首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dentin sialophosphoprotein (Dspp) is mainly expressed in teeth by the odontoblasts and preameloblasts. The Dspp mRNA is translated into a single protein, Dspp, and cleaved into two peptides, dentin sialoprotein and dentin phosphoprotein, that are localized within the dentin matrix. Recently, mutations in this gene were identified in human dentinogenesis imperfecta II (Online Mendelian Inheritance in Man (OMIM) accession number 125490) and in dentin dysplasia II (OMIM accession number 125420) syndromes. Herein, we report the generation of Dspp-null mice that develop tooth defects similar to human dentinogenesis imperfecta III with enlarged pulp chambers, increased width of predentin zone, hypomineralization, and pulp exposure. Electron microscopy revealed an irregular mineralization front and a lack of calcospherites coalescence in the dentin. Interestingly, the levels of biglycan and decorin, small leucine-rich proteoglycans, were increased in the widened predentin zone and in void spaces among the calcospherites in the dentin of null teeth. These enhanced levels correlate well with the defective regions in mineralization and further indicate that these molecules may adversely affect the dentin mineralization process by interfering with coalescence of calcospherites. Overall, our results identify a crucial role for Dspp in orchestrating the events essential during dentin mineralization, including potential regulation of proteoglycan levels.  相似文献   

2.
Tendons are composed of fibroblasts and collagen fibrils. The fibrils are organized uniaxially and grouped together into fibers. Collagen VI is a non-fibrillar collagen expressed in developing and adult tendons. Human collagen VI mutations result in muscular dystrophy, joint hyperlaxity and contractures. The purpose of this study is to determine the functional roles of collagen VI in tendon matrix assembly. During tendon development, collagen VI was expressed throughout the extracellular matrix, but enriched around fibroblasts and their processes. To analyze the functional roles of collagen VI a mouse model with a targeted inactivation of Col6a1 gene was utilized. Ultrastructural analysis of Col6a1−/− versus wild type tendons demonstrated disorganized extracellular micro-domains and associated collagen fibers in the Col6a1−/− tendon. In Col6a1−/− tendons, fibril structure and diameter distribution were abnormal compared to wild type controls. The diameter distributions were shifted significantly toward the smaller diameters in Col6a1−/− tendons compared to controls. An analysis of fibril density (number/μm2) demonstrated a ~ 2.5 fold increase in the Col6a1−/− versus wild type tendons. In addition, the fibril arrangement and structure were aberrant in the peri-cellular regions of Col6a1−/− tendons with frequent very large fibrils and twisted fibrils observed restricted to this region. The biomechanical properties were analyzed in mature tendons. A significant decrease in cross-sectional area was observed. The percent relaxation, maximum load, maximum stress, stiffness and modulus were analyzed and Col6a1−/− tendons demonstrated a significant reduction in maximum load and stiffness compared to wild type tendons. An increase in matrix metalloproteinase activity was suggested in the absence of collagen VI. This suggests alterations in tenocyte expression due to disruption of cell-matrix interactions. The changes in expression may result in alterations in the peri-cellular environment. In addition, the absence of collagen VI may alter the sequestering of regulatory molecules such as leucine rich proteoglycans. These changes would result in dysfunctional regulation of tendon fibrillogenesis indirectly mediated by collagen VI.  相似文献   

3.
4.
5.
We examined immunocytochemically the type and distribution of glycosaminoglycans and proteoglycans (PG) in predentin and dentin demineralized with EDTA after aldehyde fixation of rat incisors using (a) four monoclonal antibodies (1-B-5,9-A-2,3-B-3, and 5-D-4) which recognize epitopes in unsulfated chondroitin (C0-S), chondroitin 4-sulfate (C4-S), chondroitin 6-sulfate (C6-S), and keratan sulfate (KS) associated with the PG, and (b) monoclonal (5-D-5) and polyclonal antibodies specific for the core protein of large and small dermatan sulfate (DS) PG. Light microscope immunoperoxidase staining after pre-treatment of tissue sections with chondroitinase ABC localized the majority of stainable PG (C4-S, KS, DSPG, C0-S, and C6-S) in predentin and, to a lesser extent (C4-S and small DSPG), in the dentin matrix. The former site demonstrated relatively homogeneous PG distribution, whereas the latter site revealed that strong staining of C4-S and small DSPG was confined mostly to dentinal tubules surrounding odontoblastic processes, with only weak staining in the rest of the dentin matrix. These results indicate that there is not only a definite difference between PG of predentin and dentin but also a selective decrease in the concentration or alteration of these macromolecules during dentinogenesis and mineralization.  相似文献   

6.
7.
Glycosaminoglycans (GAGs) and glycoproteins (GPs) are essential components for dentinogenesis. We have examined rat odontoblasts, predentin, and dentin decalcified with EDTA and stained with: 1) Spicer's hig-iron diamine-thiocarbohydrazide-silver proteinate (HID-TCH-SP) method for sulfated glycoconjugates, and 2) Thiéry's periodate-thiocarbohydrazide-silver proteinate (PA-TCH-SP) method for vicinal glycol-containing glycoconjugates. HIS-TCH-SP stained distended portions of Golgi saccules and secretory granules. The predentin contained three times the number of HID-TCH-SP stain precipitates when compared to the mineralization front of the dentin matrix. PA-TCH-SP weakly stained membranes of Golgi saccules and cisternae of rough endoplasmic reticulum (RER), whereas stronger staining was observed in secretory granules, lysosomes, and multivesicular bodies (MVBs). Collagen fibrils in predentin demonstrated moderate PA-TCH-SP staining. In contrast, strong PA-TCH-SP staining was observed on and between collagen fibrils in the mineralization front of the dentin matrix. TCH-SP controls of unosmicated specimens lacked significant staining, however, osmicated control specimens did contain some TCH-SP stain deposits in the mineralization front. These results indicate that sulfated and vicinal glycol-containing glycoconjugates are packaged in the same type of secretory granule and released into the extracellular matrix; subsequently vicinal glycol-containing glycoconjugates concentrate in the calcification front, whereas sulfated glycoconjugates accumulate in the predentin and are either removed or masked to staining in the dentin.  相似文献   

8.
Amelogenin, the most abundant enamel matrix protein, plays several critical roles in enamel formation. Importantly, we previously found that the singular phosphorylation site at Ser16 in amelogenin plays an essential role in amelogenesis. Studies of genetically knock-in (KI) modified mice in which Ser16 in amelogenin is substituted with Ala that prevents amelogenin phosphorylation, and in vitro mineralization experiments, have shown that phosphorylated amelogenin transiently stabilizes amorphous calcium phosphate (ACP), the initial mineral phase in forming enamel. Furthermore, KI mice exhibit dramatic differences in the enamel structure compared with wild type (WT) mice, including thinner enamel lacking enamel rods and ectopic surface calcifications. Here, we now demonstrate that amelogenin phosphorylation also affects the organization and composition of mature enamel mineral. We compared WT, KI, and heterozygous (HET) enamel and found that in the WT elongated crystals are co-oriented within each rod, however, their c-axes are not aligned with the rods’ axes. In contrast, in rod-less KI enamel, crystalline c-axes are less co-oriented, with misorientation progressively increasing toward the enamel surface, which contains spherulites, with a morphology consistent with abiotic formation. Furthermore, we found significant differences in enamel hardness and carbonate content between the genotypes. ACP was also observed in the interrod of WT and HET enamel, and throughout aprismatic KI enamel. In conclusion, amelogenin phosphorylation plays crucial roles in controlling structural, crystallographic, mechanical, and compositional characteristics of dental enamel. Thus, loss of amelogenin phosphorylation leads to a reduction in the biological control over the enamel mineralization process.  相似文献   

9.
10.
11.
The assembly of the collagenous organic matrix prior to mineralization is a key step in the formation of bones and teeth. This process was studied in the predentin of continuously forming rat incisors, using unstained vitrified ice sections examined in the transmission electron microscope. Progressing from the odontoblast surface to the mineralization front, the collagen fibrils thicken to ultimately form a dense network, and their repeat D-spacings and banding patterns vary. Using immunolocalization, the most abundant noncollagenous protein in dentin, phosphophoryn, was mapped to the boundaries between the gap and overlap zones along the fibrils nearest the mineralization front. It thus appears that the premineralized collagen matrix undergoes dynamic changes in its structure. These may be mediated by the addition and interaction with the highly anionic noncollagenous proteins associated with collagen. These changes presumably create a collagenous framework that is able to mineralize.  相似文献   

12.
Growth plate compressions and altered hematopoiesis in collagen X null mice   总被引:5,自引:0,他引:5  
A variable skeleto-hematopoietic phenotype was observed in collagen X null mice which mirrored the defects in transgenic (Tg) mice with dominant interference collagen X mutations (Jacenko, O., P. LuValle, and B.R. Olsen. 1993. Nature. 365:56-61). Specifically, perinatal lethality was seen in approximately 10.8% of null mutants at week three after birth, and in another subset by 12 wk. In perinatal lethal mutants, growth plates were compressed, trabecular bone reduced, and hematopoietic aplasia and erythrocyte-filled vascular sinusoids were apparent in marrows. Lymphatic organs, reduced to approximately 80% that of controls, displayed altered architecture and lymphocyte content. In thymuses, a paucity of cortical CD3(+)/CD4(+)/CD8(+) lymphocytes was consistent with the marrow's inability to replenish maturing T cells. In spleens, an unaltered T cell distribution was coupled with diffuse staining for IgD(+)/B220(+) B cells, whose reduction was prominent in poorly organized lymphatic nodules. Disorderly arrays of splenic macrophages surrounding periarteriolar lymphatic sheaths and a red pulp depletion further complemented the Tg perinatal lethal phenotype. Moreover, subtle growth plate compressions and hematopoietic changes were seen in all null mice. Data from Tg and null mice implicate the disruption of collagen X function in the observed skeleto-hematopoietic defects, and suggest that hypertrophic cartilage and endochondral skeletogenesis may contribute to the marrow microenvironment prerequisite for blood cell differentiation.  相似文献   

13.
14.
Dentin sialophosphoprotein (DSPP), a major non-collagenous matrix protein of odontoblasts, is proteolytically cleaved into dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Our previous studies revealed that DSPP null mice display a phenotype similar to human autosomal dominant dentinogenesis imperfecta, in which teeth have widened predentin and irregular dentin mineralization resulting in sporadic unmineralized areas in dentin and frequent pulp exposure. Earlier in vitro studies suggested that DPP, but not DSP, plays a significant role in initiation and maturation of dentin mineralization. However, the precise in vivo roles of DSP and DPP are far from clear. Here we report the generation of DPPcKO mice, in which only DSP is expressed in a DSPP null background, resulting in a conditional DPP knockout. DPPcKO teeth show a partial rescue of the DSPP null phenotype with the restored predentin width, an absence of irregular unmineralized areas in dentin, and less frequent pulp exposure. Micro-computed tomography (micro-CT) analysis of DPPcKO molars further confirmed this partial rescue with a significant recovery in the dentin volume, but not in the dentin mineral density. These results indicate distinct roles of DSP and DPP in dentin mineralization, with DSP regulating initiation of dentin mineralization, and DPP being involved in the maturation of mineralized dentin.  相似文献   

15.
The role of decorin in collagen fibrillogenesis and skin homeostasis   总被引:11,自引:0,他引:11  
Decorin, a prototype member of the growing family of the small leucine-rich proteoglycans (SLRP's), plays significant roles in tissue development and assembly, as well as playing both direct and indirect signaling roles. This review will concentrate on decorin's function in collagen fibrillogenesis as determined through the study of mice with a disrupted decorin gene. The fragile skin and abnormal tendon phenotypes initially observed were found to be due to fundamental alterations in collagen fibers, highlighting the crucial role of proteoglycans in general and SLRP's in particular in collagen fibrillogenesis. The altered fibril formation within tissues in turn leads to observable and quantifiable changes at the organismal level. Research into certain fibrotic processes with concomitant upregulation or reduction of decorin makes interesting comparisons with the collagen malformations seen in Dcn –/– mice. Overall, decorin is shown to be a vital player in maintaining skin and tendon integrity at the molecular level, among other functions. Published in 2003.  相似文献   

16.
17.
Using classical light scattering theory it is shown that the turbidimetric lag phase is a property of macromolecular systems that form linear aggregates during the initial period of self-assembly. This analysis and previous observations on Type I collagen suggests that initiation occurs by the conversion of single molecules into linear dimers in which neighboring molecules are staggered by 4·0 D (D = 67 nm). Linear.growth of dimers occurs by 4 D addition of either single molecules or linear aggregates until the aggregate is about 60 to 70 molecules long. Linear growth appears to involve charged binding sites in the amino and carboxy termini. The same sites have been shown to be involved in crosslink formation and in the attachment of disaccharides.Lateral growth occurs via the rapid formation of several discretely sized intermediates which lead to the formation of narrow fibrils ~ 25 nm wide. Narrow fibrils individually wrap around each other increasing the diameter to 100 nm or greater.  相似文献   

18.
Collagen and elastin are the primary determinants of vascular integrity, with elastin hypothesized to be the major contributor to aortic compliance and type I collagen the major contributor to aortic strength and stiffness. Type I collagen is normally heterotrimeric composed of two alpha1(I) and one alpha2(I) collagen chains, alpha1(I)(2)alpha2(I). Recent investigations have reported that patients with recessively inherited forms of Ehlers Danlos syndrome that fail to synthesize proalpha2(I) chains have increased risks of cardiovascular complications. To assess the role of alpha2(I) collagen in aortic integrity, we used the osteogenesis imperfecta model (oim) mouse. Oim mice, homozygous for a COL1A2 mutation, synthesize only homotrimeric type I collagen, alpha1(I)3. We evaluated thoracic aortas from 3-month-old oim, heterozygote, and wildtype mice biomechanically for circumferential breaking strength (Fmax) and stiffness (IEM), histologically for morphological differences, and biochemically for collagen content and crosslinking. Circumferential biomechanics of oim and heterozygote descending thoracic aortas demonstrated the anticipated reduced Fmax and IEM relative to wildtype mice. Histological analyses of oim descending aortas demonstrated reduced collagen staining relative to wildtype aortas suggesting decreased collagen content, which hydroxyproline analyses of ascending and descending oim aortas confirmed. These findings suggest the reduced oim thoracic aortic integrity correlates with the absence of the alpha2(I)collagen chains and in part with reduced collagen content. However, oim ascending aortas also demonstrated a significant increase in pyridinoline crosslinks/collagen molecule as compared to wildtype ascending aortas. The role of increased collagen crosslinks is uncertain; increased crosslinking may represent a compensatory mechanism for the decreased integrity.  相似文献   

19.
The striatum is composed predominantly of medium spiny neurons (MSNs) that integrate excitatory, glutamatergic inputs from the cortex and thalamus, and modulatory dopaminergic inputs from the ventral midbrain to influence behavior. Glutamatergic activation of AMPA, NMDA, and metabotropic receptors on MSNs is important for striatal development and function, but the roles of each of these receptor classes remain incompletely understood. Signaling through NMDA-type glutamate receptors (NMDARs) in the striatum has been implicated in various motor and appetitive learning paradigms. In addition, signaling through NMDARs influences neuronal morphology, which could underlie their role in mediating learned behaviors. To study the role of NMDARs on MSNs in learning and in morphological development, we generated mice lacking the essential NR1 subunit, encoded by the Grin1 gene, selectively in MSNs. Although these knockout mice appear normal and display normal 24-hour locomotion, they have severe deficits in motor learning, operant conditioning and active avoidance. In addition, the MSNs from these knockout mice have smaller cell bodies and decreased dendritic length compared to littermate controls. We conclude that NMDAR signaling in MSNs is critical for normal MSN morphology and many forms of learning.  相似文献   

20.
Decorin is a multifunctional small leucine-rich proteoglycan involved in the regulation of collagen fibrillogenesis. In patients with a variant of Ehlers-Danlos syndrome, about half of the secreted decorin lacks the single glycosaminoglycan side chain. Notably, these patients have a skin-fragility phenotype that resembles that of decorin null mice. In this study, we investigated the role of glycanated and unglycanated decorin on collagen fibrillogenesis. Glycosaminoglycan-free decorin, generated by mutating Ser4 of the mature protein core into Ala (DCN-S4A), showed reduced inhibition of fibrillogenesis compared with the decorin proteoglycan. Interestingly, using a 3D matrix generated by decorin-null fibroblasts, an increase in fibril diameter was found after the addition of decorin, and even greater effects were observed with DCN-S4A. To avoid potential side effects of artificial tags, adenoviruses containing decorin and DCN-S4A were used to transduce decorin-null fibroblasts prior to matrix formation. Both molecules were efficiently incorporated into the matrix, with no changes in collagen composition and network formation, or altered expression of the related proteoglycan biglycan. Both decorin and DCN-S4A mutants increased the collagen fibril diameter, with the latter showing the most prominent effects. These data show that at early stages of fibrillogenesis, the glycosaminoglycan chain of decorin has a reducing effect on collagen fibril diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号