首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Internal cesium (CSi), relative to internal potassium (Ki), alters Na current (INa) time course in internally perfused Myxicola giant axons. CSi slows the time to peak INa, slows its decline from peak and increases the steady state to peak current ratio, INainfinity/INapeak. Neither activation nor deactivation kinetics are appreciably affected by CSi. Na current rising phases, times to half maximum and tail current time courses are similar in CSi and Ki. Inactivation time constants determined by both one (tau h) and two (tau c) pulses are also little changed by CSi. The CSi effects are due largely or entirely to an increased INainfinity/INapeak. CSi decreases the steady level of inactivation reached during a step in potential, preventing some fraction of inactivation gates from closing at all, the rest apparently closing normally. Inactivation block in CSi decreases with increasing inward current magnitude and in Ki inactivation block is appreciable only for outward Na channel current, suggesting the site of action is located somewhere in the current pathway. If this site mediates the normal operation of the inactivation gate, then a possible mechanism for gate closure could involve a positively charged structure moving to associate with a negative site near or into the inner channel mouth.  相似文献   

2.
Values for the time constant of reactivation of the sodium conductance following depolarization sufficient to completely inactivate GNa have been compared over a 15 mV range of membrane potential with the time constants of inactivation during a depolarization prepulse. Over this range the reactivation time constants were consistently 30-50% larger than the inactivation time constants determined simultaneously at the same potential in the same axon. The data suggests that inactivation and reactivation do not occur by identical mechanisms, and therefore implies that there are at least three kinds of experimental procedures necessary to fully characterize the sodium inactivation process in any particular system.  相似文献   

3.
Summary Measurements of the changes in birefringence associated with changes in membrane potential were made with internally perfused squid giant axons in low sodium solutions at 0–8°C. The time course of the birefringence changes share many properties of the gating (polarization) currents previously studied in this nerve. Both can be demonstrated as an asymmetry in the response to voltage pulses symmetrical about the resting potential which is not present about a hyperpolarized holding potential. Both have a rapid relaxation, which precedes the sodium permeability change. Both exhibit an initial delay or rising phase. Both are reversibly blocked by perfusion with 30mm colchicine; neither are altered by changes on sodium concentrations or 300nm tetrodotoxin. The birefringence response has a decrease in the amplitude of the rapid relaxation associated with the appearance of a slow relaxation. This is similar to the immobilization of fast gating charges which parallels sodium current inactivation.The amplitude of the birefringence and the gating current responses is consistent with a change in the alignment of several hundred peptide bonds per sodium channel.  相似文献   

4.
Sodium inactivation and reactivation have been examined in voltage-clamped Myxicola axons after long-lasting membrane depolarizations produced either directly by changes in holding potential or indirectly by elevation of external K+ concentration. The results suggest the existence of a second inactivated state of the sodium channel with associated voltage-dependent rate constants at least two orders of magnitude lower than those of the fast inactivation process commonly examined. No specific influence of external [K+] on slow Na+ inactivation could be detected.  相似文献   

5.
Myxicola giant axons were studied using standard voltage-clamp techniques in solutions whose pH values ranged from 3.9 to 10.2. Buffer concentrations of 50 mM or greater were necessary to demonstrate the full effect of pH. In acidic solutions the axon underwent a variable depolarization, and both the sodium and potassium conductances were reversibly depressed with approximate pKa's of 4.8 and 4.4, respectively. The voltage dependence of GNa was only slightly altered by acidic conditions, whereas there occurred large shifts in GK along the voltage axis consistent with a substantial decrease in net negative surface charge in the vicinity of the K+ channels. The sodium and potassium activation rate constants were decreased by acidic conditions, but the results could not be described as a simple translation along the voltage axis.  相似文献   

6.
L Goldman 《Biophysical journal》1988,54(6):1027-1038
Steady state to peak Na current ratio (INa,/INapeak) in Myxicola is greater, under some conditions, in internal Cs than in K, indicating less steady state inactivation in Csi. Csi effects are selective for steady state inactivation, with negligible effects on single-pulse inactivation time constants (Th). Mean Th ratios (Csi to Ki) were 1.04 and 1.02 at 0 and 10 mV. Two pulse inactivation time constants were also little affected. Inactivation is blocked in an all or none manner. Ki has little effect on steady state inactivation in the presence of inward INa, with INa/INapeak often declining to zero at positive potentials and independent of external Na concentration from 1/4 to 2/3 artificial sea water (ASW). Cs also has little effect at more negative potentials, but more with either more positive potentials or Na reduction, both reducing inward INa. K effects are evident when Na channel current is outward. A site in the current pathway when occupied selectively blocks inactivation gate closure. As occupancy does not depend significantly on potential, the site must not be very deep into the membrane field. Inactivation gates may associate with these sites on closure. The inactivated state may consist of a positively-charged structure occluding the inner channel mouth.  相似文献   

7.
Internal cesium alters sodium inactivation in Myxicola.   总被引:2,自引:0,他引:2       下载免费PDF全文
When Myxicola giant axons are internally dialyzed with Cs+ as the sole cation, the time-course of prepulse inactivation is selectively accelerated compared to its rate with K+ dialysis in the same axons. This decrease in tauph occurs without any change in the magnitude or time-course of INa during step depolarizations and results in tauph/taush ratios near unity over most of the potential range in Cs+ dialyzed axons.  相似文献   

8.
Time- and voltage-dependent behavior of the Na+ conductance in dialyzed intact Myxicola axons was compared with cut-open axons subjected to loose-patch clamp of the interior and to axons where Gigaseals were formed after brief enzyme digestion. Voltage and time dependence of activation, inactivation, and reactivation were identical in whole-axons and loose-patch preparations. Single channels observed in patch-clamp axons had a conductance of 18.3 +/- 2.3 pS and a mean open time of 0.84 +/- 0.12 ms. The time-dependence of Na+ currents found by averaging patch-clamp records was similar to intact axons, as was the voltage dependence of activation. Steady-state inactivation in patch-clamped axons was shifted by an average of 15 mV from that seen in loose-patch or intact axons. Substitution of D2O for H2O decreased single channel conductance by 24 +/- 6% in patch-clamped axons compared with 28 +/- 4% in intact axons, slowed inactivation by 58 +/- 8% compared with 49 +/- 6%, and increased mean open time by 52 +/- 7%. The results confirm observations on macroscopic channel behavior in Myxicola and resemble that seen in other excitable tissues.  相似文献   

9.
In some preparations the time constant of Na current inactivation determined with two pulses (tau c) is larger over some range of potentials than that determined from the current decay during a single pulse (tau h), while in others tau c(V) and tau h(V) are the same. Myxicola giant axons obtained from specimens collected from coastal waters of northeastern North America display a tau c - tau h difference under all conditions we have tested. In these axons tau c(V) and tau h(V) are unchanged by reduction of Na current density, addition of K-channel blockers, or internal perfusion. Specimens of the same species, Myxicola infundibulum, collected from a different geographical location, the south coast of England, have been studied under internal perfusion with K as the major cation internally, with reduced external Na concentration and in the presence of K-channel blockers. In these axons tau c(V) and tau h(V) approximately superpose, raising the possibility that dramatic differences in Na current kinetics may not necessarily reflect basic differences in the organization of the Na channel gating machinery.  相似文献   

10.
Blocking action of Na channels by QX-314, a quaternary derivative of lidocaine, was studied in internally perfused and voltage-clamped axons of squid. In axons with intact Na inactivation, QX-314 exhibited both a frequency- and a voltage-dependent block of Na channels. Repetitive pulsing to more positive potentials enhanced the degree of block. Both frequency- and voltage-dependent blocks disappeared in axons in which Na inactivation had been destroyed by either pronase or N-bromoacetamide treatment. These results support the notion that Na inactivation not only modulates the frequency-dependent block but also involves the voltage-dependent binding reaction between QX-314 and Na channels.  相似文献   

11.
A pair of tyrosine residues, located on the cytoplasmic linker between the third and fourth domains of human heart sodium channels, plays a critical role in the kinetics and voltage dependence of inactivation. Substitution of these residues by glutamine (Y1494Y1495/QQ), but not phenylalanine, nearly eliminates the voltage dependence of the inactivation time constant measured from the decay of macroscopic current after a depolarization. The voltage dependence of steady state inactivation and recovery from inactivation is also decreased in YY/QQ channels. A characteristic feature of the coupling between activation and inactivation in sodium channels is a delay in development of inactivation after a depolarization. Such a delay is seen in wild-type but is abbreviated in YY/QQ channels at -30 mV. The macroscopic kinetics of activation are faster and less voltage dependent in the mutant at voltages more negative than -20 mV. Deactivation kinetics, by contrast, are not significantly different between mutant and wild-type channels at voltages more negative than -70 mV. Single-channel measurements show that the latencies for a channel to open after a depolarization are shorter and less voltage dependent in YY/QQ than in wild-type channels; however the peak open probability is not significantly affected in YY/QQ channels. These data demonstrate that rate constants involved in both activation and inactivation are altered in YY/QQ channels. These tyrosines are required for a normal coupling between activation voltage sensors and the inactivation gate. This coupling insures that the macroscopic inactivation rate is slow at negative voltages and accelerated at more positive voltages. Disruption of the coupling in YY/QQ alters the microscopic rates of both activation and inactivation.  相似文献   

12.
J M Huang  J Tanguy    J Z Yeh 《Biophysical journal》1987,52(2):155-163
Modification of sodium channels by chloramine-T was examined in voltage clamped internally perfused crayfish and squid giant axons using the double sucrose gap and axial wire technique, respectively. Freshly prepared chloramine-T solution exerted two major actions on sodium channels: (a) an irreversible removal of the fast Na inactivation, and (b) a reversible block of the Na current. Both effects were observed when chloramine-T was applied internally or externally (5-10 mM) to axons. The first effect was studied in crayfish axons. We found that the removal of the fast Na inactivation did not depend on the states of the channel since the channel could be modified by chloramine-T at holding potential (from -80 to -100 mV) or at depolarized potential of -30 mV. After removal of fast Na inactivation, the slow inactivation mechanism was still present, and more channels could undergo slow inactivation. This result indicates that in crayfish axons the transition through the fast inactivated state is not a prerequisite for the slow inactivation to occur. During chloramine-T treatment, a distinct blocking phase occurred, which recovered upon washing out the drug. This second effect of chloramine-T was studied in detail in squid axons. After 24 h, chloramine-T solution lost its ability to remove fast inactivation but retained its blocking action. After removal of the fast Na inactivation, both fresh and aged chloramine-T solutions blocked the Na currents with a similar potency and in a voltage-dependent manner, being more pronounced at lower depolarizing potentials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Sodium efflux in Myxicola giant axons   总被引:1,自引:1,他引:0       下载免费PDF全文
Several properties of the Na pump in giant axons from the marine annelid Myxicola infundibulum have been determined in an attempt to characterize this preparation for membrane transport studies. Both NaO and KO activated the Na pump of normal microinjected Myxicola axons. In this preparation, the KO activation was less and the NaO activation much greater than that found in the squid giant axon. However, when the intracellular ATP:ADP ratio of the Myxicola axon was elevated by injection of an extraneous phosphagen system, the K sensitivity of Na efflux increased to the magnitude characteristic of squid axons and the activating effect of NaO disappeared. Several axons were injected with Na2SO4 in order to determine the effect of elevated Nai on the Na efflux. Increasing Nai enhanced a component of Na efflux which was insensitive to ouabain and dependent on [Ca] in Na-free (Li) seawater. After subtracting the CaO-dependent fraction, Na efflux was related linearly to [Na]i in all solutions except in K-free (Li) seawater, where it appeared to reach saturation at high [Na]i.  相似文献   

14.
Slow inactivation in voltage-gated sodium channels is a biophysical process that governs the availability of sodium channels over extended periods of time. Slow inactivation, therefore, plays an important role in controlling membrane excitability, firing properties, and spike frequency adaptation. Defective slow inactivation is associated with several diseases of cell excitability, such as hyperkalemic periodic paralysis, myotonia, idiopathic ventricular fibrillation and long-QT syndrome. These associations underscore the physiological importance of this phenomenon. Nevertheless, our understanding of the molecular substrates for slow inactivation is still fragmentary. This review covers the current state of knowledge concerning the molecular underpinnings of slow inactivation, and its relationship with other biophysical processes of voltage-gated sodium channels.  相似文献   

15.
The effects of chloramine-T, a reagent specific to methionine residues, on sodium channel gating mechanisms was investigated in neuroblastoma cell membrane. Treating the membrane with chloramine was found to retard inactivation kinetics and considerably reduce the slope of the inactivation curve, while pushing the activation curve toward hyperpolarization ranges without changing the slope of the central portion perceptibly. Effective activation charge, as determined from the limiting logarithmic slope of activation, was reduced by a factor of 1.17. Possible reasons for the changes observed in sodium channel gating mechanisms are discussed.Institute of Cytology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 789–795, November–December, 1987.  相似文献   

16.
Sodium currents after repolarization to more negative potentials after initial activation were digitally recorded in voltage-clamped Myxicola axons compensated for series resistance. The results are inconsistent with a Hodgkin-Huxley-type kinetic scheme. At potentials more negative than -50 mV, the Na+ tails show two distinct time constants, while at more positive potentials only a single exponential process can be resolved. The time-course of the tail currents was totally unaffected when tetrodotoxin (TTX) was added to reduce gNa to low values, demonstrating the absence of any artifact dependent on membrane current. Tail currents were altered by [Ca++] in a manner consistent with a simple alteration in surface potential. Asymmetry current "off" responses are well described by a single exponential. The time constant for this response averaged 2.3 times larger than that for the rapid component of the Na+ repolarization current and was not sensitive to pulse amplitude or duration, although it did vary with holding potential. Other asymmetry current observations confirm previous reports on Myxicola.  相似文献   

17.
All analysis of the sodium and potassium conductances of Myxicola giant axons was made in terms of the Hodgkin-Huxley m, n, and h variables. The potassium conductance is proportional to n2. In the presence of conditioning hyperpolarization, the delayed current translates to the right along the time axis. When this effect was about saturated, the potassium conductance was proportional to n3. The sodium conductance was described by assuming it proportional to m3h. There is a range of potentials for which τh and h values fitted to the decay of the sodium conductance may be compared to those determined from the effects of conditioning pulses. τh values determined by the two methods do not agree. A comparison of h values determined by the two methods indicated that the inactivation of the sodium current is not governed by the Hodgkin-Huxley h variable. Computer simulations show that action potentials, threshold, and subthreshold behavior could be accounted for without reference to data on the effects of initial conditions. However, recovery phenomena (refractoriness, repetitive discharges) could be accounted for only by reference to such data. It was concluded that the sodium conductance is not governed by the product of two independent first order variables.  相似文献   

18.
Aggregation kinetics, in contrast to the Hodgkin-Huxley equations, predict that if an axon is subjected to a brief perturbing depolarization of large amplitude, the resulting perturbed current will cross over the response to a conventional maintained depolarization, and then remain smaller for the remainder of the depolarizing step. This has been experimentally tested using voltage-clamped Myxicola giant axons, compensated for series resistance and bathed in 10% Na+ sea water to minimize possible artifacts. Under such conditions perturbed and unperturbed currents are observed to cross over in a manner qualitatively consistent with the behavior predicted by an aggregation model. We suggest, therefore, that the aggregation concept may warrant further experimental and theoretical investigation.  相似文献   

19.
Changes in holding potential (Vh), affect both gating charge (the Q(Vh) curve) and peak ionic current (the F(Vh) curve) seen at positive test potentials. Careful comparison of the Q(Vh) and F(Vh) distributions indicates that these curves are similar, having two slopes (approximately 2.5e for Vh from -115 to -90 mV and approximately 4e for Vh from -90 to -65 mV) and very negative midpoints (approximately -86 mV). Thus, gating charge movement and channel availability appear closely coupled under fully-equilibrated conditions. The time course by which channels approach equilibration was explored using depolarizing prepulses of increasing duration. The high slope component seen in the F(Vh) and Q(Vh) curves is not evident following short depolarizing prepulses in which the prepulse duration approximately corresponds to the settling time for fast inactivation. Increasing the prepulse duration to 10 ms or longer reveals the high slope, and left-shifts the midpoint to more negative voltages, towards the F(Vh) and Q(Vh) distributions. These results indicate that a separate slow-moving voltage sensor affects the channels at prepulse durations greater than 10 ms. Charge movement and channel availability remain closely coupled as equilibrium is approached using depolarizing pulses of increasing durations. Both measures are 50% complete by 50 ms at a prepulse potential of -70 mV, with proportionately faster onset rates when the prepulse potential is more depolarized. By contrast, charge movement and channel availability dissociate during recovery from prolonged depolarizations. Recovery of gating charge is considerably faster than recovery of sodium ionic current after equilibration at depolarized potentials. Recovery of gating charge at -140 mV, is 65% complete within approximately 100 ms, whereas less than 30% of ionic current has recovered by this time. Thus, charge movement and channel availability appear to be uncoupled during recovery, although both rates remain voltage sensitive. These data suggest that channels remain inactivated due to a separate process operating in parallel with the fast gating charge. We demonstrate that this behavior can be simulated by a model in which the fast charge movement associated with channel activation is electrostatically-coupled to a separate slow voltage sensor responsible for the slow inactivation of channel conductance.  相似文献   

20.
One of the major physiological roles of the neuronal voltage-gated sodium channel is to generate action potentials at the axon hillock/initial segment and to ensure propagation along myelinated or unmyelinated fibers to nerve terminal. These processes require a precise distribution of sodium channels accumulated at high density in discrete subdomains of the nerve membrane. In neurons, information relevant to ion channel trafficking and compartmentalization into sub-domains of the plasma membrane is far from being elucidated. Besides, whereas information on dendritic targeting is beginning to emerge, less is known about the mechanisms leading to the polarized distribution of proteins in axon. To obtain a better understanding of how neurons selectively target sodium channels to discrete subdomains of the nerve, we addressed the question as to whether any of the large intracellular regions of Nav1.2 contain axonal sorting and/or clustering signals. We first obtained evidence showing that addition of the cytoplasmic carboxy-terminal region of Nav1.2 restricted the distribution of a dendritic-axonal reporter protein to axons of hippocampal neurons. The analysis of mutants revealed that a di-leucine-based motif mediates chimera compartmentalization in axons and its elimination in soma and dendrites by endocytosis. The analysis of the others generated chimeras showed that the determinant conferring sodium channel clustering at the axonal initial segment is contained within the cytoplasmic loop connecting domains II-III of Nav1.2. Expression of a soluble Nav1.2 II-III linker protein led to the disorganization of endogenous sodium channels. The motif was sufficient to redirect a somatodendritic potassium channel to the axonal initial segment, a process involving association with ankyrin G. Thus, it is conceivable that concerted action of the two determinants is required for sodium channel compartmentalization in axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号