receptor purified from cardiac microsomes was also phosphorylated by cAMP-dependent protein kinase. Phosphorylation of the cardiac ryanodine receptor in microsomal and purified preparations occurred at the ratio of about one mol per mol of ryanodine-binding site. Upon phosphorylation of the cardiac ryanodine receptor, the levels of [3H]ryanodine binding at saturating concentrations of this ligand increased by up to 30% in the presence of Ca2+ concentrations above 1 microM in both cardiac microsomes and the purified cardiac ryanodine receptor preparation. In contrast, the Ca2+ concentration dependence of [3H]ryanodine binding did not change significantly. These results suggest that phosphorylation of the ryanodine receptor by cAMP-dependent protein kinase may be an important regulatory mechanism for the calcium release channel function in the cardiac sarcoplasmic reticulum.  相似文献   

15.
J T Gasser  M P Chiesi  E Carafoli 《Biochemistry》1986,25(23):7615-7623
Phospholamban (PLB) from cardiac sarcoplasmic reticulum (SR) was phosphorylated under various conditions by the adenosine cyclic 3',5'-phosphate (cAMP)-dependent and/or the calmodulin-dependent protein kinase. The small shifts in apparent molecular weight resulting from the incorporation of Pi groups in the PLB complexes were analyzed by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In parallel experiments, PLB was dissociated into its subunits and analyzed by using a newly developed isoelectric focusing system. The pI values of the PLB subunits phosphorylated by the cAMP- or calmodulin-dependent kinase were 6.2 and 6.4, respectively. Double phosphorylation of the same subunit resulted in an acidic shift of the pI to 5.2. The combined analysis of the behavior of the PLB complex and of its subunits has greatly simplified the interpretation of the complex phosphorylation pattern and has led to the following conclusions: The PLB complex is composed of five probably identical subunits, each of them containing a distinct phosphorylation site for the calmodulin- and the cAMP-dependent kinase. The population of PLB interacting with the endogenous calmodulin-dependent kinase cannot be phosphorylated by the cAMP-dependent kinase unless previously phosphorylated in the presence of calmodulin. It was also observed that after maximal phosphorylation of PLB in the presence of very large amounts of the cAMP-dependent protein kinase, the Ca2+ pumping rate of the cardiac SR ATPase is stimulated up to 5-fold, i.e., a level of a stimulation which exceeds considerably the values so far reported in the literature.  相似文献   

16.
Membranes prepared from highly purified rat liver lysosomes contain endogenous protein-phosphorylation activities. The transfer of phosphate to membrane fractions from [gamma-32P]ATP was analyzed by gel electrophoresis under acidic denaturing conditions. Two phosphopeptides were detected, with molecular weights of 3,000 and 14,000. Phosphorylation of these proteins was unaffected by the addition of cAMP, cGMP, or the heat-stable inhibitor of cAMP-dependent protein kinase. No additional phosphorylation was observed when cAMP-dependent protein kinase was included in the reaction or when exogenous protein kinase substrates were added. The 14,000-dalton 32P-labeled product was formed rapidly in the presence of low concentrations (250 microM) of either Ca2+ or Mg2+. This product was labile under both acidic and alkaline conditions, suggesting that this protein contains an acyl phosphate, present presumably as a catalytic intermediate in a phosphotransferase reaction. The lower molecular weight species required a high concentration (5 mM) of Mg2+ for phosphorylation, and micromolar concentrations of Ca2+ stimulated the Mg2+-dependent activity. The addition of Ca2+ and calmodulin stimulated the phosphorylation reaction to a greater extent than with Ca2+ alone. This activity was strongly inhibited by 0.2 mM LaCl3 and to a lesser extent by 50 microM chlorpromazine or trifluoperazine. These results suggest that the 3000-dalton peptide may be phosphorylated by a Ca2+, calmodulin-dependent kinase associated with the lysosomal membrane.  相似文献   

17.
Recent studies have demonstrated phosphorylation of the cardiac and slow-twitch muscle isoform (SERCA2a) of the sarcoplasmic reticulum (SR) Ca2+-ATPase (at Ser38) by a membrane-associated Ca2+/calmodulin-dependent protein kinase (CaM kinase). Analysis of the functional consequence of Ca2+-ATPase phosphorylation in the native SR membranes, however, is complicated by the concurrent phosphorylation of the SR proteins phospholamban (PLN) which stimulates Ca2+ sequestration by the Ca2+-ATPase, and the ryanodine receptor-Ca2+ release channel (RYR-CRC) which likely augments Ca2+ release from the SR. In the present study, we achieved selective phosphorylation of the Ca2+-ATPase by endogenous CaM kinase in isolated rabbit cardiac SR vesicles utilizing a PLN monoclonal antibody (PLN AB) which inhibits PLN phosphorylation, and the RYR-CRC blocking drug, ruthenium red, which inhibits phosphorylation of RYR-CRC. Analysis of the Ca2+ concentration-dependence of ATP-energized Ca2+ uptake by SR showed that endogenous CaM kinase mediated phosphorylation of the Ca2+-ATPase, in the absence of PLN and/or RYR-CRC phosphorylation, results in a significant increase (approximately 50-70%) in the Vmax of Ca2+ sequestration without any change in the k0.5 for Ca2+ activation of the Ca2+ transport rate. On the other hand, treatment of SR with PLN AB (which mimics the effect of PLN phosphorylation by uncoupling Ca2+-ATPase from PLN) resulted in approximately 2-fold decrease in k0.5 for Ca2+ without any change in Vmax of Ca2+ sequestration. These findings suggest that, besides PLN phosphorylation, direct phosphorylation of the Ca2+-ATPase by SR-associated CaM kinase serves to enhance the speed of cardiac muscle relaxation.  相似文献   

18.
Phosphorylation of the Ca2(+)-pump ATPase of cardiac sarcolemmal vesicles by exogenously added protein kinases was examined to elucidate the molecular basis for its regulation. The Ca2(+)-pump ATPase was isolated from protein kinase-treated sarcolemmal vesicles using a monoclonal antibody raised against the erythrocyte Ca2(+)-ATPase. Protein kinase C (C-kinase) was found to phosphorylate the Ca2(+)-ATPase. The stoichiometry of this phosphorylation was about 1 mol per mol of the ATPase molecule. The C-kinase activation resulted in up to twofold acceleration of Ca2+ uptake by sarcolemmal vesicles due to its effect on the affinity of the Ca2+ pump for Ca2+ in both the presence and absence of calmodulin. Both the phosphorylation and stimulation of ATPase activity by C kinase were also observed with a highly-purified Ca2(+)-ATPase preparation isolated from cardiac sarcolemma with calmodulin-Sepharose and a high salt-washing procedure. Thus, C-kinase appears to stimulate the activity of the sarcolemmal Ca2(+)-pump through its direct phosphorylation. In contrast to these results, neither cAMP-dependent protein kinase, cGMP-dependent protein kinase nor Ca2+/calmodulin-dependent protein kinase II phosphorylated the Ca2(+)-ATPase in the sarcolemmal membrane or the purified enzyme preparation, and also they exerted virtually no effect on Ca2+ uptake by sarcolemmal vesicles.  相似文献   

19.
Phosphorylation of sarcoplasmic reticulum (SR) Ca2+-cycling proteins by a membrane-associated Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) is a well-documented physiological mechanism for regulation of transmembrane Ca2+ fluxes and the cardiomyocyte contraction-relaxation cycle. The present study investigated the effects of L-thyroxine-induced hyperthyroidism on protein expression of SR CaM kinase II and its substrates, endogenous CaM kinase II-mediated SR protein phosphorylation, and SR Ca2+ pump function in the rabbit heart. Membrane vesicles enriched in junctional SR (JSR) or longitudinal SR (LSR) isolated from euthyroid and hyperthyroid rabbit hearts were utilized. Endogenous CaM kinase II-mediated phosphorylation of ryanodine receptor-Ca2+ release channel (RyR-CRC), Ca2+-ATPase, and phospholamban (PLN) was significantly lower (30-70%) in JSR and LSR vesicles from hyperthyroid than from euthyroid rabbit heart. Western immunoblotting analysis revealed significantly higher (approximately 40%) levels of sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) in JSR, but not in LSR, from hyperthyroid than from euthyroid rabbit heart. Maximal velocity of Ca2+ uptake was significantly increased in JSR (130%) and LSR (50%) from hyperthyroid compared with euthyroid rabbit hearts. Apparent affinity of the Ca2+-ATPase for Ca2+ did not differ between the two groups. Protein levels of PLN and CaM kinase II were significantly lower (30-40%) in JSR, LSR, and ventricular tissue homogenates from hyperthyroid rabbit heart. These findings demonstrate selective downregulation of expression and function of CaM kinase II in hyperthyroid rabbit heart in the face of upregulated expression and function of SERCA2 predominantly in the JSR compartment.  相似文献   

20.
This paper describes the stimulation by cyclic nucleotide dependent protein kinases on the Ca2+ uptake by isolated endoplasmic reticulum (ER) vesicles from the bovine main pulmonary artery. This ER fraction has previously been shown to be highly enriched in phospholamban, a protein kinase substrate that has been well characterized in cardiac sarcoplasmic reticulum (SR), where its phosphorylation is accompanied by an increased rate of Ca2+ uptake. As previously observed for the phosphorylation of phospholamban, the stimulation of the rate of Ca uptake was as high with cGMP dependent protein kinase as with cAMP dependent protein kinase. The effect of phosphorylation of the ER membranes from smooth muscle on the Ca2+ uptake was smaller than that seen in cardiac SR, and it was only observed if albumin was included during the isolation of the membranes. This relatively small effect is probably not due to a lower ratio of phospholamban to Ca2(+)-transport enzyme in the ER membranes as compared to cardiac SR. Several alternative explanations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号