首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have demonstrated the higher likelihood of regeneration in forest gaps compared with the understory for the dominant species in pine-oak mixed forest. Here, we tested whether rodent seed predation or dispersal was beneficial for gap regeneration. We tracked the seed predation and dispersal of Quercus aliena var. acuteserrata and Pinus armandii using coded plastic tags in the forest understory close to gaps. Our results demonstrated that the proportions of initial buried seeds of both species were significantly more abundant in the forest understory compared with gaps. After seed caching, however, significantly lower proportions of the seeds of both species survived in the forest understory compared with gaps during the 30-day observation period. The final survival proportions of the seeds cached in the forest understory were lower than those cached in the gaps the next spring, which indicated that small rodents rarely retrieved scatter-hoarded seeds from forest gaps. Our findings suggest that rodent seed predation patterns contribute to the regeneration of the dominant species in gaps compared with the understory in a pine-oak mixed forest. In the study area, reforestation usually involves planting seedlings but direct sowing in forest gaps may be an alternative means of accelerating forest recovery and successional processes.  相似文献   

2.
格氏栲天然林林窗和林下种子散布及幼苗更新研究   总被引:1,自引:0,他引:1  
以格氏栲(Castanopsis kawakamii)天然林为研究对象,探讨了林窗和林下格氏栲种子雨、种子库的分布特征及幼苗更新状况。结果表明:林窗种子雨总量和完好种子密度高于林下,未成熟种子比例低于林下;林窗和林下种子雨高峰期掉落数量分别占种子雨总量的77.13%和74.5%;林窗种子库储量低于林下,种子库中以全食或捡拾种子比例最高,其中种子库储量垂直分布表现为枯落物层(约占2/3)>腐殖质层(0~5 cm)(约占1/3)>心土层(5~10 cm)(小于1%),以格氏栲种子占绝对优势;格氏栲从种子到幼苗的转化率低,林窗中格氏栲完好种子密度与幼苗密度均高于林下。林窗微生境提高了种子散布过程中格氏栲成熟种子的密度和比例,有利于促进格氏栲的幼苗更新,表明林窗在格氏栲种群恢复过程中扮演着重要角色。  相似文献   

3.
Evidence for secondary seed dispersal by rodents in Panama   总被引:9,自引:0,他引:9  
Summary The data presented show thatVirola nobilis (Myristicaceae), a bird/mammal-dispersed tree species in Panama, may also be dispersed by a terrestrial rodent, the agouti (Dasyprocta punctata). Using a thread-marking method, we observed that agoutis scatterhoardedV. nobilis seeds that they found both singly or in clumps. Seed removal and seed burial rates were strongly affected by features of forest habitats, such asV. nobilis tree richness (rich vs poor) and/or forest age (old vs young), but not by seed dispersal treatment (scattered vs clumped). Predation (mostly post-dispersal) of unburied seeds by weevils was independent of habitat and dispersal treatment. Seeds artificially buried in aVirola-rich area were more likely to escape predation and become established than unburied seeds under natural conditions. The food reward for agoutis is in the germinating seedlings. The seed dispersal syndrome ofV. nobilis involves long- and short-distance dispersers which both appear important for tree recruitment.  相似文献   

4.
Many native plant communities are replaced by exotic monocultures that may be successional stages or persistent community types. We surveyed a stand of Sapium sebiferum (Chinese Tallow Tree) that replaced tallgrass prairie in Texas and performed experiments with seeds and seedlings to determine the contributions of recruitment limitation and natural enemy release to allowing such a forest type to persist or to allowing native species to reduce Sapium dominance. The stand was dominated by Sapium, especially for mature trees (>99) and annual seed input (97) but less so for saplings (80). Field sown Sapium seeds had lower germination and survival rates than Celtis seeds. Together with the extreme dominance of Sapium in seed rain this suggests that native species are currently recruitment limited in this stand by seed supply but not by germination, early growth or survival. To investigate whether Sapium may benefit from low herbivory or diseases, we transplanted Sapium and Celtis seedlings into the forest and manipulated foliar fungal diseases and insect herbivores with sprays. As predicted, insect herbivores caused greater damage to Celtis seedlings than to Sapiumseedlings. However, suppression of insect herbivores caused significantly greater increases in survivorship of Sapium seedlings compared to Celtis seedlings. This suggests that herbivores in the understory of this Sapiumforest may significantly reduce Sapiumseedling success. Such a pattern of strong herbivore impact on seedlings growing near adult conspecifics was unexpected for this invasive species. However, even with insects and fungi suppressed, Sapium seedling performance was poor in this forest. Our results point towards Sapium as a successional species in a forest that will eventually be dominated by native trees that are currently recruitment limited but outperform Sapium in the understory.  相似文献   

5.
Seed dispersal ecology of Bactris acanthocarpa Mart. (Arecaceae), an Atlantic forest understory palm, was investigated during two years as an attempt to test the following predictions: (i) seeds of Bactris are dispersed by mammals and large-gaped birds; (ii) Bactris benefits from seed dispersal in terms of seed predation avoidance, improvement of seed germination and seedling survival; and (iii) spatial distribution of adults is related to patterns of seed dispersal. The study was conducted at Dois Irmãos Reserve, a 387.4-ha reserve of Atlantic forest in northeastern Brazil (8º S–35º W). Black–rumped agoutis (Dasyprocta prymnolopha) and Guianan squirrels (Sciurus aestuans) were identified as the seed dispersers/predators, moving seeds short distances (< 4 m from parents) and at low rates (0.04-0.05 diaspore/palm/day). Pyrene burial prevented seed predation by vertebrates and reduced by half seed infestation by Scolytidae beetles. Only buried pyrenes germinated. Pyrene predation was not correlated with distance from conspecific adults. In contrast, early seedling mortality was higher near conspecific adults. Most adults (64%) had their nearest conspecific adult neighbour > 4 m away in contrast to 96% of seedlings that occurred concentrated within 4 m from adults (77% under the palm crowns). Here, we present evidence that spatial distribution of B. acanthocarpa is partly due to low rates of seed removal, short-distance seed dispersal by agoutis and squirrels, and early seedling mortality associated with presence of seedlings under palm crowns.  相似文献   

6.
In addition to acting as seed predators, some terrestrial mammals bury seeds via scatter hoarding. This study system used two permanent plots in examining the interaction between small rodents and the seeds of the palm Astrocaryum mexicanum. We tested how experimental burial, and fruiting status of the parent, distance to the parent, seed size, and microsite characteristics affect the survival of these seeds. Up to 34% of the buried seeds that were exposed only to ignorant rodent foragers (individuals not responsible for burial) survived. In comparison, less than 1% of seeds buried by scatter hoarding rodents survived in previous studies, a percentage that is comparable to the low survival of unburied seeds in this study (<2%). Although unburied seeds had very low survival, increasing distance and/or seed density positively affected survival of unburied seeds. Distance to parent had no effect on buried seed survival.
Buried seed survival was most strongly and significantly determined by the fruiting status of the trees under which they occurred. Seeds experienced significantly greater predation if buried under “parent” trees that fruited during the experiment. Buried seed survival was also negatively affected by germination, as germination may signal the presence of a seed to foraging rodents. There was some indication of a positive effect of tree density on seed survival between the two plots, whereas differences in rodent abundance appear to have no effect on seed survival. Seed size and microsite characteristics had no significant effect on buried seed survival, likely due to the greater proportional effects of other factors and the longevity of A. mexicanum seeds. The results of this study were used to generate a hypothetical causal network showing how comparatively low recovery of buried seeds by ignorant foragers – combined with processes determining the removal of scatter hoarding foragers from their scattered seed caches – may affect seedling recruitment in A. mexicanum.  相似文献   

7.
The effects of dispersal pattern (seeds in small clumps vs. seeds scattered in pairs) and distance to the nearest Carapa procera (Meliaceae; a tree that produces seeds preferred by terrestrial vertebrates) on survival of seeds and seedlings were examined for the animal–dispersed tree species Virola michelii (Myristicaceae) in a mature forest‘at Paracou, French Guiana, in 1992 and 1993. We assessed the putative role of ground–dwelling mammalian herbivores, rodents, and ungulates that filter the seed shadow, acting either as dispersers or predators and thus modifying the original pattern of seed dispersal made by frugivores. We measured the effects of simulated seed burial by rodents using marked seeds and quantified the effect of protecting seeds and seedlings from ground–dwelling vertebrates on seedling germination and survival with fence exclosures in 1992. Dispersal pattern had short–term but no long–term effects on the proportion of V. michelii seeds that survived one year later as seedlings. In the short term, within six weeks, clumped seeds survived better than scattered seeds in both years. Marked seeds that were removed from their site of dispersal were eaten; rodents only rarely buried seeds of V. michelii, and seed burial reduced seed and seedling survivorship. The combined effect of the factors year and Carapa proximity significantly affected seed survival within six weeks. Although six–week seed survival was greater in 1993 than in 1992, seedling establishment was lower in 1993 than in 1992 following a lower rainfall regime during the key period of seed germination (February). One–year seed and seedling survivorship was similar between treatments and years. Seed survival and seedling establishment in V. michelii was dependent on vertebrates in the short term and on climate in the long term. Overall, seed and seedling survivorship depended on a combination of these factors.  相似文献   

8.
The effect of oil spills on the recruitment of freshwater tidal wetland species was determined using soil seed bank samples collected in early March from two New Jersey Delaware River marshes. Samples were exposed to simulated tidal cycles 0 (2 days), 2 and 4 wk after soil was collected; 0 wk samples were treated before germination began. Oil treatment significantly reduced survival to I May (end of study) of Acnida cannabina and Bidens laevis, the dominant species, as well as number of species per sample and height of B. laevis. Total perennial seedlings, present in low numbers, also showed significant reduction with treatment. However, during the course of the study, Peltandra virginica recruitment and survival were not reduced by oil treatment and recruitment of Sagittaria latifolia appeared enhanced. There was no consistent pattern regarding which treatment time produced the greatest effect. Interactions (site, treatment, time) were generally not significant. Because these tidal freshwater wetlands and seed banks are dominated by annuals, reduction in seedling numbers and growth could substantially alter vegetation patterns. Timing of oil spills would be important, but impact would depend on species composition of the seed bank and colonizing vegetation, dispersal of seeds into the site, and germination requirements.  相似文献   

9.
Lu Ji-Qi  Zhang Zhi-Bin   《Acta Oecologica》2004,26(3):247-254
The wild apricot (Prunus armeniaca) is widely distributed in the Donglingshan Mountains of Mentougou District of Beijing, China, where its seeds may be an important food resource for rodents. Predation, removal and hoarding of seeds by rodents will inevitably affect the spatio-temporal pattern of seed fate of wild apricot in this area. By marking and releasing tagged seeds of wild apricot, we investigated seeds survival, scatter-hoarding, cache size and seedling establishment, and the preference of micro-habitats used by rodents to store seeds. The results showed that: (1) rodents in this area hoarded food intensively in autumn, as well as in spring and summer. (2) There were significant effects of habitat and season on removal rate of tagged seeds at releasing plots. In both two types of habitats, Low and High shrub, tagged seeds were removed most rapidly by rodents in autumn, at intermediate rates in spring and least rapidly in summer. (3) During three seasons, mean dispersal distance of scatter-hoarded seeds in Low shrub habitat was greater than that in High shrub. Most removed seeds were buried within 21.0 m of the releasing plots. (4) In both two types of habitats, Low and High shrub, rodents tended to carry seeds to US (Under shrub) and SE (Shrub edge) microhabitats for scatter-hoarding or predation. (5) Among the caches made by rodents, most caches contained only one seed, but up to three seeds were observed; caches of 2–3 seeds were common in autumn. (6) By comparing dental marks, we determined that large field mice (Apodemus peninsulae) and David’s rock squirrels (Sciurotamias davidianus) contributed to removal and predation of released tagged seeds. However, only the large field mice exerted a pivotal and positive role on the burial of dispersed seeds. (7) Establishment of three seedlings originated from seeds buried by rodents was documented in High shrub habitat.  相似文献   

10.
The effect of forest disturbance on survival and secondary dispersal of an artificial seed shadow (N= 800) was studied at Brownsberg Natural Park, Suriname, South America. We scattered single seeds of the frugivore‐dispersed tree Virola kwatae (Myristicaceae), simulating loose dispersal by frugivores, in undisturbed and disturbed secondary forest habitats. Seed survival rate aboveground was high (69%) within 2 wk and was negatively correlated with scatterhoarding rate by rodents, the latter being significantly lower in the undisturbed forest (9%) than in the disturbed forest (20%). Postdispersal seed predation by vertebrates was low (3%) and infestation of seeds by invertebrates was almost zero in all instances. Therefore, secondary seed dispersal by rodents in forest is not as critical for recruitment as observed among other bruchid‐infested large‐seeded species. Secondary seed dispersal by rodents may, however, facilitate seedling recruitment whether cached seeds experience greater survival than seeds remaining above ground surface.  相似文献   

11.
This study compares the establishment success of cleistogamous (CL, obligately selfed) and chasmogamous (CH, potentially outcrossed) seeds of the neotropical understory herb, Calathea micans (Marantaceae). In this species, CH and CL seeds are morphologically identical and are both dispersed by ants. I measured dispersal distances and analyzed seedling recruitment and seedling size for ant-planted CH and CL seeds, a protocol made possible by the fact that the seed coat of C. micans can be indelibly marked and remains attached to the base of the seedling for a few months. Seeds were taken by ants from experimental depots placed in natural conditions. In a second experiment, I planted CH and CL seeds in gap and understory sites to determine the effects of seed type and light on germination percentage, date of emergence, and seed and seedling survivorship. Ant-planted CH and CL seedlings did not differ in dispersal distance. CH and CL seeds did not differ significantly in recruitment probability and seedling size in either experiment. However, for the ant-planted seedlings, CH recruitment was higher in the understory than in the gap, while CL recruitment was uniform across light environments. In conclusion, I found a difference in the establishment success of CH and CL seeds in this understory herb, only after dispersal by ants in field conditions.  相似文献   

12.
In tropical rain forests of Central America, the canopy tree Dipteryx panamensis (Papilionaceae) fruits when overall fruit biomass is low for mammals. Flying and arboreal consumers feed on D. panamensis and drop seeds under the parent or disperse them farther away. Seeds on the ground attract many vertebrate seed-eaters, some of them potential secondary seed dispersers. The fate of seeds artificially distributed to simulate bat dispersal was studied in relation to fruitfall periodicity and the visiting frequency of diurnal rodents at Barro Colorado Island (BCI), Panama. The frequency of visits by agoutis is very high at the beginning of fruitfall, but in the area close (<50 m) to fruiting trees (Dipteryx-rich area) it declines throughout fruiting, whereas it remains unchanged farther (>50 m) away (Dipteryx-poor and Gustavia-rich area). Squirrels were usually observed in the Dipteryx-rich area. Along with intense post-dispersal seed predation by rodents in the Dipteryx-rich area, a significant proportion of seeds were cached by rodents in the Dipteryx-poor area. Post-dispersal seed predation rate was inversely related to hoarding rate. A significantly greater proportion of seeds was cached in March, especially more than 100 m from the nearest fruiting tree. This correlates with the mid-fruiting period, i.e. during the height of D. panamensis fruiting, when rodents seem to be temporarily satiated with the food supply at parent trees. Hoarding remained high toward April, i.e. late in the fruiting season of D. panamensis. Low survival of scatterhoarded seeds suggests that the alternative food supply over the animal's home-ranges in May–June 1990 was too low to promote survival of cached seeds. Seedlings are assumed to establish in the less-used area of the rodents' home-range when overall food supply is sufficient to satiate post-dispersal predators.  相似文献   

13.
Seedling recruitment is a multi-phased process involving seed production, dispersal, germination, seedling establishment and subsequent survival. Understanding the factors that determine success at each stage of this process is of particular interest to scientists and managers seeking to understand how invasive species spread and persist, and identify critical stages for management. To understand the factors and processes influencing recruitment of the invasive species Berberis darwinii Hook. (Darwin’s barberry), temporal and spatial patterns of seed dispersal, germination and seedling establishment were examined. Seed dispersal from a large source population was measured over two fruiting seasons, and subsequent patterns of seedling emergence and survival within each cohort were measured. Seed longevity was tested under both natural and artificial conditions. Seeds were widely dispersed by birds, up to 450 m from the source population. Dispersal was essential to seedling establishment, as few seedlings survived beneath the parent canopy. Seeds were relatively short-lived in the soil under both field and glasshouse conditions, with few surviving for more than 1 year. Patterns of newly emerged seedlings largely reflected patterns of seed rain, but seedling survival was significantly affected by distance from source population, seedling density and light environment. These results suggest that recruitment of B. darwinii is dependent on dispersal of seeds to favourable microsites. Management priorities should include the removal of fruiting plants, and seedling control in highlight areas.  相似文献   

14.
Selective pressures on seed size could vary among the different stages of plant life cycles, so no simple relation could explain a priori its evolution. Here, we determined the relationships between seed size and two fitness components—seed dispersal and survival from predation—in a bird-dispersed tree, Crataegus monogyna. We interpret these relationships in relation to the patterns of mass allocation to fruit and seed components. Selection patterns were assessed at two levels (1) selection pressures on the parent tree; comparing seed dispersal efficiency among individual plants and (2) selection pressures at the individual seed level; comparing seed size variation (i) before and after dispersal, and (ii) before and after postdispersal seed predation. Dispersal efficiency (percentage of seed crop dispersed) was positively correlated with fruit mass and fruit width. Differences in crop size did not offset this effect, and larger seeds were overrepresented in the seed rain relative to the seed pool before dispersal. However, the advantage of larger seeds during the dispersal stage was cancelled later by an opposite selection pressure exerted by seed predators. As a result, smaller seeds had a higher probability of surviving postdispersal seed predation, establishing an evolutionary conflict imposed by the need for dispersal and the danger of being predated. Birds and rodents preferentially selected highly profitable fruits and seeds in terms of the relative proportion of their components. Larger fruits had a higher pulp to seed proportion than smaller ones, and all seeds had the same proportion of coat relative to the embryo-plus-endosperm fraction. Hence, although predator pressures were stronger than disperser ones, larger seeds invested proportionally less in structural defense than in dispersal.  相似文献   

15.
Abstract. Aesculus turbinata is a tree species with large seeds (6.2 g mean dry weight). We studied the demography of its seeds and seedlings in a temperate deciduous forest in northern Japan to elucidate the ecological significance of large seeds with special reference to herbivory and secondary dispersal. Both seed and seedling stages suffered greatly from herbivores. Seedling herbivory was important judged from experiments with shoot clipping and hypogeal cotyledon removal. However, some seedlings survived through re-sprouting after herbivory. Survival rate and percentage resprouting seedlings were lower than those with remaining cotyledons, though seedling size was not affected. This suggests that stored resources in hypogeal cotyledons are working as a kind of ‘risk hedge’ against severe aboveground shoot clipping experienced by A. turbinata. The spatial distribution of seedlings was expanded via seed scatter-hoarding by rodents. Seedling survival rate was higher within canopy gaps than under closed canopy, indicating that canopy gaps are safe sites for establishment, and was negatively correlated with seedling density. Therefore, secondary seed dispersal in this species seems to be effective in ‘finding’ safe sites and in ‘escaping’ density-dependent mortality. The large seeds and seedlings of A. turbinata are attractive to herbivores, but the high resistance of seedlings to herbivory due to large reserves and the effective secondary dispersal appear to mitigate these disadvantages.  相似文献   

16.
Middleton  Beth 《Plant Ecology》2000,146(2):167-181
Following the environmental sieve concept, the setting in which the recruitment of Taxodium distichum occurs in, becomes increasingly restrictive from the seed to seedling stage in an impounded forested wetland. Although a wide elevational band of dispersing seed moves across the boundary of a swamp-field in the water sheet, the zone of germination is relegated to that portion of the forested wetland that draws down during the growing season. Seedling recruitment is further restricted to the uppermost zone of the winter water sheet. These patterns are likely applicable to other species of dominant swamp species, e.g., Cephalanthus occidentalis crossed the boundary of a forested wetland and abandonded field in winter flooding (November–December and November–March, respectively) in Buttonland Swamp. The elevation of the boundary was 101.3 m NGVD. While the seeds of at least 40 swamp species were dispersed across the boundary, few viable seeds were dispersed after the winter season. Kriged maps showed seeds of T. distichum and C. occidentalis dispersed in patches in the water depending on the position of the water sheet. Most species of both water- and gravity-dispersed species had a localized pattern of seed distribution (either spherical or exponential) and this indicated that seeds may not be dispersed for great distances in the swamp. Water-dispersed T. distichum and C. occidentalis had larger dispersal ranges (A 0=225 and 195 m, respectively) than Bidens frondosa and B. discoidea (A 0=14 and 16 m, respectively). Seed dispersal varied with season depending on the availability of seeds. In Buttonland Swamp, viable seeds typically were dispersed for T. distichum in November–June, and for C. occidentalis in November-July. Low water occurred in August 1993 and high in February 1994 (99.8 and 101.6 m NGVD, respectively). The seed banks along the landscape boundary varied in species composition according to elevation (r 2 = 0.996). While the similarity of species richness between water-dispersed seeds and the seed bank at elevations that flooded (during June 1993 through May 1995) was high (10–17%), it was low between water-dispersed seeds and the seed bank at elevations that did not flood (5%). T. distichum seeds had a short germination window in that seeds germinated within a year following their production in zones that were flooded in the winter followed by drawdown during the next growing season. After 1 year, less than 5% of the T. distichum seeds remained viable on the surface of the soil. Germination of T. distichum was confined to specific elevations (above 99.3 but below 101.6 m NGVD) during this study with 4.1% of the seedlings surviving for more than 2 years at a mean of 101.4 m NGVD. All seedlings below this elevation died. To maximize natural regeneration along the boundaries of swamps in abandoned farm fields targeted for restoration, this study suggests a flood pulse regime consisting of high water in the winter to maximize dispersal of live seeds followed by low water in the summer to facilitate seed germination and seedling recruitment. Hydrologic restoration could assist in the natural recovery of damaged wetlands if a seed source exists nearby.  相似文献   

17.
Dry forests are among the most diverse, yet threatened, communities in Hawai’i. Dry forests throughout the archipelago suffer from a lack of natural regeneration of trees. Two factors that may limit tree recruitment include poor seed dispersal and seed predation by rodents. Poor or limited dispersal of fleshy-fruited species results in seeds and fruits falling directly under parents. Dispersed and non-dispersed seeds may differ in their vulnerability to predation. We tested effects of seed location (under/away from parent trees) and pulp (presence/absence) on predation of four native species that suffer from limited dispersal and one readily-dispersed alien species in Kanaio Natural Area Reserve, Maui. Three natives (Diospyros sandwicensis, Pleomele auwahiensis, Santalum ellipticum), had significantly more seeds removed under parent trees than in exposed sites away from trees. For the one alien (Bocconia frutescens) and two native trees (D. sandwicensis, P. auwahiensis) that were evaluated, significantly more intact fruits were removed than were cleaned seeds. Presence of teeth marks and gnawed seed husk fragments indicate introduced rodents are destroying many of the seeds they remove. These results suggest that seed predation is disproportionately concentrated among poorly-dispersed seeds and may contribute to recruitment failure.  相似文献   

18.
For numerous species in fire-prone ecosystems, the passage of fire triggers the release of large quantities of seeds within 2 years of the fire. This special case of masting has been described for species in an array of floras, but few studies have followed the fates of seeds liberated into the postfire environment. In this study, I followed the fates of 990, magnet-bearing Marah macrocarpus seeds sown at three seed densities in a large, high-intensity burn area. Seeds disappeared over 6.6 months and removal at all three densities became negatively density-dependent in late summer until all seeds disappeared in mid winter. I recovered only 5% of the magnets, mostly from rodent tunnels. Based on the recovery of magnets, I estimate rodents moved ~91% of the seeds belowground. Seed burial trials showed that seedlings established from seeds buried up to 16 cm whereas seeds sown on the surface did not germinate. Seedlings also readily established from burial in soils with 50% rock fragments as well as from artificial tunnels in both pot and field experiments. Excavation of 50 natural seedlings suggested up to 20% established in rodent burrows. Findings of this study suggest that ecologists may have underestimated the role of burrows as locations for recruitment of large-seeded species.  相似文献   

19.
This study investigated links between seed production by two species of Miconia (Melastomataceae), whose seeds are dispersed by birds, and later stages of recruitment in lowland forests of eastern Ecuador. Seed dispersal and survival in later stages are crucial for understanding and predicting patterns of plant population dynamics as well as for understanding patterns of diversity in tropical forests. A major goal was to determine if the spatial template of seed deposition established by birds predicted probability of recruitment. We used observational and experimental approaches to compare patterns of recruitment in Miconia fosteri and M. serrulata. We calculated probabilities of transition between successive stages of recruitment for each species in three habitats. The number of plants with fruit, number of fruits removed, and, to a lesser extent, patterns of seed deposition varied between species and among habitats, whereas seed survival, germination, and establishment showed little variation among habitats. The location of seed deposition directly influenced the cumulative probabilities of survival. Among-habitat differences in the probabilities of recruitment set by seed deposition were not modified by later stages, although probability of recruitment was 2.5 times higher for M. serrulata than for M. fosteri after 1 year. The more critical stages for recruitment were seed removal and deposition. Our results from multiple life-cycle stages suggest that habitat associations among plants that reach reproductive maturity become established at early life stages and were mostly a consequence of seed dispersal by birds. These results differ from those obtained in temperate zones and suggest fundamental differences in the importance of recruitment processes. Dispersers, such as manakins, play significant roles in recruitment and population dynamics of M. fosteri, M. serrulata and numerous other understory plants of Neotropical forests. Their role in plant recruitment could be much greater than previously considered in megadiverse tropical forests. Thus, loss of dispersers could have long-term and far-reaching implications for maintenance of diversity.  相似文献   

20.
In moist tropical forests resprouting may be an important component of life history, contributing to asexual reproduction through the clonal spread of individuals derived from shoot fragments. However, in contrast to other ecosystems where resprouting is common, the ecological correlates of resprouting capacity in tropical forests remain largely unexplored. In this study we characterized shade tolerance, resprouting capacity and sexual reproductive success of eight co-occurring Piper species from lowland forests of Panama. In field experiments we found that shade-tolerant Piper species had a higher capacity to regenerate from excised or pinned stem fragments than light-demanding species in both gap and understory light conditions. In contrast, shade-tolerant species had lower recruitment probabilities from seeds, as a consequence of lower initial seed viability, and lower seedling emergence rates. All Piper species needed gap conditions for successful seedling establishment. Of 8,000 seeds sown in the understory only 0.2% emerged. In gaps, seed germination of light-demanding species was between 10 and 50%, whereas for shade-tolerant species it was 0.5–9.8%. We propose that the capacity to reproduce asexually from resprouts could be adaptive for shade-tolerant species that are constantly exposed to damage from falling litter in the understory. Resprouting may allow Piper populations to persist and spread despite the high rate of pre-dispersal seed predation and low seed emergence rates. Across Piper species, we detected a trade-off between resprouting capacity and the annual viable seed production per plant but not with annual seed mass produced per plant. This suggests that species differences in sexual reproductive success may not necessarily result from differential resource allocation. Instead we suggest that low sexual reproductive success in the understory may in part reflect reduced genetic diversity in populations undergoing clonal growth, resulting in self-fertilization and in-breeding depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号