首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysyl oxidase purified from bovine aorta can oxidize simple alkyl mono- and diamine substrates yielding the respective aldehyde, H2O2, and ammonia as products. The oxidation of such substrates is limited to approximately 100 catalytic turnovers per enzyme molecule since lysyl oxidase is syncatalytically and irreversibly inactivated in the course of oxidation of these amines. The present study reveals that addition of oxidant scavengers protects significantly against inactivation of lysyl oxidase and that the ammonia product is a reversible competitive inhibitor of amine oxidation. Further, the enzyme becomes covalently labeled by the amine substrate or its enzyme-processed derivative during catalysis. Thus, lysyl oxidase appears subject to multiple modes of catalysis-dependent inhibition or inactivation. Syncatalytic inactivation of lysyl oxidase might represent a means of restricting the activity of this enzyme toward its elastin and collagen substrates in vivo.  相似文献   

2.
A study is presented on the pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of purified cytochrome c oxidase (COX) from beef heart reconstituted in phospholipid vesicles (COV). Protons were shown to be released from COV both in the oxidative and reductive phases. In the oxidation by O2 of the fully reduced oxidase, the H+/COX ratio for proton release from COV (R --> O transition) decreased from approximately 2.4 at pH 6.5 to approximately 1.8 at pH 8.5. In the direct reduction of the fully oxidized enzyme (O --> R transition), the H+/COX ratio for proton release from COV increased from approximately 0.3 at pH 6.5 to approximately 1.6 at pH 8.5. Anaerobic oxidation by ferricyanide of the fully reduced oxidase, reconstituted in COV or in the soluble case, resulted in H+ release which exhibited, in both cases, an H+/COX ratio of 1.7-1.9 in the pH range 6.5-8.5. This H+ release associated with ferricyanide oxidation of the oxidase, in the absence of oxygen, originates evidently from deprotonation of acidic groups in the enzyme cooperatively linked to the redox state of the metal centers (redox Bohr protons). The additional H+ release (O2 versus ferricyanide oxidation) approaching 1 H+/COX at pH < or = 6.5 is associated with the reduction of O2 by the reduced metal centers. At pH > or = 8.5, this additional proton release takes place in the reductive phase of the catalytic cycle of the oxidase. The H+/COX ratio for proton release from COV in the overall catalytic cycle, oxidation by O2 of the fully reduced oxidase directly followed by re-reduction (R --> O --> R transition), exhibited a bell-shaped pH dependence approaching 4 at pH 7.2. A mechanism for the involvement in the proton pump of the oxidase of H+/e- cooperative coupling at the metal centers (redox Bohr effects) and protonmotive steps of reduction of O2 to H2O is presented.  相似文献   

3.
This laboratory has recently reported that, in a reconstituted enzyme system containing alcohol-induced isozyme 3a of liver microsomal cytochrome P-450, the sum of acetaldehyde generated by the monooxygenation of ethanol and of hydrogen peroxide produced by the NADPH oxidase activity is inadequate to account for the O2 and NADPH consumed. Studies on the stoichiometry have revealed the occurrence of an additional reaction involving an overall 4-electron transfer to molecular oxygen which is presumed to yield water: O2 + 2 NADPH + 2H+----2 H2O + 2 NADP+. The occurrence of a peroxidase reaction in which free H2O2 is reduced to water by NADPH was ruled out. When the 4-electron oxidase activity is taken into account, measurements of NADPH oxidation and O2 consumption are in accord with the amounts of products formed in the presence of various P-450 isozymes, either in the absence or presence of typical substrates, including those which undergo hydroxylation, N- or O-demethylation, or oxidation of hydroxymethyl to aldehyde groups. Of the substrates examined, some had no effect on the oxidase reaction yielding hydrogen peroxide or the 4-electron oxidase reaction, some were inhibitory, and some were stimulatory, but the same substrate did not necessarily have the same effect on the two reactions.  相似文献   

4.
Monoamine oxidase is assayed in tissue by a colorimetric reaction using horse radish peroxidase and 2,2'-azinodi(ethylbenzthiazoline-6-sulfonic acid to measure H2O2 formed during oxidation of amines. The method has a coefficient of variation of approximately 2.5% and provides results comparable with those of radiometric assay. Monoamine oxidase activities in rat liver mitochondria and crude mitochondrial fraction from brain and with tyramine as a substrate were 18.9 +/- 0.4 and 4.61 +/- 0.15 nmol/min/mg of protein, respectively, using this method. Kinetic parameters of liver and brain monoamine oxidase with various substrates and inhibitors appeared to be the same when determined by either colorimetric or radiometric methods.  相似文献   

5.
The pH dependence of steady-state parameters for aldehyde reduction and alcohol oxidation were determined in the human liver aldehyde reductase reaction. The maximum velocity of aldehyde reduction with NADPH or 3-acetyl pyridine adenine dinucleotide phosphate (3-APADPH) was pH independent at low pH but decreased at high pH with a pK of 8.9-9.6. The V/K for both nucleotides decreased below a pK of 5.7-6.2, as did the pKi of competitive inhibitors NADP and ATP-ribose, suggesting that the 2'-phosphate of the nucleotide has to be deprotonated for binding to the enzyme. The pK of the 2'-phosphate of NADPH appears to be perturbed in the ternary complexes to 5.2-5.4. The V/K for NADPH, the V/K for 3-APADPH, and the pKi of ATP-ribose also decreased above a pK of 9-10, suggesting interaction of the 2'-phosphate of the nucleotide with a protonated base, perhaps lysine. Since protonation of a residue with a pK of 8 (evident in V/K for DL-glyceraldehyde and V/K for L-gulonate versus pH profiles) appears to be essential for aldehyde reduction, and deprotonation for alcohol oxidation, this residue appears to act as a general acid-base catalyst. An additional anion binding site with a pK of 9.94 facilitates the binding of carboxylic substrates such as D-glucuronate. With NADPH as the coenzyme the primary deuterium isotope effects on V and V/K for NADPH were close to unity and pH independent, suggesting that the hydride transfer step is not rate determining over the experimental pH range. With 3-APADPH as the coenzyme, the maximum velocity, relative to NADPH was three- to four-fold lower. Isotope effects on V, V/K for 3-APADPH, and V/K for D-glucuronate were pH independent and equal to 2.2-2.8, indicating that the chemical step of the reaction is relatively insensitive to pH. These data suggest that substrates bind to both the protonated and the deprotonated forms of the enzyme, though only the protonated enzyme catalyzes aldehyde reduction and the deprotonated enzyme catalyzes alcohol oxidation. On the basis of these results a scheme for the chemical mechanism of aldehyde reductase is postulated.  相似文献   

6.
A simple and direct assay method for glucose oxidase (EC 1.1.3.4) from Aspergillus niger and Penicillium amagasakiense was investigated by Fourier transform infrared spectroscopy. This enzyme catalyzed the oxidation of d-glucose at carbon 1 into d-glucono-1,5-lactone and hydrogen peroxide in phosphate buffer in deuterium oxide ((2)H(2)O). The intensity of the d-glucono-1,5-lactone band maximum at 1212 cm(-1) due to CO stretching vibration was measured as a function of time to study the kinetics of d-glucose oxidation. The extinction coefficient epsilon of d-glucono-1,5-lactone was determined to be 1.28 mM(-1)cm(-1). The initial velocity is proportional to the enzyme concentration by using glucose oxidase from both A. niger and P. amagasakiense either as cell-free extracts or as purified enzyme preparations. The kinetic constants (V(max), K(m), k(cat), and k(cat)/K(m)) determined by Lineweaver-Burk plot were 433.78+/-59.87U mg(-1) protein, 10.07+/-1.75 mM, 1095.07+/-151.19s(-1), and 108.74 s(-1)mM(-1), respectively. These data are in agreement with the results obtained by a spectrophotometric method using a linked assay based on horseradish peroxidase in aqueous media: 470.36+/-42.83U mg(-1) protein, 6.47+/-0.85 mM, 1187.77+/-108.16s(-1), and 183.58 s(-1)mM(-1) for V(max), K(m), k(cat), and k(cat)/K(m), respectively. Therefore, this spectroscopic method is highly suited to assay for glucose oxidase activity and its kinetic parameters by using either cell-free extracts or purified enzyme preparations with an additional advantage of performing a real-time measurement of glucose oxidase activity.  相似文献   

7.
Chromate reduction by rabbit liver aldehyde oxidase   总被引:2,自引:0,他引:2  
Chromate was reduced during the oxidation of 1-methylnicotinamide chloride by partially purified rabbit liver aldehyde oxidase. In addition to 1-methylnicotinamide, several other electron donor substrates for aldehyde oxidase were able to support the enzymatic chromate reduction. The reduction required the presence of both enzyme and the electron donor substrate. The rate of the chromate reduction was retarded by inhibitors of aldehyde oxidase but was not affected by substrates or inhibitors of xanthine oxidase. These results are consistent with the involvement of aldehyde oxidase in the reduction of chromate by rabbit liver cytosolic enzyme preparations.  相似文献   

8.
H2O2 addition to the oxidized cytochrome c oxidase reconstituted in liposomes brings about a red shift of the Soret band of the enzyme and an increased absorption in the visible region with two distinct peaks at approximately 570 and 605 nm. Throughout pH range 6-8.5, the spectral changes at 570 nm and in the Soret band titrate with very similar pH-independent Kd values of 2-3 microM. At the same time, Kd of the peroxide complex measured at 605 nm increases markedly with increased H+ activity reaching the value of 18 +/- 2 microM at pH 6.0. This finding may indicate the presence of two different H2O2-binding sites in the enzyme with different affinity for the ligand at acid pH. The Soret and 570 nm band effects are suggested to report H2O2 coordination to heme iron of alpha 3, whereas the maximum at 605 nm could arise from H2O2 binding to Cu alpha 3 followed by the enzyme transition into the 'pulsed' (or '420/605') conformation. Possible implication of the two H2O2-binding sites for the cytochrome oxidase redox and proton-pumping mechanisms are discussed.  相似文献   

9.
Fatty aldehyde dehydrogenase (FALDH) is an NAD+-dependent oxidoreductase involved in the metabolism of fatty alcohols. Enzyme activity has been implicated in the pathology of diabetes and cancer. Mutations in the human gene inactivate the enzyme and cause accumulation of fatty alcohols in Sj?gren-Larsson syndrome, a neurological disorder resulting in physical and mental handicaps. Microsomal FALDH was expressed in E. coli and purified. Using an in vitro activity assay an optimum pH of approximately 9.5 and temperature of approximately 35 degrees C were determined. Medium- and long-chain fatty aldehydes were converted to the corresponding acids and kinetic parameters determined. The enzyme showed high activity with heptanal, tetradecanal, hexadecanal and octadecanal with lower activities for the other tested substrates. The enzyme was also able to convert some fatty alcohol substrates to their corresponding aldehydes and acids, at 25-30% the rate of aldehyde oxidation. A structural model of FALDH has been constructed, and catalytically important residues have been proposed to be involved in alcohol and aldehyde oxidation: Gln-120, Glu-207, Cys-241, Phe-333, Tyr-410 and His-411. These results place FALDH in a central role in the fatty alcohol/acid interconversion cycle, and provide a direct link between enzyme inactivation and disease pathology caused by accumulation of alcohols.  相似文献   

10.
Catalysis of the H2O2-dependent oxidation of 3,4-dimethoxybenzyl (veratryl) alcohol by the hemoprotein ligninase isolated from wood-decaying fungus, Phanerochaete chrysosporium Burds, is characterized. The reaction yields veratraldehyde and exhibits a stoichiometry of one H2O2 consumed per aldehyde formed. Ping-pong steady-state kinetics are observed for H2O2 (KM = 29 microM) and veratryl alcohol (KM = 72 microM) at pH 3.5. The magnitude of the turnover number varies from 2 to 3 s-1 at this pH, depending on the preparation of the enzyme. Each preparation of enzyme consists of a mixture of active and inactive enzyme. Extensive steady-state kinetic studies of several different preparations of enzyme, suggest a mechanism in which H2O2 reacts with enzyme to form an intermediate that subsequently reacts with the alcohol to return the enzyme to the resting state. The pH dependence of the overall reaction indicates that an ionization occurs having an apparent pK alpha approximately 3.1. The activity is, thus, nearly zero at pH 5 and increases to a maximum near pH approximately 2. However, the enzyme is unstable at this low pH. Transient-state kinetic studies reveal that, upon reaction of ligninase with H2O2, spectral changes occur in the Soret region, which, by analogy to previous studies of horseradish peroxidase, are consistent with formation of Compounds I and II. The active form of the enzyme appears to react rapidly with H2O2; we observed a positive correlation between the turnover number of the enzyme preparation and the extent of a rapid reaction between H2O2 and ligninase to form Compound I. Free radical cations derived from veratryl alcohol do not appear to be released from the enzyme during catalysis; however, other substrates are known to be converted to cation radicals (Kersten, P., Tien, M., Kalyanaraman, B., and Kirk, T.K. (1985) J. Biol. Chem. 260, 2609-2612). Our results are generally consistent with a classical peroxidase mechanism for the action of ligninase on lignin-like substrates.  相似文献   

11.
Pseudomonas L-phenylalanine oxidase (deaminating and decarboxylating) contains two FAD molecules in one molecule of the enzyme (Koyama, H. (1983) J. Biochem. 93, 1313-1319). When the enzyme was mixed anaerobically with L-phenylalanine, beta-2-thienylalanine, L-tyrosine, or L-methionine, a spectral species (purple intermediate) with a broad absorption band around 540 nm was observed with each substrate, and decayed slowly. From the data on the overall reaction kinetics, the rate of the L-phenylalanine oxidase reaction was expressed as follows. e/v = e/Vm + A/[S] + B/[O2] where e represents the concentration of enzyme unit, v the rate of the overall reaction, Vm the maximum velocity, and A and B are constants. Furthermore, the reactions of the enzyme with beta-2-thienylalanine (mostly an oxygenase substrate) and L-methionine (an oxidase substrate) were analyzed by the "stopped flow" method. The following scheme for the mechanism of L-phenylalanine oxidase reaction with both substrates is proposed, based on the data obtained. (formula; see text) Where Eox represents the oxidized form of the enzyme unit, EoxS the enzyme unit (oxidized form)-substrate compound, X the purple intermediate with a characteristic broad absorption band around 540 nm, S the substrate and P the product.  相似文献   

12.
The interaction of bisulfite with milk xanthine oxidase   总被引:1,自引:0,他引:1  
Bisulfite ion competitively inhibits xanthine oxidase activity. The ability of HSO3- to bind at the molybdenum center is controlled by pH due to a pKa of 6.91 for SO3(2-)/HSO3-. The Kd for the enzyme-bisulfite complex is 4.5 x 10(-5) M at pH 7.0 and 25 degrees C. The relative magnitude of extinction changes in the optical absorption spectra, the number of inhibitor ions reversibly bound, and the number of electrons required for complete bleaching of the visible spectrum of the milk xanthine oxidase-HSO3- complex were all dependent on the percentage of fully functional xanthine oxidase. Binding of HSO3- causes perturbations of the visible spectrum: the maximum extinction changes at 320 and 422 nm were calculated to be -4300 and -2150 M-1 cm-1, respectively. The stoichiometry of reversible binding was determined to be one molecule of HSO3-/active molybdenum center. Combined optical and EPR analyses of anaerobic dithionite titrations revealed that the relative redox potentials of the Mo6+/5+ and Mo5+/4+ couples decreased by approximately 35 and 45 mV on binding bisulfite, respectively. The finding that bisulfite has a profound effect on the redox properties of xanthine oxidase necessitates a re-evaluation of dithionite titrations previously carried out with this enzyme at neutral and low pH values since bisulfite produced as an oxidation product of dithionite binds to the enzyme during the course of titration.  相似文献   

13.
Endogenously produced reactive oxygen species are important for intracellular signaling mechanisms leading to vascular smooth muscle cell (VSMC) growth. It is therefore critical to define the potential enzymatic sources of ROS and their regulation by agonists in VSMCs. Previous studies have investigated O2*- production using lucigenin-enhanced chemiluminescence. However, lucigenin has been recently criticized for its ability to redox cycle and its propensity to measure cellular reductase activity independent from O2*-. To perform a definitive characterization of VSMC oxidase activity, we used electron spin resonance trapping of O2*- with DEPMPO. We confirmed that the main source of O2*- from VSMC membranes is an NAD(P)H oxidase and that the O2*- formation from mitochondria, xanthine oxidase, arachidonate-derived enzymes, and nitric oxide synthases in VSMC membranes was minor. The VSMC NAD(P)H oxidase(s) are able to produce more O2*- when NADPH is used as the substrate compared to NADH (the maximal NADPH signal is 2.4- +/- 0.4-fold higher than the NADH signal). The two substrates had similar EC(50)'s ( approximately 10-50 microM). Stimulation with angiotensin II and platelet-derived growth factor also predominantly increased the NADPH-driven signal (101 +/- 8% and 83 +/- 1% increase above control, respectively), with less of an effect on NADH-dependent O2*- (17 +/- 3% and 36 +/- 5% increase, respectively). Moreover, incubation of the cells with diphenylene iodonium inhibited predominantly NADPH-stimulated O2*-. In conclusion, electron spin resonance characterization of VSMC oxidase activity supports a major role for an NAD(P)H oxidase in O2*- production in VSMCs, and provides new evidence concerning the substrate dependency and agonist-stimulated activity of this key enzyme.  相似文献   

14.
Fan F  Germann MW  Gadda G 《Biochemistry》2006,45(6):1979-1986
Choline oxidase catalyzes the four-electron oxidation of choline to glycine betaine via two sequential FAD-dependent reactions in which betaine aldehyde is formed as an intermediate. The chemical mechanism for the oxidation of choline catalyzed by choline oxidase was recently elucidated by using kinetic isotope effects [Fan, F., and Gadda, G. (2005) J. Am. Chem. Soc. 127, 2067-2074]. In this study, the oxidation of betaine aldehyde has been investigated by using spectroscopic and kinetic analyses with betaine aldehyde and its isosteric analogue 3,3-dimethylbutyraldehyde. The pH dependence of the kcat/Km and kcat values with betaine aldehyde showed that a catalytic base with a pKa of approximately 6.7 is required for betaine aldehyde oxidation. Complete reduction of the enzyme-bound flavin was observed in a stopped-flow spectrophotometer upon anaerobic mixing with betaine aldehyde or choline at pH 8, with similar k(red) values > or = 48 s(-1). In contrast, only 10-26% of the enzyme-bound flavin was reduced by 3,3-dimethylbutyraldehyde between pH 6 and 10. Furthermore, this compound acted as a competitive inhibitor versus choline. NMR spectroscopic analyses indicated that betaine aldehyde exists predominantly (99%) as a diol form in aqueous solution. In contrast, the thermodynamic equilibrium for 3,3-dimethylbutyraldehyde favors the aldehyde (> or = 65%) over the hydrated form in the pH range from 6 to 10. The keto species of 3,3-dimethylbutyraldehyde is reactive toward enzymic nucleophiles, as suggested by the kinetic data with NAD+-dependent yeast aldehyde dehydrogenase. The data presented suggest that choline oxidase utilizes the hydrated species of the aldehyde as substrate in a mechanism for aldehyde oxidation in which hydride transfer is triggered by an active site base.  相似文献   

15.
The flavoprotein nitroalkane oxidase from Fusarium oxysporum catalyzes the oxidation of nitroalkanes to aldehydes with production of hydrogen peroxide and nitrite. The substrate specificity of the FAD-containing enzyme has been determined as a probe of the active site structure. Nitroalkane oxidase is active on primary and secondary nitroalkanes, with a marked preference for unbranched primary nitroalkanes. The V/K values for primary nitroalkanes increase with increasing length of the alkyl chain, reaching a maximum with 1-nitrobutane, suggesting a hydrophobic binding site sufficient to accommodate a four carbon chain. Each methylene group of the substrate contributes approximately 2.6 kcal mol-1 in binding energy. The V/K values for substrates containing a hydroxyl group are two orders of magnitude smaller than those of the corresponding nitroalkanes, also consistent with a hydrophobic binding site. 3-Nitro-1-propionate is a competitive inhibitor with a Kis value of 3.1 +/- 0.2 mM.  相似文献   

16.
The fungal enzyme galactose oxidase is a radical copper oxidase that catalyzes the oxidation of a broad range of primary alcohols to aldehydes. Previous mechanistic studies have revealed a large substrate deuterium kinetic isotope effect on galactose oxidase turnover whose magnitude varies systematically over a series of substituted benzyl alcohols, reflecting a change in the character of the transition state for substrate oxidation. In this work, these detailed mechanistic studies have been extended using a series of stereospecifically monodeuterated substrates, including 1-O-methyl-alpha-D-galactose as well as unsubstituted benzyl alcohol and 3- and 4-methoxy and 4-nitrobenzyl derivatives. Synthesis of all of these substrates was based on oxidation of the alpha,alpha'-dideuterated alcohol to the corresponding (2)H-labeled aldehyde, followed by asymmetric hydroboration using alpha-pinene/9-BBN reagents to form the stereoisomeric alcohols. Products from enzymatic oxidation of each of these substrates were characterized by mass spectrometry to quantitatively evaluate the substrate dependence of the stereoselectivity of the catalytic reaction. For all of these substrates, the selectivity for pro-S hydrogen abstraction was at least 95%. This selectivity appears to be a direct consequence of constraints imposed by the enzyme on the orientation of substrates bearing a branched beta-carbon. Steady state analysis of kinetic isotope effects on V/K has resolved individual contributions from primary and alpha-secondary kinetic isotope effects in the reaction, providing a test for the involvement of an electron transfer redox equilibrium in the oxidation process. Multiple isotope effect measurements utilizing simultaneous labeling of the substrate and solvent have contributed to refinement of the relation between proton transfer and hydrogen atom transfer steps in substrate oxidation.  相似文献   

17.
The observation that aliphatic diamines become poor substrates as the carbon chain length decreases and that ethylenediamine, the shortest diamine, is an irreversible inhibitor of lysyl oxidase led to the investigation of the mechanism of inhibition by ethylenediamine. The cis but not the trans isomer of 1,2-diaminocyclohexane was also a potent irreversible inhibitor of lysyl oxidase, consistent with the interaction of both amino groups of vicinal diamines with an enzyme moiety. Both cis-1,2-diaminocyclohexane and ethylenediamine but not trans-1,2-diaminocyclohexane markedly perturbed the spectrum of free pyrroloquinoline quinone (PQQ), a covalently linked form of which is the carbonyl cofactor of lysyl oxidase. cis-1,2-Diaminocyclohexane also induced similar changes in the spectrum of lysyl oxidase. The perturbations of the spectra of PQQ or of lysyl oxidase by cis-1,2-diaminocyclohexane or ethylenediamine as well as the development of irreversible inhibition of the enzyme by cis-1,2-diaminocyclohexane or ethylenediamine were all markedly reduced under anaerobic conditions. Moreover, approximately 1 mol of H2O2 was released per mol of PQQ or lysyl oxidase upon aerobic incubation with cis-1,2-diaminocyclohexane, while approximately 2 mol of 3H+ were released from cis-[1,2-3H] 1,2-diaminocyclohexane per mol of PQQ or lysyl oxidase under corresponding conditions. A proposal for the mechanism of inhibition of lysyl oxidase by vicinal diamines is presented which involves limited oxidation of the diamine linked to PQQ at the active site so that the PQQ-diamine complex is finally stabilized by a conjugated 6-membered ring.  相似文献   

18.
1. The question of the ability or inability of rat liver mitochondria to oxidize externally added or internally generated betaine aldehyde has been reexamined. Well washed mitochondria were demonstrated to contain approx. 7% of the post-nuclear betaine aldehyde dehydrogenase as an integral component. The enzyme is approximately equally distributed between the inner membrane and the intermembrane plus matrix fractions. Significantly, none was found in the outer membrane fraction. The mitochondrial enzyme was shown to be functional under all the conditions tested; betaine aldehyde generated within the mitochondria by choline oxidation or added externally was oxidized to betaine in significant amounts.

2. The stoichiometry for the complete oxidation of choline or externally added betaine aldehyde was confirmed to be 2 and 1 moles, respectively, of O2 utilized per mole of substrate added. Depending on the reaction conditions employed, considerable variation in the relative amount of choline oxidase and betaine aldehyde oxidase activities of mitochondria was observed when they were allowed to oxidize only a portion of the choline added. The necessity of measuring the contribution of betaine aldehyde oxidase in studies of choline oxidase is discussed.

3. Reasons for the discrepancies in the literature concerning the ability of mitochondria to oxidize betaine aldehyde are discussed.  相似文献   


19.
A nitroalkane-oxidizing enzyme, which was inducibly formed by addition of nitroethane to the medium was purified to homogeneity from an extract of Fusarium oxysporum (IFO 5942) with an overall yield of about 20%. The enzyme catalyzed the oxidative denitrification of 1-nitropropane as follows: CH2(NO2)CH2CH3 + O2 + H2O leads to OHCCH2CH3 + HNO2 + H2O2. In addition to 1-nitropropane, 3-nitro-2-pentanol, 2-nitropropane, and nitrocyclohexane are good substrates; the enzyme is designated "nitroalkane oxidase" (EC class 1.7.3). The enzyme has a molecular weight of approximately 185,000 and consists of four subunits identical in molecular weight (47,000). Flavin adenine dinucleotide was required for the enzyme activity and could be replaced in part by riboflavin 5'-phosphate. The maximum reactivity was found at about pH 8.0. The enzyme was inhibited significantly by HgCl2, KCN, p-chloromercuribenzoate, and N-ethylmaleimide. The Michaelis constants are as follows: 1-nitropropane, 1.54 mM; 2-nitropropane, 7.40 mM; nitroethane, 1.00 mM; 3-nitro-2-pentanol, 3.08 mM; nitrocyclohexane, 0.90 mM; and flavin adenine dinucleotide, 1.33 micrometer.  相似文献   

20.
Oxidation changes of the copper A (Cu(A)) center of cytochrome oxidase in the brain were measured during brief anoxic swings at both normocapnia and hypercapnia (arterial PCO(2) approximately 55 mmHg). Hypercapnia increased total hemoglobin from 37.5 +/- 9.1 to 50.8 +/- 12.9 micromol/l (means +/- SD; n = 7), increased mean cerebral saturation (Smc(O(2))) from 65 +/- 4 to 77 +/- 3%, and oxidized Cu(A) by 0.43 +/- 0.23 micromol/l. During the onset of anoxia, there were no significant changes in the Cu(A) oxidation state until Smc(O(2)) had fallen to 43 +/- 5 and 21 +/- 6% at normocapnia and hypercapnia, respectively, and the maximum reduction during anoxia was not significantly different at hypercapnia (1.49 +/- 0.40 micromol/l) compared with normocapnia (1.53 +/- 0.44 micromol/l). Residuals of the least squares fitting algorithm used to convert near-infrared spectra to concentrations are presented and shown to be small compared with the component of attenuation attributed to the Cu(A) signal. From these observations, we conclude that there is minimal interference between the hemoglobin and Cu(A) signals in this model, the Cu(A) oxidation state is independent of cerebral oxygenation at normoxia, and the oxidation after hypercapnia is not the result of increased cerebral oxygenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号