首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steady-state voltage and [Na(+)](o) dependence of the electrogenic sodium pump was investigated in voltage-clamped internally dialyzed giant axons of the squid, Loligo pealei, under conditions that promote the backward-running mode (K(+)-free seawater; ATP- and Na(+)-free internal solution containing ADP and orthophosphate). The ratio of pump-mediated (42)K(+) efflux to reverse pump current, I(pump) (both defined by sensitivity to dihydrodigitoxigenin, H(2)DTG), scaled by Faraday's constant, was -1.5 +/- 0.4 (n = 5; expected ratio for 2 K(+)/3 Na(+) stoichiometry is -2.0). Steady-state reverse pump current-voltage (I(pump)-V) relationships were obtained either from the shifts in holding current after repeated exposures of an axon clamped at various V(m) to H(2)DTG or from the difference between membrane I-V relationships obtained by imposing V(m) staircases in the presence or absence of H(2)DTG. With the second method, we also investigated the influence of [Na(+)](o) (up to 800 mM, for which hypertonic solutions were used) on the steady-state reverse I(pump)-V relationship. The reverse I(pump)-V relationship is sigmoid, I(pump) saturating at large negative V(m), and each doubling of [Na(+)](o) causes a fixed (29 mV) rightward parallel shift along the voltage axis of this Boltzmann partition function (apparent valence z = 0.80). These characteristics mirror those of steady-state (22)Na(+) efflux during electroneutral Na(+)/Na(+) exchange, and follow without additional postulates from the same simple high field access channel model (Gadsby, D.C., R.F. Rakowski, and P. De Weer, 1993. Science. 260:100-103). This model predicts valence z = nlambda, where n (1.33 +/- 0.05) is the Hill coefficient of Na binding, and lambda (0.61 +/- 0.03) is the fraction of the membrane electric field traversed by Na ions reaching their binding site. More elaborate alternative models can accommodate all the steady-state features of the reverse pumping and electroneutral Na(+)/Na(+) exchange modes only with additional assumptions that render them less likely.  相似文献   

2.
Regulation of the Na,K pump in intact cells is strongly associated with the level of intracellular Na+. Experiments were carried out on intact, isolated sheep Purkinje strands at 37 degrees C. Membrane potential (Vm) was measured by an open-tipped glass electrode and intracellular Na+ activity (aNai) was calculated from the voltage difference between an Na+-selective microelectrode (ETH 227) and Vm. In some experiments, intracellular potassium (aiK) or chloride (aCli) was measured by a third separate microelectrode. Strands were loaded by Na,K pump inhibition produced by K+ removal and by increasing Na+ leak by removing Mg++ and lowering free Ca++ to 10(-8) M. Equilibrium with outside levels of Na+ was reached within 30-60 min. During sequential addition of 6 mM Mg++ and reduction of Na+ to 2.4 mM, the cells maintained a stable aNai ranging between 25 and 90 mM and Vm was -30.8 +/- 2.2 mV. The Na,K pump was reactivated with 30 mM Rb+ or K+. Vm increased over 50-60 s to -77.4 +/- 5.9 mV with Rb+ activation and to -66.0 +/- 7.7 mV with K+ activation. aiNa decreased in both cases to 0.5 +/- 0.2 mM in 5-15 min. The maximum rate of aiNa decline (maximum delta aNai/delta t) was the same with K+ and Rb+ at concentrations greater than 20 mM. The response was abolished by 10(-5) M acetylstrophantidin. Maximum delta aNai/delta t was independent of outside Na+, while aKi was negatively correlated with aNai (aKi = 88.4 - 0.86.aNai). aCli decreased by at most 3 mM during reactivation, which indicates that volume changes did not seriously affect aNai. This model provided a functional isolation of the Na,K pump, so that the relation between the pump rate (delta aNai/delta t) and aiNa could be examined. A Hill plot allowed calculation of Vmax ranging from 5.5 to 27 mM/min, which on average is equal to 25 pmol.cm-2.s-1.K 0.5 was 10.5 +/- 0.6 mM (the aNai that gives delta aNai/delta t = Vmax/2) and n equaled 1.94 +/- 0.13 (the Hill coefficient). These values were not different with K+ or Rb+ as an external activator. The number of ouabain-binding sites equaled 400 pmol.g-1, giving a maximum Na+ turnover of 300 s-1. The Na,K pump in intact Purkinje strands exhibited typical sigmoidal saturation kinetics with regard to aNai as described by the equation upsilon/Vmax = aNai(1.94)/(95.2 + aNai(1.94)). The maximum sensitivity of the Na,K pump to aiNa occurred at approximately 6 mM.  相似文献   

3.
The contributions of the transmembrane pH gradient (delta pH) and electrical potential (delta phi) to the delta mu H(+)-driven Na+ efflux (mediated by the N,N'-dicyclohexylcarbodiimide-sensitive Na+/H(+)-antiporter) were investigated in membrane vesicles of Halobacterium halobium. Kinetic analysis in the dark revealed that two different Na(+)-binding sites are located asymmetrically across the membrane: One, accessible from the external medium, has a Kd (half-maximal stimulation of Na+ efflux) of about less than 50 mM, and the Na+ binding to the site is a prerequisite for the antiporter activation by delta mu H+. The other cytoplasmic site is the Na+ transport site. The Km for the cytoplasmic Na+ decreased as the delta pH increased, while the Vmax remained essentially constant in the presence of defined delta phi (140 mV). On the other hand, delta phi elevation above the gating potential (approximately 100 mV) increased the Vmax without changes in the Km in the presence of a fixed delta pH. It was also noted that the Km value in the absence of delta phi was completely different from and far higher than that observed in the presence of delta phi (greater than 100 mV), indicating the existence of two distinct conformations in the antiporter, resting and delta phi gated; the latter state may be reactive only to delta pH. On the basis of the present data and the previous data on the pH effect (N. Murakami and T. Konishi, 1989 Arch. Biochem. Biophys. 271, 515-523), a model for the delta pH-delta phi regulation of the antiporter activation is proposed.  相似文献   

4.
The regulatory roles of medium pH, a transmembrane pH gradient (delta pH), and an electrical potential (delta phi) on the activation of the N,N'-dicyclohexylcarbodiimide-sensitive Na+/H+-antiporter were studied in the membrane vesicle of Halobacterium halobium in the dark. Neither delta pH nor delta phi independently activated the antiporter but a combination could. The initial rate of Na+ extrusion did not proportionally relate to the size of delta microH+ imposed. The delta microH+-coupled Na+ efflux in the presence of delta phi (-140 mV) increased as external pH decreased, regardless of the size of delta pH, suggesting the existence of one external H+-binding site (apparent pKa 4.6) whose protonation determines primarily the Na+/H+-exchange activity. On the other hand, the dependence of the Na+ efflux on cytoplasmic pH varied with the size of delta pH imposed and the apparent pKa for the cytoplasmic H+ increased with elevating delta pH. The resulting pKa difference across the membrane seems to be the key mechanism for the facilitation of Na+-coupled H+ influx. In other words, delta pH modulates Na+/H+-exchange activity through manipulating the H+ affinity on the cytoplasmic regulatory site. The Na+ extrusion was gated by the threshold delta phi of -100 mV regardless of the size of existing delta pH. delta phi acts on the protonated antiporter and converts it into an active state which becomes delta pH reactive.  相似文献   

5.
The effects of extracellular K+ on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) were examined in mouse aorta, mouse aorta endothelial cells (MAEC), and human umbilical vein endothelial cells (HUVEC). In mouse aortic rings precontracted with prostaglandin F2alpha or norepinephrine, an increase in extracellular K+ concentration ([K+]o) from 6 to 12 mM inhibited EDR concentration dependently. In endothelial cells, an increase in [K+]o inhibited the agonist-induced [Ca2+]i increase concentration dependently. Similar to K+, Cs+ also inhibited EDR and the increase in [Ca2+]i concentration dependently. In current-clamped HUVEC, increasing [K+]o from 6 to 12 mM depolarized membrane potential from -32.8 +/- 2.7 to -8.6 +/- 4.9 mV (n = 8). In voltage-clamped HUVEC, depolarizing the holding potential from -50 to -25 mV decreased [Ca2+]i significantly from 0.95 +/- 0.03 to 0.88 +/- 0.03 microM (n = 11, P < 0.01) and further decreased [Ca2+]i to 0.47 +/- 0.04 microM by depolarizing the holding potential from -25 to 0 mV (n = 11, P < 0.001). Tetraethylammonium (1 mM) inhibited EDR and the ATP-induced [Ca2+]i increase in voltage-clamped MAEC. The intermediate-conductance Ca2+-activated K+ channel openers 1-ethyl-2-benzimidazolinone, chlorozoxazone, and zoxazolamine reversed the K+-induced inhibition of EDR and increase in [Ca2+]i. The K+-induced inhibition of EDR and increase in [Ca2+]i was abolished by the Na+-K+ pump inhibitor ouabain (10 microM). These results indicate that an increase of [K+]o in the physiological range (6-12 mM) inhibits [Ca2+]i increase in endothelial cells and diminishes EDR by depolarizing the membrane potential, decreasing K+ efflux, and activating the Na+-K+ pump, thereby modulating the release of endothelium-derived vasoactive factors from endothelial cells and vasomotor tone.  相似文献   

6.
There are well-documented differences in ion channel activity and action potential shape between epicardial (EPI), midmyocardial (MID), and endocardial (ENDO) ventricular myocytes. The purpose of this study was to determine if differences exist in Na/K pump activity. The whole cell patch-clamp was used to measure Na/K pump current (I(P)) and inward background Na(+)-current (I(inb)) in cells isolated from canine left ventricle. All currents were normalized to membrane capacitance. I(P) was measured as the current blocked by a saturating concentration of dihydro-ouabain. [Na(+)](i) was measured using SBFI-AM. I(P)(ENDO) (0.34 +/- 0.04 pA/pF, n = 17) was smaller than I(P)(EPI) (0.68 +/- 0.09 pA/pF, n = 38); the ratio was 0.50 with I(P)(MID) being intermediate (0.53 +/- 0.13 pA/pF, n = 19). The dependence of I(P) on [Na(+)](i) or voltage was essentially identical in EPI and ENDO (half-maximal activation at 9-10 mM [Na(+)](i) or approximately -90 mV). Increasing [K(+)](o) from 5.4 to 15 mM caused both I(P)(ENDO) and I(P)(EPI) to increase, but the ratio remained approximately 0.5. I(inb) in EPI and ENDO were nearly identical ( approximately 0.6 pA/pF). Physiological [Na(+)](i) was lower in EPI (7 +/- 2 mM, n = 31) than ENDO (12 +/- 3 mM, n = 29), with MID being intermediate (9 +/- 3 mM, n = 22). When cells were paced at 2 Hz, [Na(+)](i) increased but the differences persisted (ENDO 14 +/- 3 mM, n = 10; EPI 9 +/- 2 mM, n = 10; and MID intermediate, 11 +/- 2 mM, n = 9). Based on these results, the larger I(P) in EPI appears to reflect a higher maximum turnover rate, which implies either a larger number of active pumps or a higher turnover rate per pump protein. The transmural gradient in [Na(+)](i) means physiological I(P) is approximately uniform across the ventricular wall, whereas transporters that utilize the transmembrane electrochemical gradient for Na(+), such as Na/Ca exchange, have a larger driving force in EPI than ENDO.  相似文献   

7.
Isolated hepatocytes from the elasmobranch Raja erinacea were examined for their regulatory responses to a solute load following electrogenic uptake of L-alanine. The transmembrane potential (Vm) was measured with glass microelectrodes filled with 0.5 M KCl (75 to 208 M omega in elasmobranch Ringer's solution) and averaged -61 +/- 16 mV (S.D.; n = 68). L-Alanine decreased (depolarized) Vm by 7 +/- 3 and 18 +/- 2 mV at concentrations of 1 and 10 mM, respectively. Vm did not repolarize to control values during the 5-10 min impalements, unless the amino acid was washed away from the hepatocytes. The depolarizing effect of L-alanine was dependent on external Na+, and was specific for the L-isomer of alanine, as D- and beta-alanine had no effect. Hepatocyte Vm also depolarized on addition of KCN or ouabain, or when external K+ was increased. Rates of 86Rb+ uptake and efflux were measured to assess the effects of L-alanine on Na+/K+-ATPase activity and K+ permeability, respectively. Greater than 80% of the 86Rb+ uptake was inhibited by 2 mM ouabain, or by substitution of choline+ for Na+ in the incubation media. L-Alanine (10 mM) increased 86Rb+ uptake by 18-49%, consistent with an increase in Na+/K+ pump activity, but had no effect on rubidium efflux. L-Alanine, at concentrations up to 20 mM, also had no measurable effect on cell volume as determined by 3H2O and [14C]inulin distribution. These results indicate that Na+-coupled uptake of L-alanine by skate hepatocytes is rheogenic, as previously observed in other cell systems. However, in contrast to mammalian hepatocytes, Vm does not repolarize for at least 10 min after the administration of L-alanine, and changes in cell volume and potassium permeability are also not observed.  相似文献   

8.
To investigate whether activity of the sarcolemmal Na pump modulates the influence of sodium current on excitation-contraction (E-C) coupling, we measured [Ca(2+)](i) transients (fluo-3) in single voltage-clamped mouse ventricular myocytes ([Na+](pip) = 15 or 0 mM) when the Na pump was activated (4.4 mM K(+)(o)) and during abrupt inhibition of the pump by exposure to 0 K with a rapid solution-switcher device. After induction of steady state [Ca2+](i) transients by conditioning voltage pulses (0.25 Hz), inhibition of the Na pump for 1.5 s immediately before and continuing during a voltage pulse (200 ms, -80 to 0 mV) caused a significant increase (15 +/- 2%; n = 16; p < 0.01) in peak systolic [Ca2+](i) when [Na+](pip) was 15 mM. In the absence of sodium current (I(Na), which was blocked by 60 microM tetrodotoxin (TTX)), inhibition of the Na pump immediately before and during a voltage pulse did not result in an increase in peak systolic [Ca2+](i). Abrupt blockade of I(Na) during a single test pulse with TTX caused a slight decrease in peak [Ca2+](i), whether the pump was active (9%) or inhibited (10%). With the reverse-mode Na/Ca exchange inhibited by KB-R 7943, inhibition of the Na pump failed to increase the magnitude of the peak systolic [Ca2+](i) (4 +/- 1%; p = NS) when [Na+](pip) was 15 mM. When [Na+](pip) was 0 mM, the amplitude of the peak systolic [Ca2+](i) was not altered by abrupt inhibition of the Na pump immediately before and during a voltage pulse. These findings in adult mouse ventricular myocytes indicate the Na pump can modulate the influence of I(Na) on E-C coupling in a single beat and provide additional evidence for the existence of Na fuzzy space, where [Na+] can significantly modulate Ca2+ influx via reverse Na/Ca exchange.  相似文献   

9.
Formamide-induced detubulation of rat ventricular myocytes was used to investigate the functional distribution of the Na/Ca exchanger (NCX) and Na/K-ATPase between the t-tubules and external sarcolemma. Detubulation resulted in a 32% decrease in cell capacitance, whereas cell volume was unchanged. Thus, the surface-to-volume ratio was used to assess the success of detubulation. NCX current (I(NCX)) and Na/K pump current (I(pump)) were recorded using whole-cell patch clamp, as Cd-sensitive and K-activated currents, respectively. Both inward and outward I(NCX) density was significantly reduced by approximately 40% in detubulated cells. I(NCX) density at 0 mV decreased from 0.19 +/- 0.03 to 0.10 +/- 0.03 pA/pF upon detubulation. I(pump) density was also lower in detubulated myocytes over the range of voltages (-50 to +100 mV) and internal [Na] ([Na](i)) investigated (7-22 mM). At [Na](i) = 10 mM and -20 mV, I(pump) density was reduced by 39% in detubulated myocytes (0.28 +/- 0.02 vs. 0.17 +/- 0.03 pA/pF), but the apparent K(m) for [Na](i) was unchanged (16.9 +/- 0.4 vs. 17.0 +/- 0.3 mM). These results indicate that although thet-tubules represent only approximately 32% of the total sarcolemma, they contribute approximately 60% to the total I(NCX) and I(pump). Thus, the functional density of NCX and Na/K pump in the t-tubules is 3-3.5-fold higher than in the external sarcolemma.  相似文献   

10.
Recording from the dendrite membrane indicated a resting potential of --51.6 mV, which was reduced by inhibition of the Na+/K+ pump. Voltage clamp at rest revealed a small inward current between --50 and --80 mV and a larger outward current at clamp potentials of --40 to plus 30 mV. Using ramp-changes of muscle tension as stimuli a time-variant tension-induced inward current (TIC) became apparent, the amplitude of which decreased towards larger depolarizing voltages until at plus 18 mV the current reversed the direction. The time course of the conductance changes corresponds to similar phases in the generator potential. The outward current only responded to fast reductions in tension, decreasing transiently. A contribution of the active Na+/K+ pump to the hyperpolarizing potential response is suggested by the effects of K-removal or Na-substitution by Li+. In Na-free choline chloride media the generator potential and the TIC was depressed by 70-85%. Additional removal of Ca2+ abolished the TIC. In contrast, lowering the Ca2+ level in presence of Na+ decreased the membrane resistance and markedly enhanced the TIC (maximally eightfold at 10(-5) M Ca2+) while 75-150 mM Ca2+ or intracellular application of a Ca-ionophore had the reverse effect.  相似文献   

11.
The measured apparent affinity (K0.5) of the Na/K pump for ouabain has been reported to vary over a wide range. In a previous report we found that changing Nai could alter apparent affinity by at least an order of magnitude and that the model presented predicted this variability. To increase our understanding of this variability, isolated cells or two- to three-cell clusters of cardiac myocytes from 11-d embryonic chick were used to measure the effects of Nai and Ko on the K0.5 of the Na/K pump for ouabain. Myocytes were whole-cell patch clamped and Na/K pump current (Ip) was measured in preparations exposed to a Ca-free modified Hank's solution (HBSS) that contained 1 mM Ba, 10 mM Cs, and 0.1 mM Cd. Under these conditions there are no Ko-sensitive currents other than Ip because removal of Ko in the presence of ouabain had no effect on the current-voltage (I-V) relation. The I-V relation for Ip showed that in the presence of 5.4 mM Ko and 51 mM Nai, Ip has a slight voltage dependence, decreasing approximately 30% from 0 to -130 mV. Increasing Nai in the patch pipette from 6 to 51 mM (Ko = 5.4 mM) caused Ip to increase from 0.46 +/- 0.07 (n = 5) to 1.34 +/- 0.08 microA/cm2 (n = 13) with a K0.5 for Nai of 17.4 mM and decreased the K0.5 for ouabain from 18.5 +/- 1.8 (n = 4) to 3.1 +/- 0.4 microM (n = 3). Similarly, varying Ko between 0.3 and 10.8 mM (Nai = 24 mM) increased Ip from 0.13 +/- 0.01 (n = 5) to 0.90 +/- 0.05 microA/cm2 (n = 5) with a K0.5 for Ko of 1.94 mM and increased K0.5 for ouabain from 0.56 +/- 0.14 (n = 3-6) to 10.0 +/- 1.1 microM (n = 6). All of these changes are predicted by the model presented. A qualitative explanation of these results is that Nai and Ko interact with the Na/K pump to shift the steady-state distribution of the Na/K pump molecules among the kinetic states. This shift in state distribution alters the probability that the Na/K pump will be in the conformation that binds ouabain with high affinity, thus altering the apparent affinity. In intact cells, the measured apparent affinity represents a combination of all the rate constants in the model and does not equate to simple first-order binding kinetics.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Na/K pump current was determined between -140 and +60 mV as steady-state, strophanthidin-sensitive, whole-cell current in guinea pig ventricular myocytes, voltage-clamped and internally dialyzed via wide-tipped pipettes. Solutions were designed to minimize all other components of membrane current. A device for exchanging the solution inside the pipette permitted investigation of Na/K pump current-voltage (I-V) relationships at several levels of pipette [Na] [( Na]pip) in a single cell; the effects of changes in external [Na] [( Na]o) or external [K] [( K]o) were also studied. At 50 mM [Na]pip, 5.4 mM [K]o, and approximately 150 mM [Na]o, Na/K pump current was steeply voltage dependent at negative potentials but was approximately constant at positive potentials. Under those conditions, reduction of [Na]o enhanced pump current at negative potentials but had little effect at positive potentials: at zero [Na]o, pump current was only weakly voltage dependent. At 5.4 mM [K]o and approximately 150 mM [Na]o, reduction of [Na]pip from 50 mM scaled down the sigmoid pump I-V relationship and shifted it slightly to the right (toward more positive potentials). Pump current at 0 mV was activated by [Na]pip according to the Hill equation with best-fit K0.5 approximately equal to 11 mM and Hill coefficient nH approximately equal to 1.4. At zero [Na]o, reduction of [Na]pip seemed to simply scale down the relatively flat pump I-V relationship: Hill fit parameters for pump activation by [Na]pip at 0 mV were K0.5 approximately equal to 10 mM, nH approximately equal to 1.4. At 50 mM [Na]pip and high [Na]o, reduction of [K]o from 5.4 mM scaled down the sigmoid I-V relationship and shifted it slightly to the right: at 0 mV, K0.5 approximately equal to 1.5 mM and nH approximately equal to 1.0. At zero [Na]o, lowering [K]o simply scaled down the flat pump I-V relationships yielding, at 0 mV, K0.5 approximately equal to 0.2 mM, nH approximately equal to 1.1. The voltage-independent activation of Na/K pump current by both intracellular Na ions and extracellular K ions, at zero [Na]o, suggests that neither ion binds within the membrane field. Extracellular Na ions, however, seem to have both a voltage-dependent and a voltage-independent influence on the Na/K pump: they inhibit outward Na/K pump current in a strongly voltage-dependent fashion, with higher apparent affinity at more negative potentials (K0.5 approximately equal to 90 mM at -120 mV, and approximately 170 mM at -80 mV), and they compete with extracellular K ions in a seemingly voltage-independent manner.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

14.
Regulation of cytosolic free Na (Nai) was measured in isolated rabbit gastric glands with the use of a recently developed fluorescent indicator for sodium, SBFI. Intracellular loading of the indicator was achieved by incubation with an acetoxymethyl ester of the dye. Digital imaging of fluorescence was used to monitor Nai in both acid-secreting parietal cells and enzyme-secreting chief cells within intact glands. In situ calibration of Nai with ionophores indicated that SBFI fluorescence (345/385 nm excitation ratio) could resolve 2 mM changes in Nai and was relatively insensitive to changes in K or pH. Measurements on intact glands showed that basal Nai was 8.5 +/- 2.2 mM in parietal cells and 9.2 +/- 3 mM in chief cells. Estimates of Na influx and efflux were made by measuring rates of Nai change after inactivation or reactivation of the Na/K ATPase in a rapid perfusion system. Na/K ATPase inhibition resulting from the removal of extracellular K (Ko) caused Nai to increase at 3.2 +/- 1.5 mM/min and 3.5 +/- 2.7 mM/min in parietal and chief cells, respectively. Na buffering was found to be negligible. Addition of 5 mM Ko and removal of extracellular Na (Nao) caused Nai to decrease rapidly toward 0 mM Na. By subtracting passive Na efflux under these conditions (the rate at which Nai decreased in Na-free solution containing ouabain), an activation curve (dNai/Nai) for the Na/K ATPase was calculated. The pump demonstrated the greatest sensitivity between 5 and 20 mM Nai. At 37 degrees C the pump rate was less than 3 mM/min at 5 mM Nai and 26 mM/min at 25 mM Nai, indicating that the pump has a great ability to respond to changes in Nai in this range. Carbachol, which stimulates secretion from both cell types, was found to stimulate Na influx in both cell types, but did not have detectable effects on Na efflux. dbcAMP+IBMX, potent stimulants of acid secretion, had no effect on Na metabolism.  相似文献   

15.
In the lateral ocellus of the barnacle, we have tested the hypothesis that the transient increase of oxygen consumption (delta QO2) induced by light results from an increase in the rate of Na+ pumping. With a Na(+)-sensitive microelectrode, we measured the intracellular concentration of Na+ (Nai) in the photoreceptor cells. Nai was 17.6 +/- 1.2 mM (SE; n = 18) in darkness and it increased transiently by 10-20 mM after an 80-ms flash of intense light. The increase of Nai recovered in about the same time as the delta QO2, and the Na+/O2 ratio was 19.2 +/- 3.8 (SE; n = 6). Removing Na+ from the bath caused the delta QO2 to decrease by 79 +/- 3% (SE; n = 5). Exposure to 25 microM ouabain inhibited Na+ pumping and abolished the delta QO2. Removal of K+ from the bathing solution inhibited Na+ pumping in darkness, but mostly shortened the duration of the delta QO2; with a K(+)-sensitive microelectrode, we measured pericellular [K+] and found that it increased after the flash for about the same time as the delta QO2. Increasing Na+ pumping in darkness by reintroducing K+ in the bath or by injecting Na+ into one of the photoreceptor cells induced a delta QO2. Finally, intracellular injection of adenosine diphosphate and inorganic phosphate (ADP + Pi), the metabolic products of ATP splitting by the Na+ pump, also induced a delta QO2 in darkness. We conclude that all the results obtained are consistent with the formulated hypothesis.  相似文献   

16.
Raising extracellular K+ concentration ([K+](o)) around mesenteric resistance arteries reverses depolarization and contraction to phenylephrine. As smooth muscle depolarizes and intracellular Ca(2+) and tension increase, this effect of K+ is suppressed, whereas efflux of cellular K+ through Ca(2+)-activated K+ (K(Ca)) channels is increased. We investigated whether K+ efflux through K(Ca) suppresses the action of exogenous K+ and whether it prestimulates smooth muscle Na(+)-K(+)-ATPase. Under isometric conditions, 10.8 mM [K+](o) had no effect on arteries contracted >10 mN, unless 100 nM iberiotoxin (IbTX), 100 nM charybdotoxin (ChTX), and/or 50 nM apamin were present. Simultaneous measurements of membrane potential and tension showed that phenylephrine depolarized and contracted arteries to -32.2 +/- 2.3 mV and 13.8 +/- 1.6 mN (n = 5) after blockade of K(Ca), but 10.8 mM K+ reversed fully the responses (107.6 +/- 8.6 and 98.8 +/- 0.6%, respectively). Under isobaric conditions and preconstriction with phenylephrine, 10.7 mM [K+](o) reversed contraction at both 50 mmHg (77.0 +/- 8.5%, n = 9) and 80 mmHg (83.7 +/- 5.5%, n = 5). However, in four additional vessels at 80 mmHg, raising K+ failed to reverse contraction unless ChTX was present. Increases in isometric and decreases in isobaric tension with phenylephrine were augmented by either ChTX or ouabain (100 microM), whereas neither inhibitor altered tension under resting conditions. Inhibition of cellular K+ efflux facilitates hyperpolarization and relaxation to exogenous K+, possibly by indirectly reducing the background activation of Na(+)-K(+)-ATPase.  相似文献   

17.
The origin and regulatory mechanisms of tonic tension (Ca current-independent component of contractility) were investigated in frog atrial muscle under voltage-clamp conditions. Tonic tension was elicited by depolarizing pulses of 160 mV (Em = +90 mV, i.e., close to E ca) and 400--600 ms long. An application of Na-free (LiCl) or Ca-free Ringer's solutions resulted in a fast (less than 120 s), almost complete abolition of tonic tension. When [Na]o was reduced (with LiCl or sucrose as the substitutes), the peak tonic tension increased transiently and then decreased below the control level. The transient changes in tonic tension were prevented by using low-Na, low-Ca solutions where the ratios [Ca]0/[Na]40 to [Ca]o/[Na]4o were kept constant (1.1 X 10(-8) mM-3 to 8.7 X 10(-13) mM-5). Na-free (LiCl) solution elicited contractures accompanied by a membrane hyperpolarization or by an outward current even when the Na-K pump was inhibited. 15 mM MnCl2 (or 3 mM LaCl3) inhibited the development of the Na-free contracture and the related part of hyperpolarization or the outward current. In conclusion, our results indicate that tonic tension is regulated by a Na-Ca exchange mechanism. Furthermore, they suggest that this exchange could be electrogenic (exchanging three or more Na ions for one Ca ion) and thus voltage dependent. The possible contribution of an electrogenic Na-Ca exchange in the maintenance of cardiac membrane potential is discussed.  相似文献   

18.
Na/K pump current in aggregates of cultured chick cardiac myocytes   总被引:1,自引:1,他引:0       下载免费PDF全文
Spontaneously beating aggregates of cultured embryonic chick cardiac myocytes, maintained at 37 degrees C, were voltage clamped using a single microelectrode switching clamp to measure the current generated by the Na/K pump (Ip). In resting, steady-state preparations an ouabain-sensitive current of 0.46 +/- 0.03 microA/cm2 (n = 22) was identified. This current was not affected by 1 mM Ba, which was used to reduce inward rectifier current (IK1) and linearize the current-voltage relationship. When K-free solution was used to block Ip, subsequent addition of Ko reactivated the Na/K pump, generating an outward reactivation current that was also ouabain sensitive. The reactivation current magnitude was a saturating function of Ko with a Hill coefficient of 1.7 and K0.5 of 1.9 mM in the presence of 144 mM Nao. The reactivation current was increased in magnitude when Nai was increased by lengthening the period of time that the preparation was exposed to K-free solution prior to reactivation. When Nai was raised by 3 microM monensin, steady-state Ip was increased more than threefold above the resting value to 1.74 +/- 0.09 microA/cm2 (n = 11). From these measurements and other published data we calculate that in a resting myocyte: (a) the steady-state Ip should hyperpolarize the membrane by 6.5 mV, (b) the turnover rate of the Na/K pump is 29 s-1, and (c) the Na influx is 14.3 pmol/cm2.s. We conclude that in cultured embryonic chick cardiac myocytes, the Na/K pump generates a measurable current which, under certain conditions, can be isolated from other membrane currents and has properties similar to those reported for adult cardiac cells.  相似文献   

19.
The Gibbs-Donnan near-equilibrium system of heart   总被引:3,自引:0,他引:3  
The gradients of the major inorganic ions across the plasma membrane of heart were examined to determine the factors controlling the extent and direction of the changes induced during injury, certain diseases, and electrolyte disturbances. The ionic environment was altered by changing only the concentration of inorganic phosphate, [sigma Pi]o, from 0 to 1.2 to 5 mM in the Krebs-Henseleit buffer perfusing working rat hearts. Raising [sigma Pi]o from 1.2 to 5 mM resulted in a decrease in total Mg2+ content and calculated free cytosolic [Mg2+] from 0.44 to 0.04 mM, conversion of 4 mmol of MgATP2- to ATP4- and a decrease in measured intracellular [Cl-]i from 41 to 16 mM. At all levels of [sigma Pi]o, both the [Na+]i and [K+]i were invariant at about 3 mM and 130 mM, respectively, as was the energy of hydrolysis of the terminal phosphate bond of sigma ATP, delta GATP Hydr, of -13.2 kcal/mol. The relationship maintained between the ions on both sides of the plasma membrane by the 3Na+/2K(+)transporting ATPase (EC 3.6.1.37) and an open K+ channel was: (formula; see text) The energy of the gradients of the other inorganic ions across the plasma membrane, delta G[ion]o/i, exhibited three distinct quanta of energy derived from the prime quantum of delta GATP Hydr of -13.2 kcal/mol. The second quantum was about one-third of delta GATP Hydr or +/- 4.4 kcal/mol and comprised the delta G[Na+]o/i, delta G[Mg2+]o/i, and delta G[HPO42-]o/i. These results indicated near-equilibrium was achieved by the reactants of the 3Na+/2K(+)-ATPase, the K+ channel, the Na(+)-Pi co-transporter, and a postulated net Mg2+/H2PO4- exchanger. The third quantum was one-third of delta G[Na+]o/i or about +/- 1.5 kcal/mol and comprised delta G[H+]o/i, delta G[HCO3-]o/i, and delta G[Cl-]o/i. The delta G[K+]o/i was 0, indicating near-equilibrium between the chemical energy of [K+]o/i and the E across the plasma membrane of -83 mV. It is concluded that the gradients of the major inorganic ions across the plasma membrane and the potential across that membrane constitute a Gibbs-Donnan equilibrium system catalyzed by transport enzymes sharing common substrates. The chemical and electrical energies of those gradients are equal in magnitude and opposite in sign to the chemical energy of ATP hydrolysis.  相似文献   

20.
The effects of N,N'-dicyclohexylcarbodiimide (DCCD) and various ionophores on light-induced 22Na+-transport were studied in right-side-out membrane vesicles from Halobacterium halobium R1M1. The light-induced Na+ efflux was inhibited at the same DCCD concentration (greater than 40 nmol/mg protein) as required for inhibition of the Na+-dependent membrane potential (delta phi) formation. This supports our previous indication that the DCCD-sensitive, Na+-dependent transformation of pH-gradient (delta pH) into delta phi is mediated by Na+/H+-antiporter (Murakami, N. and Konishi, T. (1985) J. Biochem. 98, 897-907). FCCP or a combination of valinomycin and triphenyltin (TPT) inhibits the light-induced Na+ efflux in accordance with the notion of protonmotive force (delta mu H+)-driven antiporter. However, a marked lag in initiation of the Na+ efflux occurred in the presence of valinomycin, TPMP+, or a small amount of FCCP, suggesting that a gating step is involved in the Na+ efflux. On the other hand, the delta pH-dissipating ionophore TPT did not cause the lag. A simultaneous determination of delta phi, delta pH, and Na+ efflux rate at the initial stage of illumination revealed that the antiporter is gated by delta phi rather than delta mu H+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号