首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The separation of mono- and oligonucleotides possibilities by means of high performance ion-exchange, reversed-phase, so-called "ion-pair" and adsorption chromatography are studied. The influence of the eluent composition (solvent, salt) and pH on the retention, selectivity and resolution in reversed-phase and ion-exchange chromatography is investigated. The model of the hydrophobic-pair ion-exchange mechanism of ion-pair chromatography is considered. The conditions for analysis and preparative isolation of a desired component are optimized for selectivity, resolution and throughput. The methods for prediction of the optimal gradient elution program reasonable resolution at the desired retention time and for choosing the guard-column packing material are proposed. A design of the gradient for system and the version of slurry packing method for HPLC prolonged life-time columns are improved. The automatized analytical technique for determination of the oligonucleotide monomeric composition with two coupled microcolumns is described, that involves enzymatic digestion of an oligonucleotide followed by ion-exchange separation of the hydrolysate.  相似文献   

2.
HPLC and CE have been applied to the separation of some newly synthesized substances, including nonapeptides from the intrachinary region of insulin, insulin-like growth factors I and II (IGF I and II) and some penta- and hexapeptides. All the peptides are satisfactorily separated using a reversed-phase HPLC system with a C18 stationary phase and mobile phases of 20–40% acetonitrile (v/v) and 0.2% trifluoroacetic acid in water (v/v). The best CE separation of IGF I and II has been achieved in a 30 mM phosphate buffer (pH 4–5), whereas 150 mM phosphoric acid (pH 1.8) is optimal for the insulin nonapeptides. The latter electrolyte is also suitable for the CE separation of the hexapeptides, as is a micellar system containing 20 mM borate-50mM sodium dodecyl sulfate (pH 9.0). Complete CE resolution of the d- and l-forms is possible in a 50 mM phosphate buffer (pH 2.5) containing 10 mM β-cyclodextrin. UV spectrophotometric detection was used throughout, at wavelengths from 190 to 215 nm. The CE procedures are, in general, preferable to HPLC separations, as they exhibit better separation efficiencies, are faster and consume smaller amounts of analytes and reagents.  相似文献   

3.
Three different isocratic systems for the separation by reversed-phase high-performance liquid chromatography (HPLC) of different species of insulin have been investigated. The effect of different solvent compositions and temperatures on elution time and resolution have been studied. These studies have been used to devise a method for reversed-phase liquid chromatographic separation of bovine, porcine, and human insulin, as well as the A and B chains of bovine insulin. The method can also be used for the separation of the various products of the iodination of porcine insulin. 125I-A14 tyrosine-labeled porcine insulin can be readily separated from nonlabeled porcine insulin and from other iodinated constituents of the mixture. A flow-though gamma-counting system that was designed for this work is described.  相似文献   

4.
A novel HPLC method with electrochemical detection is described for the determination of a growth-hormone-releasing hexapeptide (GHRP-6). HPLC conditions, such as the column, mobile phase, and oxidation potential, were optimized for sensitivity and selectivity of analysis. GHRP-6 was separated on a reversed-phase CN column with 37% acetonitrile in 100 mM phosphate buffer (pH 7.0) as the mobile phase. The optimum electrochemical oxidation signal was obtained at 0.85 V vs. Ag/AgCl in a glassy carbon working electrode due to two electroactive tryptophans and a histidine residue. Solid-phase extraction using octadecyl cartridges was optimized for sample cleanup of GHRP-6 from serum samples and the method was successfully applied over the concentration range of 5 to 100 ng/ml of analyte.  相似文献   

5.
An improved method for the determination of catecholamines in biological fluids, by reversed-phase high-performance liquid chromatography (HPLC) with fluorimetric detection is presented. The pH titration previously employed in the alumina extraction was abandoned in favour of the use of a molar excess of pH 8.5 Tris—HCl buffer. A novel lyophilisation step serves to concentrate the catechols and by reconstituting in mobile phase, chromatography disturbances are minimised. The addition of 2 mM octanesulphonic acid to a citrate—phosphate mobile phase at pH 6.0 gave optimal resolution and sensitivity.That HPLC separation can improve the specificity of the trihydroxyindole reaction, to the extent of providing a reliable analytical method, has been demonstrated and validated by the technique of HPLC with electrochemical detection. A correlation coefficient of 0.98 was obtained between the two techniques as applied to the measurement of urinary catecholamines. The HPLC—fluorimetric method was sensitive enough to measure 0.1 ng/ml of noradrenaline or adrenaline at a signal-to-noise ratio of 2.0. Application of the method to the quantitative determination of catecholamines in human urine, plasma and rat brain homogenates is demonstrated.  相似文献   

6.
P M Young  T E Wheat 《BioTechniques》1991,10(2):228-235
The standard method for separating peptide mixtures is reversed-phase high-performance liquid chromatography with gradients of increasing concentrations of acetonitrile in the presence of trifluoroacetic acid. With modern instruments and columns, complex peptide mixtures can be separated, and low picomole amounts can be collected in tens of microliters. Difficult separations are addressed by modifying the gradient slope or organic eluant composition. Further improvements in resolution are often needed, requiring fundamental changes in mobile phase composition or selection of complementary chromatographic separation mechanisms. For the present study, tryptic digests of cytochrome c from various species were separated in the presence of dilute hydrochloric acid by reversed phase on a Waters Delta-PakTM C18 high-performance insert column and by strong cation exchange on a Waters Protein-PakTM SP 8HR. Different and enhanced reversed-phase selectivity was obtained by replacing trifluoroacetic acid with dilute hydrochloric acid at the same pH. The increased optical clarity of hydrochloric acid-based mobile phases in the low ultraviolet wavelengths yielded increased sensitivity. Very different selectivity was observed with the cation-exchange chromatography. These data expand the options for peptide mapping by providing additional selectivity combined with increased mass sensitivity and spectral information in the low ultraviolet.  相似文献   

7.
The HPLC separation of the R,S and S,R enantiomers of pyrrolidinyl norephedrine on immobilized alpha-1 glycoprotein (AGP) was investigated. Conditions for the separation were varied using a premixed mobile phase containing an ammonium phosphate buffer and an organic modifier. The influence of mobile phase pH, ionic strength, organic modifier composition, modifier type, and temperature on the chiral selectivity and retention were investigated. The presented data demonstrate that independent phenomena govern the enantioselectivity and retention. Retention is a function of both ion exchange equilibria and hydrophobic adsorption. Thermodynamic data derived from van't Hoff plots illustrates that while enantioselectivity is also enthalpically driven, the magnitude of the enthalpy term is governed by pH. Enantioselectivity has little dependence on ionic strength. Hydrophobic interactions appear to foster hydrogen bonding interactions; the two appear to be mutually responsible for chiral selectivity. The chiral selectivity decreases as the pH is decreased and increases with mobile phase buffer strength.  相似文献   

8.
A rapid, isocratic high-performance liquid chromatographic (HPLC) method is described for the determination of total homocysteine levels in human serum. Prior to reversed-phase HPLC analysis, the serum thiols were derivatized with SBD-F (ammonium 7-fluorobenzo-2-oxa-1,3-diazole-4-sulphonate), a thiol-specific fluorogenic probe which is commercially available. Retention of SBD-homocysteine was sensitive to pH, and a mobile phase pH of 2.1 ensured baseline separation of serum thiols within 6 min. The method is simple, sensitive, reproducible (between-run coefficient of variation of 6.6%) and very suitable for routine determination of serum homocysteine levels in a clinical pathology laboratory.  相似文献   

9.
Shan H  Pang J  Li S  Chiang TB  Wilson WK  Schroepfer GJ 《Steroids》2003,68(3):221-233
Oxygenated derivatives of cholesterol have important functions in many biochemical processes. These oxysterols are difficult to study because of their low physiological concentrations, the facile formation of cholesterol autoxidation artifacts, and lack of information on their chromatographic behavior. Focusing on metabolites and autoxidation products of cholesterol, we have documented the chromatographic mobilities of 35 oxysterols under a variety of conditions: eight solvent systems for thin-layer chromatography on silica gel, several mobile phases for reversed-phase high-performance liquid chromatography (HPLC), and two types of stationary phase for capillary gas chromatography (GC) using trimethylsilyl derivatives. Notable differences in selectivity could be obtained by modifying the stationary or mobile phases. Separations of oxysterol pairs isomeric at side-chain carbons or C-7 were achieved on normal-phase, reversed-phase, chiral, or silver-ion HPLC columns. Chromatographic behavior is also described for side-chain hexadeuterated and heptafluorinated oxysterols, which are useful as standards in isotope dilution analyses and autoxidation studies, respectively. The overall results are relevant to many problems of oxysterol analysis, including the initial separation of oxysterols from cholesterol, determination of highly polar and nonpolar oxysterols, separation of isomeric pairs, selection of derivatization conditions for GC analysis, and quantitation of the extent of cholesterol autoxidation.  相似文献   

10.
1. A reversed-phase ion-paired liquid chromatographic (HPLC) method was developed to measure AMP, ADP, ATP, IMP, NAD+ and NADP+ levels in white muscle, heart and brain of anoxic goldfish. 2. Mobile phase parameters of the HPLC method (concentrations of buffer, organic modifier and counter-ion, and pH) were varied to establish the optimal conditions for separation of the compounds of interest. 3. The analytical method was evaluated by calculating some relevant chromatographic parameters (reproducibility and linearity). 4. The HPLC method showed sufficient selectivity, high sensitivity and reproducibility, and excellent linearity.  相似文献   

11.
C K Lim  F Li    T J Peters 《The Biochemical journal》1987,247(1):229-232
A reversed-phase h.p.l.c. system is described for the separation of the four type-III heptacarboxylic porphyrinogen isomers. The effects of buffer concentration, pH and type and proportion of organic modifier in the mobile phase on retention and resolution of isomers were studied. Optimum separation on an ODS-Hypersil column was by elution with a ternary mobile phase of acetonitrile, methanol and 1 M-ammonium acetate, pH 5.16 (7:3:90, by vol.). Isomer identification was based on a comparison of their retention times with those of authentic standards, and was further confirmed by h.p.l.c. analysis of the characteristic mixture of three pentacarboxylic porphyrins formed after partial decarboxylation of individual isomers in 0.3 M-HCl at 160 degrees C.  相似文献   

12.
An isocratic HPLC method for the simple and selective determination of adenine nucleoside and nucleotides has been developed. The separation is achieved at room temperature by reversed-phase chromatography (Shiseido, Capcell Pak C18). A mixture of 0.1 M triethylamine (TEA) phosphate buffer and methanol (95:5, v/v) is used as a standard eluent. Influence of pH and concentrations of organic modifiers and TEA ion on capacity factors of adenine compounds has been investigated. It has been also found that the TEA ion in the eluent is adsorbed onto the reversed-phase surface. The results clearly demonstrate that ion-pair formation with TEA ion occurs probably both in the mobile phase and on the stationary phase and governs the retention of adenine and nucleotides in the present system. The HPLC system is applied to the analysis of adenine nucleotides formed as intermediates in the synthesis of 3′-phosphoadenosine 5′-phosphosulphate (PAPS) and to the assays of ATPases and 5′-nucleotidase activities in rat liver plasma membrane. This method is a new type of ion-pair reversed-phase HPLC system and is suitable for the separation of highly polar organic anions, especially for adenine nucleotides.  相似文献   

13.
Sharp VS  Letts MN  Risley DS  Rose JP 《Chirality》2004,16(3):153-161
Seven macrocyclic antibiotics were evaluated as chiral selectors for the enantiomeric separation of 11 dansyl amino acids using narrow-bore high-performance liquid chromatography (HPLC). The macrocyclic antibiotics were incorporated as mobile phase additives to determine the enantioselective effects on the chiral analytes. The resolution and capacity factor (k') of each analyte were assessed while varying the structure of macrocyclic antibiotic and the mobile phase buffer pH. The selectivity of the chiral selectors was measured as a function of changes in these parameters. All 11 dansyl amino acids were separated by at least one of the chiral selectors. Three-dimensional computer modeling of the more effective chiral selectors illustrated the importance of macrocyclic antibiotic structure concerning stereospecific analyte interaction.  相似文献   

14.
HPLC plays a key role in the preparative purification of human insulin. A21-desamidoinsulin is one of the impurities that possesses the chromatographic behavior similar to that of insulin and hence separation from this by-product is rather difficult at the process scale. During the optimization of insulin reversed-phase HPLC purification, when a column was sufficiently overloaded, the effect of displacement of A21-desamidoinsulin molecules from active groups of sorbent by insulin ones was observed. It was suggested that monocarboxylic acid and organic modifier in mobile phase are responsible for the esterification during which the formed ester promotes the displacement effect. This effect was studied in order to optimize the purification of human insulin at the process scale.  相似文献   

15.
Previous studies have measured histamine by derivatization with o-phthaldialdehyde (OPA) and mercaptoethanol (ME), followed by reversed-phase HPLC separation and electrochemical detection. The derivatization product, however, was very unstable. In the present study, inclusion of less polar solvents (e.g., acetonitrile or tetrahydrofuran) in the OPA/ME derivatization reaction produced an OPA/ME-histamine product that was stable for many hours. Changes of the HPLC mobile phase (increasing its ionic strength and pH and including triethylamine) dramatically improved the chromatography and reduced the histamine detection limit to <0.1 pmol. The modified assay was suitable for batchwise manual derivatization of histamine samples followed by their automated analysis by HPLC with an automatic injector.  相似文献   

16.
A systematic, comprehensive strategy that optimizes sample preparation and chromatography to minimize matrix effects in bioanalytical LC/MS/MS assays was developed. Comparisons were made among several sample preparation methods, including protein precipitation (PPT), liquid-liquid extraction (LLE), pure cation exchange solid-phase extraction (SPE), reversed-phase SPE and mixed-mode SPE. The influence of mobile phase pH and gradient duration on the selectivity and sensitivity for both matrix components and basic analytes was investigated. Matrix effects and overall sensitivity and resolution between UPLC technology and HPLC were compared. The amount of specific matrix components, or class of matrix components, was measured in the sample preparation extracts by LC/MS/MS with electrospray ionization (ESI) using both precursor ion scanning mode and multiple reaction monitoring (MRM). PPT is the least effective sample preparation technique, often resulting in significant matrix effects due to the presence of many residual matrix components. Reversed-phase and pure cation exchange SPE methods resulted in cleaner extracts and reduced matrix effects compared to PPT. The cleanest extracts, however, were produced with polymeric mixed-mode SPE (both reversed-phase and ion exchange retention mechanisms). These mixed-mode sorbents dramatically reduced the levels of residual matrix components from biological samples, leading to significant reduction in matrix effects. LLE also provided clean final extracts. However, analyte recovery, particularly for polar analytes, was very low. Mobile phase pH was manipulated to alter the retention of basic compounds relative to phospholipids, whose retention tends to be relatively independent of pH. In addition to the expected resolution, speed and sensitivity benefits of UPLC technology, a paired t-test demonstrated a statistically significant improvement with respect to matrix effects when this technology was chosen over traditional HPLC. The combination of polymeric mixed-mode SPE, the appropriate mobile phase pH and UPLC technology provides significant advantages for reducing matrix effects resulting from plasma matrix components and in improving the ruggedness and sensitivity of bioanalytical methods.  相似文献   

17.
A reversed-phase, C-18 HPLC method for separation, with baseline resolution, of the chitin synthase inhibitors nikkomycin X and Z is described. This permits, for the first time, satisfactory identification of nikkomycin X and Z contained in a mixture. The use of 30 mM ammonium formate (pH 4.7) containing the ion-pair agent heptanesulfonic acid (1 mM) was critical for the successful separation of these fungicides.  相似文献   

18.
A novel simple method of extraction, separation, identification and quantification of nicardipine in human plasma samples was completely studied. The human plasma samples were initially purified by solid-phase extraction (SPE) using a C18 cartridge. The extracted samples were separated and nicardipine present in the samples was quantified by high-performance liquid chromatography (HPLC) on a reversed-phase C18 column employing a mobile phase consisting of 60% (v/v) acetonitrile in 0.02 M NaH2PO4 with pH of 6.3 and a variable wavelength UV detector set at 254 nm. The recovery of nicardipine from plasma samples using selective SPE was 91±6.0% and had less interfering compounds in the HPLC analysis compared to the use of liquid–liquid (L/L) extraction. In the HPLC analysis, examining the effect of pH values of the mobile phase on the capacity factor (k′) of nicardipine revealed a method for selecting a critical k′ value of nicardipine to eliminate interfering peaks near the peak specific to the analyte. This method for quantification of nicardipine in human plasma samples was suitable for studying the pharmacokinetic profile of nicardipine administered as an intravenous bolus to cardiac surgical patients.  相似文献   

19.
There is a demand of novel high resolution separation media for separation of complex mixtures, particularly biological samples. One of the most flexible techniques for development of new separation media currently is synthesis of the continuous bed (monolithic) stationary phases. In this study the capillary format gradient stationary phases were formed using continuous bed (monolith) polymerization in situ. Different reversed-phase stationary phase gradients were tailored and their resolution using capillary liquid chromatography and capillary electrochromatography at isocratic mobile phase conditions was evaluated. It is demonstrated, that efficiency and resolution of the gradient stationary phases can be substantially increased comparing to the common (isotropic) stationary phases. The proposed formation approach of the gradient stationary phase is reproducible and compatible with the capillary format or microchip format separations. It can be easily automated for the separation optimizations or mass production of the capillary columns or chips.  相似文献   

20.
G T?r?k  A P?ter  D W Armstrong  D Tourw?  G T?th  J S?pi 《Chirality》2001,13(10):648-656
Direct high-performance liquid chromatographic chiral separation of numerous underivatized unnatural amino acids on a ristocetin A-bonded chiral stationary phase used in the reversed-phase and in the polar organic chromatographic modes is reported. The effects of different parameters such as mobile phase composition, temperature, and the structure of the analytes on the selectivity in both chromatographic modes are discussed. By variation of the parameters, the separation of the stereoisomers was optimized and, as a result, baseline resolution was achieved in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号