首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Plasma membrane alterations in two tuber-bearing potato species during a 20-day cold acclimation period were investigated. Leaf-callus tissues of the frost-resistant Solanum acaule Hawkes `Oka 3878' and the frost-susceptible, commonly grown Solanum tuberosum `Red Pontiac,' were used. The former is a species that can be hardened after subjecting to the low temperature, and the latter does not harden. Samples for the electron microscopy were prepared from callus cultures after hardening at 2 C in the dark for 0, 5, 10, 15, and 20 days. After 20 days acclimation, S. acaule increased in frost hardiness from −6 to − 9 C (killing temperature), whereas frost hardiness of S. tuberosum remained unchanged (killed at −3 C). Actually, after 15 days acclimation, a −9 C frost hardiness level in S. acaule callus cultures had been achieved.  相似文献   

2.
To elucidate mechanisms for tolerating sudden increases in light intensity following canopy gap formation, we investigated susceptibility to photoinhibition in the evergreen clonal plant bamboo, Sasa senanensis, and two deciduous broadleaf woody plants, Quercus mongolica, and Acer mono. We measured pre-dawn photochemical efficiency of photosystem II (F v /F m) in plants exposed to canopy gaps and in shade-grown plants through the month following gap formation. Photoinhibition (indicated by decreased F v /F m) was smallest in S. senanensis and largest in A. mono. S. senanensis had the highest area-based net CO2 assimilation rate (A area) and electron transport rate (ETR) under high light conditions. This species also had the highest leaf mass per area (LMA) and leaf nitrogen content per area (N area). Higher values of LMA and N area under shade conditions probably contribute to circumvent photoinhibition through maintenance of a higher ETR capacity. Q. mongolica, a gap-dependent species, had properties intermediate between S. senanensis and A. mono; it appeared less susceptible to photoinhibition than the shade-tolerant A. mono. None of the species examined had increased photosynthetic capacity 1 month after gap formation, indicating that shade-grown leaves were unable to fully acclimate to increased light.  相似文献   

3.
To clarify the role of dense understory vegetation in the stand structure, and in carbon (C) and nitrogen (N) dynamics of forest ecosystems with various conditions of overstory trees, we: (i) quantified the above‐ and below‐ground biomasses of understory dwarf bamboo (Sasa senanensis) at the old canopy‐gap area and the closed‐canopy area and compared the stand‐level biomasses of S. senanensis with that of overstory trees; (ii) determined the N leaching, soil respiration rates, fine‐root dynamics, plant area index (PAI) of S. senanensis, and soil temperature and moisture at the tree‐cut patches (cut) and the intact closed‐canopy patches (control). The biomass of S. senanensis in the canopy‐gap area was twice that at the closed‐canopy area. It equated to 12% of total biomass above ground but 41% below ground in the stand. The concentrations of NO3? and NH4+ in the soil solution and soil respiration rates did not significantly change between cut and control plots, indicating that gap creation did not affect the C or N dynamics in the soil. Root‐length density and PAI of S. senanensis were significantly greater at the cut plots, suggesting the promotion of S. senanensis growth following tree cutting. The levels of soil temperature and soil moisture were not changed following tree cutting. These results show that S. senanensis is a key component species in this cool‐temperate forest ecosystem and plays significant roles in mitigating the loss of N and C from the soil following tree cutting by increasing its leaf and root biomass and stabilizing the soil environment.  相似文献   

4.
Ice nuclei active at approximately −2°C and intrinsic to woody tissues of Prunus spp. were shown to have properties distinct from bacterial ice nuclei. Soaking 5-centimeter peach stem sections in water for 4 hours lowered the mean ice nucleation temperature to below −4°C, nearly 2°C lower than stems inoculated with ice nucleation-active Pseudomonas syringae strain B301D. Ice nucleation activity in peach was fully restored by air-drying woody stem sections for a few hours. The ice nuclei in woody tissue were inactivated between 40 and 50°C, but unaffected by treatment with bacterial ice nucleation inhibitors (i.e. NaOCl, tartaric acid, Triton XQS-20), sulfhydryl reagents (i.e. p-hydroxymercuribenzoate and iodine) and Pronase. Ice nuclei could not be dislodged from stems by sonication and were shown to be equally distributed in peach bud and internodal stem tissue on a per unit mass basis; outer and inner stem tissues were also indistinguishable in ice nucleation activity. Development of ice nuclei in immature peach and sweet cherry stems did not occur until midsummer and their formation was essentially complete by late August. Once formed the ice nuclei intrinsic to woody stems were stable and unaffected by seasonal changes in growth. The apparent physiological function of the ice nuclei is discussed in relation to supercooling and mechanisms of cold hardiness in Prunus spp.  相似文献   

5.
The objective of this research was to develop a system in which the direction of fructan metabolism could be controlled. Three-week-old wheat seedlings (Triticum aestivum L. cv Caldwell) grown at 25°C were transferred to cold temperature (10°C) to induce fructan synthesis and then were transferred to continuous darkness at 25°C after defoliation and fructan degradation monitored. The total fructan content increased significantly 1 day after transferring from 25°C to 10°C in both leaf blades and the remainder of the shoot tissue, 90% of which was leaf sheath tissue. Leaf sheaths contained higher concentrations of fructan and greater portions of high molecular weight fructan than did leaf blades. Fructan content in leaf sheaths declined rapidly and was gone completely within 48 hours following transfer to 25°C in darkness. In leaf blades the invertase activity fluctuated during cold treatment. The activity of sucrose:sucrose fructosyl transferase increased markedly during cold treatment, while fructan hydrolase activity decreased slightly. In leaf sheaths, however, the activity of invertase decreased rapidly upon transfer to cold temperature and remained low. Trends in sucrose:sucrose fructosyl transferase and hydrolase activity in sheaths were the same as those of leaf blades. Sheath invertase and hydrolase activity increased when plants were transferred back to darkness at 25°C, while sucrose:sucrose fructosyl transferase activity decreased. These results indicate that changing leaf sheath temperature can be utilized to control the direction of fructan metabolism and thus provide a system in which the synthesis or degradation of fructan can be examined.  相似文献   

6.
Boese SR  Huner NP 《Plant physiology》1990,94(4):1830-1836
The growth kinetics of spinach plants (Spinacia oleracea L. cv Savoy) grown at 5°C or 16°C were determined to allow us to compare leaf tissues of the same developmental stage rather than chronological age. The second leaf pairs reached full expansion at a plant age of 32 and 92 days for the 16°C and 5°C plants, respectively. Growth at 5°C resulted in an increased leaf area, dry weight, dry weight per area, and leaf thickness. Despite these changes, pigment content and composition, room temperature in vivo fluorescence, and apparent quantum yield and light-saturated rates of CO2 exchange or O2 evolution were not affected by the growth temperature. Furthermore, 5°C expanded leaves were found to be more resistant to photoinhibition at 5°C than were 16°C expanded leaves. Thus, it is concluded that spinach grown at low temperature is not stressed. However, shifting spinach leaves from 5°C to 16°C or from 16°C to 5°C for 12 days after full leaf expansion had occurred resulted in a 20 to 25% reduction in apparent quantum yields and 50 to 60% reduction in light saturated rates of both CO2 exchange and O2 evolution. This was not accompanied by a change in the pigment content or composition or in the room temperature in vivo fluorescence. It appears that leaf aging during the temperature shift period can account for the reduction in photosynthesis. Comparison of cold-hardened and non-hardened winter rye (Secale cereale L. cv Muskateer) with spinach by in vivo fluorescence indicated that rye is more sensitive to both short term and longer duration temperature shifts than is spinach. Thus, susceptibility to an abrupt temperature shift appears to be species dependent.  相似文献   

7.
Seasonal patterns of proteins and of cold hardiness were characterized in bark and xylem tissues of genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). In contrast with deciduous trees, which entered endodormancy and abscised leaves in the fall, evergreen trees retained their leaves and exhibited shoot elongation under favorable environmental conditions. A successive increase in the cold hardiness of bark and xylem was observed during the fall in both genotypes. This was followed by a subsequent decrease from midwinter to spring. Xylem tissue in both genotypes exhibited deep supercooling and a significant correlation (r = 0.99) between the midpoint of the low-temperature exotherm and the subzero temperature at which 50% injury occurred (assessed by electrolyte leakage) was noted. The maximum hardiness level attained in deciduous trees was more than twofold that of evergreens. Seasonal pattern of proteins from bark and xylem of the sibling genotypes was characterized by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Among other qualitative and quantitative changes, accumulation of a 19-kilodalton polypeptide in the bark of both genotypes was observed during fall followed by a decrease in spring. This polypeptide accumulated to higher levels in the deciduous peach compared with the evergreen. Additionally, a 16-kilodalton protein exhibited the same pattern in deciduous trees but not in the evergreen trees. Both the 19- and a 16-kilodalton bark proteins conform to the criteria of a bark storage protein. The relationship of seasonal changes in protein to cold hardiness and dormancy in these genetically related peach genotypes is discussed.  相似文献   

8.
Deep undercooled tissue water, which froze near −40 C, was found in winter collected stem and leaf tissue of the dominant timberline tree species of the Colorado Rocky Mountains, Engelmann spruce (Picea engelmannii (Parry) Engelm.) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.), and in numerous other woody species in and below the subalpine vegetation zone. Previous work on numerous woody plants indicates that deep undercooling in xylem makes probable a −40 C winter hardiness limit in stem tissue. Visual injury determinations and electrolyte loss measurements on stem tissue revealed injury near −40 C associated with the freezing of the deep undercooled stem tissue water. These results suggest that the winter hardiness limit of this woody flora is near −40 C. The relevance of deep undercooling in relation to timberline, the upper elevational limit of the subalpine forest, is discussed.  相似文献   

9.
The effects of ABA, 2,4-D, kinetin and cold exposure on the cold hardiness of Medicago sativa L. cell suspensions were investigated. Cultures treated with 5×10–5 M ABA at 2°C for 4 weeks in the absence of kinetin showed a 50% survival after freezing to –12.5°C, whereas cultures grown at 25°C under normal conditions tolerated freezing to only –3°C. The optimum ABA treatment of 5×10–5 M for 4 weeks was effective only in combination with cold exposure. Of six cell lines tested, all showed different degrees of induced cold hardiness. The results suggest that ABA alone cannot induce freezing tolerance on alfalfa cell suspension cultures and that the deletion of kinetin and combination of low temperature and ABA is critical for the induction of cold hardiness in alfalfa cell suspension cultures.Abbreviations ABA abscisic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - LT50 50% killing temperature  相似文献   

10.
An empirical light simulation model was applied to estimate stand scale photosynthesis in a deciduous broadleaved forest in central Japan. Based on diurnal courses of photosynthetically active photon flux density (PPFD), we characterized the components of incoming light within the forest canopy, and found that the instantaneous relative PPFD (PPFD under the canopy relative to that above the canopy) under diffuse light condition was a reliable estimator of the intensity and duration of PPFD. We calculated the daily photosynthesis (Aday) for each PPFD class using photosynthesis–light response curves. Model simulated Aday were corroborated with the estimates obtained from the nearby CO2 flux tower. The result demonstrated the potential of the light simulation model. The light use efficiency of two dominant species, Betula ermanii as overstory and Sasa senanensis as understory species, were then evaluated. At the forest understory, PPFD under 50 mol m–2 s–1 contributed to 77% of the sunshine duration on a completely clear day. Therefore, a higher apparent quantum yield for S. senanensis enhanced the utilization of low PPFD for photosynthesis. On the other hand, at the upper forest canopies, B. ermanii with a higher light-saturated photosynthetic rate used high PPFD efficiently. Consequently, potential of daily net photosynthesis for both B. ermanii and S. senanensis was high under each light condition. Such interspecific difference in the patterns of light utilization was suggested as one of factors allowing coexistence of the two species in the study forest.  相似文献   

11.
The freezing resistance of various organs and tissues was determined in 24 Rhododendron species (mainly Subgenus Tsutsutsi) having different ecological distributions. The order of hardiness for organ or tissue is as follows: leaf bud > wood ≧ bark > flower bud, and the flower bud is characterized as the most cold-susceptible organ. The relationship of killing temperature (KT) to northern distribution was the most significant in leaf buds compared to other organs and tissues. KTs of leaf buds for the most hardy species were ?45 °C (or below) and those for the most tender species were about ?23 °C, while KTs of flower buds were about ?28 °C for the former and ?16 °C for the latter. Although KTs of flower buds native to southwestern Japan were well correlated with the exothermic temperature distribution (ETD) of florets, those in the more northern species were generally lower than ETDs. The supercooling ability of flower buds appears to be sufficient to avoid the freezing stress since the extreme minimum temperature (EMT) at the northern limit of natural distribution for each tree species examined was not lower than the KT and ETD of the flower buds.  相似文献   

12.
Energetics of Amino Acid Uptake by Vicia faba Leaf Tissues   总被引:7,自引:5,他引:2  
The uptake of [U-14C]threonine and of (α-14C]aminoisobutyrate (α-AIB) by Vicia faba leaf discs is strongly pH dependent (optimum: pH 4.0) and exhibits biphasic saturation kinetics. Kinetics of α-AIB uptake at different pH values indicate that acidic pH values decrease the Km of the carriers while the maximal velocity remains nearly unaffected. Similar results were obtained for both system 1 (from 0.5 to 5 millimolar) and system 2 (from 20 to 100 millimolar).

After addition of amino acids to a medium containing leaf fragments, alkalinizations depending both on the amino acid added and on its concentration have been recorded.

The effects of compounds which increase (fusicoccin) or decrease (uncouplers, ATPase inhibitors, high KCl concentrations) the protonmotive force were studied both on the acidification of the medium and on amino acid uptake by the tissues. There is a close relationship between the time required for the effect of these compounds on the acidification and that needed for inhibition of uptake.

Studies with thiol inhibitors show that 0.1 millimolar N-ethylmaleimide preferentially inhibits uptake by the mesophyll whereas 0.1 millimolar parachloromercuribenzenesulfonate affects rather uptake by the veins.

New evidence was found which added to the electrophysiological data already supporting the occurrence of proton amino acid symport in leaf tissues, particularly in the veins.

  相似文献   

13.
Kiwifruit bacterial canker, an economically important disease caused by Pseudomonas syringae pv. actinidiae (Psa), has caused severe losses in all major areas of kiwifruit cultivation. Using a GFPuv-labeled strain of Psa, we monitored the invasion, colonization, and movement of the pathogen in kiwifruit twigs, leaves and veins. The pathogen can invade twigs through both wounds and natural openings; the highest number of Psa is obtained in cut tissues. We determined that, following spray inoculation, Psa-GFPuv could infect leaves and cause lesions in the presence and absence of wounds. Light and transmission electron microscopic observations showed that bacterial cells colonize both phloem and xylem vessels. Bacterial infection resulted in marked alterations of host tissues including the disintegration of organelles and degeneration of protoplasts and cell walls. Furthermore, low temperature was conducive to colonization and movement of Psa-GFPuv in kiwifruit tissues. Indeed, the pathogen migrated faster at 4°C than at 16°C or 25°C in twigs. However, the optimum temperature for colonization and movement of Psa in leaf veins was 16°C. Our results, revealing a better understanding of the Psa infection process, might contribute to develop more efficacious disease management strategies.  相似文献   

14.
G. Goldstein  F. Rada  A. Azocar 《Oecologia》1985,68(1):147-152
Summary Factors affecting supercooling capacity and cold hardiness were investigated in leaves of ten giant rosette species of the genus Espeletia (Compositae). These species grow along a 2,800–4,200 m elevation gradient in the Venezuelan Andes. In this high tropical environment, freezing frequently occurs every night, particularly above 3,300 m, but lasts for only a few hours. Supercooling capacty is linearly related to leaf water potential ( L ) in all species; however supercooling is more responsive to L changes in Espeletia species from high paramos. The rate of change in the species-specific supercooling point and the rate of change of average annual minimum temperature along the elevation and climatic gradient follow the same trend (approximately -0.6 K per 100 m elevation). At a given elevation, the expanded leaves of the different species tend to supercool 8–10 K below minimum air temperatures. Experimentally-induced freezing was accompanied by the formation of intracellular ice and tissue damage. The relative apoplastic water content (RAWC) of the leaves, which may influence the ice nucleation rate or the facility by which ice propagates, was determined by pressure-volume methods. Species from higher sites tend to exhibit lower RAWC (2%–7%) than species from lower sites (7%–36%). A causal relationship between supercooling capacity and RAWC is suggested. In the high tropical Andes, the temperature oxotherm plateau of Espeletia leaves seems to be sufficiently fow to avoid freezing.  相似文献   

15.
Involvement of abscisic Acid in potato cold acclimation   总被引:41,自引:22,他引:19       下载免费PDF全文
Upon exposure to 2°C day/night (D/N), leaves of Solanum commersonii (Sc) began acclimating on the 4th day from a −5°C (killing temperature) hardy level to −12°C by the 15th day. Leaves of S. tuberosum L. (St) cv `Red Pontiac' typically failed to acclimate and were always killed at −3°C. Leaves of control (20/15°C, D/N) and treated plants (2°C, D/N) of St showed similar levels of free abscisic acid (ABA) during a 15-day sampling period. In treated Sc plants, however, free ABA contents increased 3-fold on the 4th day and then declined to their initial level thereafter. The increase was not observed in leaves of Sc control plants.

Treated St plants showed a slightly higher content of leaf soluble protein than controls. In Sc, leaves of controls maintained relatively constant soluble proteins, but leaves of treated plants showed a distinct increase. This significant increase was initiated on the 4th day, peaked on the 5th day, and remained at a high level throughout the 15-day sampling period.

Exogenously applied ABA induced frost hardiness in leaves of Sc plants whether plants were grown under a 20°C or 2°C temperature regime. When cycloheximide was added to the medium of stem-cultured plants at the beginning of 2°C acclimation, or at the beginning of the ABA treatment in the 20°C regime, it completely inhibited the development of frost hardiness. However, when cycloheximide was added to plants on the 5th day during 2°C acclimation, the induction of frost hardiness was not inhibited. The role of ABA in triggering protein synthesis needed to induce frost hardiness is discussed.

  相似文献   

16.
As an essential aspect of its invasive character in Europe, this study examined the cold hardiness of the harlequin ladybird Harmonia axyridis. This was done for field-collected populations in Belgium overwintering either in an unheated indoor or an outdoor hibernaculum. The supercooling point, lower lethal temperature and lower lethal time at 0 and −5 °C were determined. Possible seasonal changes were taken into account by monitoring the populations during each winter month. The supercooling point and lower lethal temperature remained relatively constant for the overwintering populations in the outdoor hibernaculum, ranging from −17.5 to −16.5 °C and −17.1 to −16.3 °C, respectively. In contrast, the supercooling point and lower lethal temperature of the population overwintering indoors clearly increased as the winter progressed, from −18.5 to −13.2 °C and −16.7 to −14.1 °C, respectively. A proportion of the individuals overwintering indoors could thus encounter problems surviving the winter due to premature activation at times when food is not available. The lower lethal time of field populations at 0 and −5 °C varied from 18 to 24 weeks and from 12 to 22 weeks, respectively. Morph type and sex had no influence on the cold hardiness of the overwintering adults. In addition, all cold tolerance parameters differed greatly between the laboratory population and field populations, implying that cold tolerance research based solely on laboratory populations may not be representative of field situations. We conclude from this study that the strong cold hardiness of H. axyridis in Europe may enable the species to establish in large parts of the continent.  相似文献   

17.
Makino A  Mae T  Ohira K 《Plant physiology》1983,73(4):1002-1007
Changes in photosynthesis and the ribulose 1,5-bisphosphate (RuBP) carboxylase level were examined in the 12th leaf blades of rice (Oryza sativa L.) grown under different N levels. Photosynthesis was determined using an open infrared gas analysis system. The level of RuBP carboxylase was measured by rocket immunoelectrophoresis. These changes were followed with respect to changes in the activities of RuBP carboxylase, ribulose 5-phosphate kinase, NADP-glyceraldehyde 3-phosphate dehydrogenase, and 3-phosphoglyceric acid kinase.

RuBP carboxylase activity was highly correlated with the net rate of photosynthesis (r = 0.968). Although high correlations between the activities of other enzymes and photosynthesis were also found, the activity per leaf of RuBP carboxylase was much lower than those of other enzymes throughout the leaf life. The specific activity of RuBP carboxylase on a milligram of the enzyme protein basis remained fairly constant (1.16 ± 0.07 micromoles of CO2 per minute per milligram at 25°C) throughout the experimental period.

Kinetic parameters related to CO2 fixation were examined using the purified carboxylase. The Km(CO2) and Vmax values were 12 micromolar and 1.45 micromoles of CO2 per minute per milligram, respectively (pH 8.2 and 25°C). The in vitro specific activity calculated at the atomospheric CO2 level from the parameters was comparable to the in situ true photosynthetic rate per milligram of the carboxylase throughout the leaf life.

The results indicated that the level of RuBP carboxylase protein can be a limiting factor in photosynthesis throughout the life span of the leaf.

  相似文献   

18.
Near-isogenic wheat (Triticum aestivum L.) lines differing in height-reducing (Rht) alleles were used to investigate the effects of temperature on endogenous gibberellin (GA) levels and seedling growth response to applied GA3. Sheath and lamina lengths of the first leaf were measured in GA treated and control seedlings, grown at 11, 18, and 25°C, of six Rht genotypes in each of two varietal backgrounds, cv Maris Huntsman and cv April Bearded. Endogenous GA1 levels in the leaf extension zone of untreated seedlings were determined by gas chromatography-mass spectrometry with a deuterated internal standard in the six Maris Huntsman Rht lines grown at 10 and 25°C. Higher temperature increased leaf length considerably in the tall genotype, less so in the Rht1 and Rht2 genotypes, and had no consistent effect on the Rht1+2, Rht3 and Rht2+3 genotypes. In all genotypes, endogenous GA1 was higher at 25°C than at 10°C. At 10°C the endogenous GA1 was at a similar level in all the genotypes (except Rht2+3). At 25°C it increased 1.6-fold in the tall genotype, 3-fold in Rht1 and Rht2, 6-fold in Rht3, and 9-fold in Rht1+2. Likewise, the genotypic differences in leaf length were very conspicuous at 25°C, but were only slight and often unsignificant at 11°C. The response of leaf length to applied GA3 in the Rht1, Rht2, and Rht1+2 genotypes increased significantly with lowering of temperature. These results suggest the possibility that the temperature effect on leaf elongation is mediated through its effect on the level of endogenous GA1 and that leaf elongation response to endogenous or applied GAs is restricted by the upper limits set by the different Rht alleles.  相似文献   

19.
Low root temperature effects on vegetative growth of soybean (Harosoy 63 × Rhizobium japonicum USDA 16) were examined in 35 day old plants exposed to temperatures of 15°C (shoots at 25°C) for an 11 day period. Duing this period various aspects of C and N assimilation and partitioning were monitored including shoot night and nodulated root respiration, C and N partitioning to six plant parts, C2H2 reduction, H2 evolution, leaf area, transpiration, net photosynthesis, and N2 fixation. The low temperature treatment resulted in a decrease in the net rate of N2 fixation but nitrogenase relative efficiency increased. In response, the plant retained N in the tissues of the nodulated root and decreased N partitioning to young shoot tissues, thereby inducing the remobilization of N from older leaves, and reducing leaf area development. The leaf area specific rate of net photosynthesis was not affected over the study period; however, shoot and nodulated root respiration declined. Consequently, C accumulated in mature leaves and stems, partly in the form of increased starch reserves. Three possibilities were considered for increasing low temperature tolerance in nodulated soybeans: (a) decrease in temperature optima for nitrogenase, (b) increased development of nodules and N2 fixation capacity at low temperature, and (c) alterations in the pattern of C and N partitioning in response to low temperature conditions.  相似文献   

20.
The terrestrial isopod, Porcellio scaber, was susceptible to subzero temperature: both freezing and chilling were injurious. The level of cold hardiness against chilling and freezing showed different patterns in their seasonal variation. The lower lethal temperature causing 50% mortality, an indicator of the tolerance to chilling, ranged from-1.37°C in August to-4.58°C in December. The whole body supercooling point, the absolute limit of freeze avoidance, was kept at about-7°C throughout the year. The winter decrease in lower lethal temperature was concomitant with an accumulation of low molecular weight carbohydrates which are possible protective reagents against chilling injury, whereas the less seasonally variable supercooling point seemed to be associated with the year-round presence of gut content. Food derivatives may act as efficient ice nucleators. The different trend in seasonal changes between lower lethal temperature and supercooling point may be related to the microclimate of the hibernacula in subnivean environments, where the winter temperature became lower than the lower lethal temperature in the summer active phase, but remained higher than the summer supercooling point.Abbreviations LLT50 lower lethal temperature inducing 50% mortality - SCP supercooling point - T a ambient air temperature - T s soil surface temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号