首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fructans have been implicated in the abiotic stress tolerance of many plant species, including grasses and cereals. To elucidate the possibility that cereal fructans may stabilize cellular membranes during dehydration, we used liposomes as a model system and isolated fructans from oat (Avena sativa) and rye (Secale cereale). Fructans were fractionated by preparative size exclusion chromatography into five defined size classes (degree of polymerization (DP) 3 to 7) and two size classes containing high DP fructans (DP>7 short and long). They were characterized by high performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The effects of the fructans on liposome stability during drying and rehydration were assessed as the ability of the sugars to prevent leakage of a soluble marker from liposomes and liposome fusion. Both species contain highly complex mixtures of fructans, with a DP up to 17. The two DP>7 fractions from both species were unable to protect liposomes, while the fractions containing smaller fructans were protective to different degrees. Protection showed an optimum at DP 4 and the DP 3, 4, and 5 fractions from oat were more protective than all other fractions from both species. In addition, we found evidence for synergistic effects in membrane stabilization in mixtures of low DP with DP>7 fructans. The data indicate that cereal fructans have the ability to stabilize membranes under stress conditions and that there are size and species dependent differences between the fructans. In addition, mixtures of fructans, as they occur in living cells may have protective properties that differ significantly from those of the purified fractions.  相似文献   

3.
The plasma membrane (PM) is involved in important cellular processes that determine the growth, development, differentiation, and environmental signal responses of plant cells. Some of these dynamic reactions occur in specific domains in the PM. In this study, we performed comparable nano-LC-MS/MS-based large-scale proteomic analysis of detergent-resistant membrane (DRM) fractions prepared from the PM of oat and rye. A number of proteins showed differential accumulation between the PM and DRM, and some proteins were only found in the DRM. Numerous proteins were identified as DRM proteins in oat (219 proteins) and rye (213 proteins), of which about half were identified only in the DRM. The DRM proteins were largely common to those found in dicotyledonous plants (Arabidopsis and tobacco), which suggests common functions associated with the DRM in plants. Combination of semiquantitative proteomic analysis and prediction of post-translational protein modification sites revealed differences in several proteins associated with the DRM in oat and rye. It is concluded that protein distribution in the DRM is unique from that in the PM, partly because of the physicochemical properties of the proteins, and the unique distribution of these proteins may define the functions of the specific domains in the PM in various physiological processes in plant cells.  相似文献   

4.
Summary Soybean seedlings (Glycine max) were incubated in narrow temperature regimes to study the effects of heat shock on cell structures. The incubation temperatures used were as follows: 1. 28 °C (2h); 2. 40 °C (2h); 3. 45 °C (2h); 4. 40 °C (2h)45 °C (2h); 5. 47. 5 °C (10 min); 6. 40 °C (2h)47. 5 °C (10 min). Both optical and electron micrographs were taken of the different tissues of root meristems as they responded to heat shock. Cells of roots heated to 45 °C (2h) or 47.5 °C (10 min) with lethal treatment showed drastic heat injuries:e.g., membrane damage, coagulated plasmolysis, protoplasmic contraction, and leakage of cell content. Nucleolar segregation occurred in cells treated at both lethal and supraoptimal temperatures. Seedlings preincubated at 40 °C (2 h) became thermo-tolerant to lethal temperature treatment of 45 °C (2 h) or 47.5 °C (10 min), by protecting the plasmalemma, mitochondria, plastids and nuclei from heat damage. Without preincubation, however, these structures were destroyed.Abbreviations CC Central cylinder - CR Cortex - M Mitochondria - N Nuclei - Nu Nucleoli - P Plastids - RC Root cap - RE Region of elongation - RM Region of meristem  相似文献   

5.
Plasma membranes isolated from a yeast sterol auxotroph (RD5-R) grown on 1, 5, and 15 micrograms ml-1 exogenous concentrations of sterol showed no discontinuity in plots of steady-state fluorescence anisotropy. Liposomes constructed from phospholipid and sterol extracted from RD5-R grown on different sterols indicated that exogenously supplied sterol modulated cellular phospholipids such that lipid-phase transitions were avoided. Liposomes derived from sterol and phospholipid extracted from the same culture exhibited no lipid-phase transitions. However, when phospholipid extracted from a culture grown on a specific sterol was mixed with sterol extracted from a heterologous culture grown on a different sterol to form liposomes, discontinuities were detected in the anisotropy measurements of the liposomes produced. Quantitative analyses revealed that the exogenously supplied sterol coordinately regulated specific phospholipid species, fatty acid composition, and sterol to phospholipid ratios in yeast auxotrophs.  相似文献   

6.
Fructans have been implicated in the abiotic stress tolerance of many plant species, including grasses and cereals. To elucidate the possibility that cereal fructans may stabilize cellular membranes during dehydration, we used liposomes as a model system and isolated fructans from oat (Avena sativa) and rye (Secale cereale). Fructans were fractionated by preparative size exclusion chromatography into five defined size classes (degree of polymerization (DP) 3 to 7) and two size classes containing high DP fructans (DP > 7 short and long). They were characterized by high performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The effects of the fructans on liposome stability during drying and rehydration were assessed as the ability of the sugars to prevent leakage of a soluble marker from liposomes and liposome fusion. Both species contain highly complex mixtures of fructans, with a DP up to 17. The two DP > 7 fractions from both species were unable to protect liposomes, while the fractions containing smaller fructans were protective to different degrees. Protection showed an optimum at DP 4 and the DP 3, 4, and 5 fractions from oat were more protective than all other fractions from both species. In addition, we found evidence for synergistic effects in membrane stabilization in mixtures of low DP with DP > 7 fructans. The data indicate that cereal fructans have the ability to stabilize membranes under stress conditions and that there are size and species dependent differences between the fructans. In addition, mixtures of fructans, as they occur in living cells may have protective properties that differ significantly from those of the purified fractions.  相似文献   

7.
A response when wheat is grown in excess copper is an altered lipid composition of the root plasma membrane (PM). With detailed characterisation of the root PM lipid composition of the copper-treated plants as a basis, in the present study, model systems were used to gain a wider understanding about membrane behaviour, and the impact of a changed lipid composition.PMs from root cells of plants grown in excess copper (50 μM Cu2+) and control (0.3 μM Cu2+) were isolated using the two-phase partitioning method. Membrane vesicles were prepared of total lipids extracts from the isolated PMs, and also reference vesicles of phosphatidylcholine (PC). In a series of tests, the vesicle permeability for glucose and for protons was analysed. The vesicles show that copper stress reduced the permeability for glucose of the lipid bilayer barrier. When vesicles from stressed plants were modified by addition of lipids to resemble vesicles from control plants, the permeability for glucose was very similar to that of vesicles from control plants. The permeability for protons did not change upon stress.Electron paramagnetic resonance (EPR) of the lipid vesicles spin probed with n-doxylstearic acid (nDSA) was used to explore the lipid rotational freedom at different depth of the bilayer. The EPR measurements supported the permeability data, indicating that the copper stress resulted in more tightly packed bilayers of the PMs with reduced acyl chain motion.  相似文献   

8.
A response when wheat is grown in excess copper is an altered lipid composition of the root plasma membrane (PM). With detailed characterisation of the root PM lipid composition of the copper-treated plants as a basis, in the present study, model systems were used to gain a wider understanding about membrane behaviour, and the impact of a changed lipid composition.PMs from root cells of plants grown in excess copper (50 microM Cu(2+)) and control (0.3 microM Cu(2+)) were isolated using the two-phase partitioning method. Membrane vesicles were prepared of total lipids extracts from the isolated PMs, and also reference vesicles of phosphatidylcholine (PC). In a series of tests, the vesicle permeability for glucose and for protons was analysed. The vesicles show that copper stress reduced the permeability for glucose of the lipid bilayer barrier. When vesicles from stressed plants were modified by addition of lipids to resemble vesicles from control plants, the permeability for glucose was very similar to that of vesicles from control plants. The permeability for protons did not change upon stress.Electron paramagnetic resonance (EPR) of the lipid vesicles spin probed with n-doxylstearic acid (nDSA) was used to explore the lipid rotational freedom at different depth of the bilayer. The EPR measurements supported the permeability data, indicating that the copper stress resulted in more tightly packed bilayers of the PMs with reduced acyl chain motion.  相似文献   

9.
Experiments were conducted to examine and characterize the lipid composition of the plasma membrane from the lactating goat mammary gland. The plasma membranes were purified by discontinuous sucrose density centrifugation. Lipids were extracted from these membranes and analyzed by thin-layer and gas-liquid chromatography. The results of these studies demonstrate that (i) the principal phospholipids of mammary-gland plasma membranes are phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin; (ii) the principal neutral lipids are triacylglyceride and cholesterol ester; (iii) the major glycolipids are globotetraosylceramide and globotriaosylceramide; and (iv) the major fatty acids are oleic (18:1), palmitic (16:0), stearic (18:0), and myristic (14:0) acids.  相似文献   

10.
This experiment was carried out to examine the influence of overfeeding ducks with corn on the lipid composition of hepatocyte plasma membrane. Seventy-day-old male Mule ducks (Cairina moschata × Anas platyrhynchos) were overfed with corn for 12.5 days in order to induce fatty livers. The cholesterol and phospholipid contents were approximately 50% higher in hepatocyte plasma membranes from fatty livers compared to those of lean livers obtained from non-overfed ducks. However, the cholesterol/phospholipids molar ratio did not differ between both groups. Overfeeding induced a significant change in phospholipid composition of hepatocyte plasma membrane with a decrease in phosphatidylcholine proportion and conversely an increase in phosphatidylethanolamine. The fatty acid profile of phospholipids was also altered. In fatty hepatocyte plasma membrane, the overall proportion of polyunsaturated fatty acids (PUFA) was decreased and this was due to the decrease of some of, but not all, the PUFA. In addition, the proportions of oleic acid and n-9 series unsaturated fatty acids were higher in fatty than in lean liver membranes. This study provides evidence that overfeeding with a carbohydrate-rich corn-based diet induces a de novo hepatic lipogenesis in Mule duck which predominates over dietary lipid intake to change the lipid composition of the hepatocyte plasma membrane.  相似文献   

11.
12.
Purification of oat and rye phytochrome   总被引:1,自引:5,他引:1       下载免费PDF全文
A purification procedure employing normal chromatographic techniques is outlined for isolating phytochrome from etiolated oat (Avena sativa L.) seedlings. Yields in excess of 20% (25 milligrams or more) of phytochrome in crude extract were obtained from 10- to 15-kilograms lots. The purified oat phytochrome had an absorbance ratio (A280 nm/A665 nm) of 0.78 to 0.85, comparable to reported values, and gave a single major band with an estimated molecular weight of 62,000 on electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. A modification of the oat isolation procedure was used to isolate phytochrome from etiolated rye Secale cereale cv. Balbo) seedlings. During isolation rye phytochrome exhibited chromatographic profiles differing from oat phytochrome on diethylaminoethyl cellulose and on molecular sieve gels. It eluted at a higher salt concentration on diethylaminoethyl cellulose and nearer the void volume on molecular sieve gels. Yields of 5 to 10% (7.5-10 milligrams) of phytochrome in crude extract were obtained from 10- to 12-kilogram seedling lots. The purified rye phytochrome had an absorbance ratio of 1.25 to 1.37, significantly lower than values in the literature and gave a single major band with an estimated molecular weight of 120,000 on electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. It is suggested that the absorbance ratio and electrophoretic behavior of rye phytochrome are indices of purified native phytochrome, and that oat phytochrome as it has been described is an artifact which arises as a result of endogenous proteolysis during isolation. A rationale is provided for further modifications of the purification procedure to alleviate presumed protease contaminants.  相似文献   

13.
Sterols are essential components of the plasma membrane in eukaryotic cells. Nystatin-resistant erg mutants were used in the present study to investigate the in vitro effects of altered sterol structure on membrane lipid composition, fluidity, and asymmetry of phospholipids. Quantitative analyses of the wild type and mutants erg2, erg3 and erg6 revealed that mutants have lower sterol (free)-to-phospholipid molar ratios than the wild type. Phosphatidylcholine content was decreased in erg2 and erg3 mutants; however, it was increased in erg6 strains as compared to normals. Phosphatidylserine content was increased in the erg6 mutant only. Fluorescence anisotropy decreased with temperature in both probes, and was lower for mutants than for the wild type, suggesting an increased freedom in rotational movement due to decreased membrane order. Investigation of changes in the aminophospholipid transbilayer distribution using two chemical probes, trinitrobenzene sulfonic acid and fluorescamine, revealed that the amounts of phosphatidylethanolamine derivatized by these probes were quite similar in both the wild type and various erg strains. The present findings suggest that adaptive responses in yeast cells with altered sterol structure are possibly manifested through changes in membrane lipid composition and fluidity, and not through transbilayer rearrangement of aminophospholipids.  相似文献   

14.
The plasma membrane of a cell is characterized by an asymmetric distribution of lipid species across the exofacial and cytofacial aspects of the bilayer. Regulation of membrane asymmetry is a fundamental characteristic of membrane biology and is crucial for signal transduction, vesicle transport, and cell division. The type IV family of P-ATPases, or P4-ATPases, establishes membrane asymmetry by selection and transfer of a subset of membrane lipids from the lumenal or exofacial leaflet to the cytofacial aspect of the bilayer. It is unclear how P4-ATPases sort through the spectrum of membrane lipids to identify their desired substrate(s) and how the membrane environment modulates this activity. Therefore, we tested how the yeast plasma membrane P4-ATPase, Dnf2, responds to changes in membrane composition induced by perturbation of endogenous lipid biosynthetic pathways or exogenous application of lipid. The primary substrates of Dnf2 are glucosylceramide (GlcCer) and phosphatidylcholine (PC, or their lyso-lipid derivatives), and we find that these substrates compete with each other for transport. Acutely inhibiting sphingolipid synthesis using myriocin attenuates transport of exogenously applied GlcCer without perturbing PC transport. Deletion of genes controlling later steps of glycosphingolipid production also perturb GlcCer transport to a greater extent than PC transport. In contrast, perturbation of ergosterol biosynthesis reduces PC and GlcCer transport equivalently. Surprisingly, application of lipids that are poor transport substrates differentially affects PC and GlcCer transport by Dnf2, thus altering substrate preference. Our data indicate that Dnf2 exhibits exquisite sensitivity to the membrane composition, thus providing feedback onto the function of the P4-ATPases.  相似文献   

15.
16.
Xu X  London E 《Biochemistry》2000,39(5):843-849
Detergent-insoluble membrane domains, enriched in saturated lipids and cholesterol, have been implicated in numerous biological functions. To understand how cholesterol promotes domain formation, the effect of various sterols and sterol derivatives on domain formation in mixtures of the saturated lipid dipalmitoylphosphatidylcholine (DPPC) and a fluorescence quenching analogue of an unsaturated lipid was compared. Quenching measurements demonstrated that several sterols (cholesterol, dihydrocholesterol, epicholesterol, and 25-hydroxycholesterol) promote formation of DPPC-enriched domains. Other sterols and sterol derivatives had little effect on domain formation (cholestane and lanosterol) or, surprisingly, strongly inhibit it (coprostanol, androstenol, cholesterol sulfate, and 4-cholestenone). The effect of sterols on domain formation was closely correlated with their effects on DPPC insolubility. Those sterols that promoted domain formation increased DPPC insolubility, whereas those sterols that inhibit domain formation decreased DPPC insolubility. The effects of sterols on the fluorescence polarization of diphenylhexatriene incorporated into DPPC-containing vesicles were also correlated with sterol structure. These experiments indicate that the effect of sterol on the ability of saturated lipids to form a tightly packed (i.e., tight in the sense that the lipids are closely packed with one another) and ordered state is the key to their effect on domain formation. Those sterols that promote tight packing of saturated lipids promote domain formation, while those sterols that inhibited tight packing of saturated lipids inhibited domain formation. The ability of some sterols to inhibit domain formation (i.e., act as "anti-cholesterols") should be a valuable tool for examining domain formation and properties in cells.  相似文献   

17.
A technique is described for the isolation of a fraction that contains the plasma membrane of the trypanosomatid flagellate Leptomonas collosoma. This fraction has been investigated by electron microscopy and has been shown to be mostly membranes associated with microtubules, a known plasma membrane marker in this organism. The fraction is enriched in Mg2+-dependent ATPase but has a decreased specific activity of succinate dehydrogenase. Lipid has been extracted from whole cells and the isolated plasma membrane fraction. A fraction of the total lipid that is eluted from a silicic acid column by acetone is found to be concentrated in the plasma membrane. Also enriched in the plasma membrane fraction is a 5,7-diene sterol identified as ergosterol. The major phospholipids of the whole cell and the plasma membrane are phosphatidylethanolamine and phosphatidylcholine. Approximately 60% of the fatty acids of the cell and plasma membrane have a carbon chain length of eighteen, and half of this is in the form of the mono-unsaturated fatty acid.  相似文献   

18.
19.
Squalene and sterol carrier protein (SCP) levels and sterol/phospholipid molar ratios of whole cells and plasma membranes were measured in cultured primary tumor and metastatic cell lines. SCP is abundant in all cell lines. However, metastatic lines have significantly lower SCP levels and plasma membrane sterol/phospholipid ratios than do primary lines. The results indicate that extremely malignant, metastatic cells are unable to produce or maintain adequate levels of both SCP and plasma membrane sterols when grown in lipoprotein deficient media. This defect, in vivo, probably causes excess uptake of SCP and lipid.  相似文献   

20.
Plasma membrane was purified from roots of rye (Secale cereale L. cv. Rheidol) by aqueous-polymer two-phase partitioning and incorporated into planar bilayers of 1-palmitoyl-2-oleoyl phosphatidylethanolamine by stirring with an osmotic gradient. Since plasmamembrane vesicles were predominantly oriented with their cytoplasmic face internal, when fused to the bilayer the cytoplasmic side of channels faced the trans chamber. In asymmetrical (cis:trans) 280100 mM KCl, five distinct K+-selective channels were detected with mean chord-conductances (between +30 and -30 mV; volyages cis with respect to trans) of 500 pS, 194 pS, 49 pS, 21 pS and 10 pS. The frequencies of incorporation of these K+ channels into the bilayer were 48, 21, 50, 10 and 9%, in the order given (data from 159 bilayers). Only the 49 pS channel was characterized further in this paper, but the remarkable diversity of K+ channels found in this preparation is noteworthy and is the subject of further study. In symmetrical KCl solutions, the 49 pS channel exhibited non-ohmic unitary-current/voltage relationships. The chord-conductance (between +30 and-30 mV) of the channel in symmetrical 100 mM KCl was 39 pS. The unitary current was greater at positive voltages than at corresponding negative voltages and showed considerable rectification with increasing positive and negative voltages. This would represent inward rectification in vivo. Gating of the channel was not voltage-dependent and the channel was open for approx. 80% of the time. Presumably this is not the case in vivo, but we are at present uncertain of the in vivo controls of channel gating. The distribution of channel-open times could be approximated by the sum of two negative exponential functions, yielding two open-state time constants (o, the apparent mean lifetime of the channel-open state) of 1.0 ms and 5.7 s. The distribution of channel-closed times was best approximated by the sum of three negative exponential functions, yielding time constants (c, the apparent mean lifetime of the channel-closed state) of 1.1 ms, 51 ms and 11 s. This indicates at least a five-state kinetic model for the activity of the channel. The selectivity of the 49 pS channel, determined from both reversal potentials under biionic conditions (100 mM KCl100 mM cation chloride) and from conductance measurements in symmetrical 100 mM cation chloride, was Rb+ K+ > Cs+ > Na+ > Li+ > tetraethylammonium (TEA+). The 49 pS channel was reversibly inhibited by quinine (1 mM) but TEA+ (10 mM), Ba2+ (3 mM), Ca2+ (1 mM), 4-aminopyridine (1 mM) and charybdotoxin (3 M) were without effect when applied to the extracellular (cis) surface.Abbreviations and Symbols GHK Goldman-Hodgkin-Katz - I/V current/voltage - PEG polyethyleneglycol - Po probability o f the channel being open - TEA+ tetraethylammonium - c apparent mean lifetime of the channel-closed state - o apparent mean lifetime of the channel-open state P.J.W. was supported by a grant from the Science and Engineering Research Council Membrane Initiative (GR/F 33971) to Professor E.A.C. MacRobbie and M.T. by the Glaxo Junior Research Fellowship at Churchill College, Cambridge. We thank Dr. D.T. Cooke (AFRC, Long Ashton Research Station, University of Bristol, UK) and Ms. J. Marshall (University of York, UK) for their advice and assistance with the aqueous-polymer two-phase partitioning of plasma membrane from rye roots, Mr. J. Banfield and Miss P. Parmar (University of Cambridge, UK) for technical assistance and Professor E.A.C. MacRobbie, Dr. G. Thiel (University of Cambridge, UK), Dr. M.R. Blatt (Wye College, University of London, UK), Dr. D. Sanders and Dr. E. Johannes (University of York, UK) for helpful discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号