共查询到20条相似文献,搜索用时 0 毫秒
1.
Elena Kudryavitskaya Eran Marom Haran Shani-Narkiss David Pash Adi Mizrahi 《Current biology : CB》2021,31(8):1616-1631.e4
- Download : Download high-res image (145KB)
- Download : Download full-size image
2.
The interplay between olfactory activity and cholinergic modulation remains to be fully understood. This report examines the pattern of cholinergic innervation throughout the murine main olfactory bulb across different developmental stages and in naris-occluded animals. To visualize the pattern of cholinergic innervation, we used a transgenic mouse model, which expresses a fusion of the microtubule-associated protein, tau, with green fluorescence protein (GFP) under the control of the choline acetyltransferase (ChAT) promoter. This tau-GFP fusion product allows for a remarkably vivid and clear visualization of cholinergic innervation in the main olfactory bulb (MOB). Interestingly, we find an uneven distribution of GFP label in the adult glomerular layer (GL), where anterior, medial, and lateral glomerular regions of the bulb receive relatively heavier cholinergic innervation than other regions. In contrast to previous reports, we find a marked change in the pattern of cholinergic innervation to the GL following unilateral naris occlusion between the ipsilateral and contralateral bulbs in adult animals. 相似文献
3.
Considerable evidence exists for an extrinsic cholinergic influence in the maturation and function of the main olfactory bulb. In this study, we addressed the muscarinic modulation of dopaminergic neurons in this structure. We used different patch-clamp techniques to characterize the diverse roles of muscarinic agonists on identified dopaminergic neurons in a transgenic animal model expressing a reporter protein (green fluorescent protein) under the tyrosine hydroxylase promoter. Bath application of acetylcholine (1 mM) in slices and in enzymatically dissociated cells reduced the spontaneous firing of dopaminergic neurons recorded in cell-attached mode. In whole-cell configuration no effect of the agonist was observed, unless using the perforated patch technique, thus suggesting the involvement of a diffusible second messenger. The effect was mediated by metabotropic receptors as it was blocked by atropine and mimicked by the m2 agonist oxotremorine (10 muM). The reduction of periglomerular cell firing by muscarinic activation results from a membrane-potential hyperpolarization caused by activation of a potassium conductance. This modulation of dopaminergic interneurons may be important in the processing of sensory information and may be relevant to understand the mechanisms underlying the olfactory dysfunctions occurring in neurodegenerative diseases affecting the dopaminergic and/or cholinergic systems. 相似文献
4.
5.
Postnatal developmental expression of calbindin, calretinin and parvalbumin in mouse main olfactory bulb 总被引:2,自引:0,他引:2
The distribution of calbindin, calretinin and parvalbumin during the development of the mouse main olfactory bulb (MOB) was studied using immunohistochemistry techniques. The results are as follows:(1) calbindin-immunoreactive profiles were mainly located in the glomerular layer, and few large calbindin-immunoreactive cells were found in the subependymal layer of postnatal day 10 (P10) to postnatal day 40 (P40) mice; (2) no calbindin was detected in the mitral cell layer at any stage; (3) calretinin-immunoreactive profiles were present in all layers of the main olfactory bulb at all stages, especially in the olfactory nerve layer, glomerular layer and granule cell layer; (4) parvalbumin-immunoreactive profiles were mainly located in the external plexiform layer (except for P10 mice); (5) weakly stained parvalbumin-immunoreactive profiles were present in the glomerular layer at all stages; and (6) no parvalbumin was detected in the mitral cell layer at any stage. 相似文献
6.
Z Monnier M Bahjaoui-Bouhaddi J Bride M Bride F Math A Propper 《Biology of the cell / under the auspices of the European Cell Biology Organization》1999,91(1):29-44
In the present study, we describe the structural and cytological changes observed in staggerer mutant olfactory bulbs, as compared to normal mice. On the basis of photonic and ultrastructural observations we tried to define the alterations induced by the mutation: i.e. a reduction of bulb size, a reduction in the volume of three out of the six architectonic layers (glomerular, external and internal plexiform), a reduction of glomeruli size, a loss of half the mitral cells and a slight decrease in juxtaglomerular interneuron number. In staggerer, an hypertrophy of glial ensheathing cell processes was especially evident at the level of each glomerulus, whereas the density of the astrocyte network was weaker in the granular layer and the nerve layer not apparently impaired. An immunofluorescent labelling study combined with confocal scanning microscopy was performed in order to identify the cellular type and the differentiation degree of the various elements. Antibodies anti-GFAP, a protein present in both ensheathing cells and astrocytes, and anti-OMP, the specific maturation protein of the nerve layer, were used for that purpose. Data confirmed the reality of the gliosis and the persistence of the sensory component in the mutant. All the structural alterations described in staggerer olfactory bulb were in close agreement with the functional troubles previously recorded. Our results are discussed in connection with the present knowledge on embryonal origin, fetal development and adult cellular renewal of the olfactory bulb. 相似文献
7.
Site of biosynthesis of the mouse brain olfactory bulb protein 总被引:2,自引:0,他引:2
8.
To visualize odorant representations by receptor neuron input to the mouse olfactory bulb, we loaded receptor neurons with calcium-sensitive dye and imaged odorant-evoked responses from their axon terminals. Fluorescence increases reflected activation of receptor neuron populations converging onto individual glomeruli. We report several findings. First, five glomeruli were identifiable across animals based on their location and odorant responsiveness; all five showed complex response specificities. Second, maps of input were chemotopically organized at near-threshold concentrations but, at moderate concentrations, involved many widely distributed glomeruli. Third, the dynamic range of input to a glomerulus was greater than that reported for individual receptor neurons. Finally, odorant activation slopes could differ across glomeruli, and for different odorants activating the same glomerulus. These results imply a high degree of complexity in odorant representations at the level of olfactory bulb input. 相似文献
9.
10.
The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on beta-galactosidase (beta-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNF(lacZneo) mice). We find that beta-gal is expressed in a small subset of OSNs with axons that reach the olfactory nerve layers throughout the OB. In the OB, we find expression of beta-gal in gamma-aminobutyric acidergic but not dopaminergic periglomerular cells and external tufted cells and in interneurons located in the mitral cell layer. Our results are inconsistent with the regulation of generation and differentiation of new OSNs elicited by the release of BDNF from horizontal basal cells. The results are consistent with a role for BDNF in competitive branching of OSN axons within the glomeruli of the OB. 相似文献
11.
12.
13.
Functional topography of connections linking mirror-symmetric maps in the mouse olfactory bulb 总被引:2,自引:0,他引:2
In rodents, each main olfactory bulb contains two mirror-symmetric glomerular maps, a feature not found in the initial topographic maps of other sensory systems. Targeting tracer injections to identified glomeruli revealed that isofunctional odor columns-translaminar assemblies connected to a given glomerulus-were specifically and reciprocally interconnected through a mutually inhibitory circuit with exquisite topographic specificity. Thus, instead of containing two mirror-symmetric maps, we propose that the olfactory bulb contains a single integrated map in which isofunctional odor columns are connected through an intrabulbar link, analogous to the specific horizontal connections linking iso-orientation columns in primary visual cortex. 相似文献
14.
A procedure for assaying peptides at the picomole level in tissue extracts has been developed and used to measure the dipeptide carnosine in mouse olfactory bulb. In this procedure the tissue extract is reacted with 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF), and the resultant fluorophors are resolved on a high performance reverse-phase column. Quantitation is performed in a filter fluorometer equipped with a flow cell. Carnosine was found to be present at a level of 1.93 ± 0.44 nmol/mg of tissue (mean + SD of 11 samples), in agreement with previous findings by other methods. 相似文献
15.
Viral upper respiratory infections are the most common cause of clinical olfactory dysfunction, but the pathogenesis of dysosmia after viral infection is poorly understood. Biopsies of the olfactory mucosa in patients that complain of dysosmia after viral infection fall into two categories: one in which no olfactory epithelium is seen and another in which the epithelium is disordered and populated mainly by immature neurons. We have used intranasal inoculation with an olfactory bulb line variant of MHV to study the consequences of viral infection on peripheral olfactory structures. MHV OBLV has little direct effect on the olfactory epithelium, but causes extensive spongiotic degeneration and destruction of mitral cells and interneurons in the olfactory bulb such that the axonal projection from the bulb via the lateral olfactory tract is markedly reduced. Moreover, surviving mitral cells apparently remain disconnected from the sensory neuron input to the glomerular layer, judging from retrograde labeling studies using Dil. The damage to the bulb indirectly causes a persistent, long-term increase in the turnover of sensory neurons in the epithelium, i.e. the relative proportion of immature to mature sensory neurons and the rate of basal cell proliferation both increase. The changes that develop after inoculation with MHV OBLV closely resemble the disordering of the olfactory epithelium in some patient biopsies. Thus, damage to the olfactory nerve or bulb may contribute to a form of post-viral olfactory dysfunction and MHV OBLV is a useful model for studying the pathogenesis of this form of dysosmia. 相似文献
16.
Panzanelli Patrizia López-Bendito Guillermina Luján Rafael Sassoé-Pognetto Marco 《Brain Cell Biology》2004,33(1):87-99
In this study, we investigated the distribution and developmental expression of the GABAB receptor subunits, GABAB1 and GABAB2, in the main and accessory olfactory bulbs of the rat. Antibodies raised against these subunits strongly labelled the glomerular layer, suggesting that olfactory and vomeronasal nerve fibers express functional GABAB receptors. Using postembedding immunogold cytochemistry, we found that GABAB receptors can be present at both extrasynaptic and presynaptic sites of olfactory nerve terminals, and in the latter case they are preferentially associated with the peripheral part of the synaptic specialization. Olfactory nerve fibers expressed GABAB1 and GABAB2 at early developmental stages, suggesting that GABAB receptors may play a role in olfactory development. Output and local neurons of the main and accessory olfactory bulbs were also labelled for GABAB1 and GABAB2, although the subcellular distribution patterns of the two subunits were not completely overlapping. These results indicate that presynaptically located GABAB receptors modulate neurotransmitter release from olfactory and vomeronasal nerve fibers and that, in addition to this presynaptic role, GABAB receptors may regulate neuronal excitability in infraglomerular circuits. 相似文献
17.
Inhibition in the olfactory bulb of the carp was studied by recording potentials from secondary neurons intracellularly. Three types of inhibition — trace, early, and late — can arise in neurons of the olfactory bulb. Trace inhibition corresponds to hyperpolarization about 20 msec in duration, which is closely connected with the spike, but it is not after-hyperpolarization but an IPSP. Early and late inhibition correspond to IPSPs of different parameters. The first has a latency of 0–50 msec (relative to the spike) and a duration of 60–400 msec; the corresponding values for the second are 100–400 msec and 0.5–3 sec. The possible mechanisms of these types of inhibition are discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 650–656, November–December, 1971. 相似文献
18.
19.
20.
Hamilton KA Parrish-Aungst S Margolis FL Erdélyi F Szabó G Puche AC 《Chemical senses》2008,33(2):201-210
Altered distribution of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit GluR1 has been linked to stimulation-dependent changes in synaptic efficacy, including long-term potentiation and depression. The main olfactory bulb (OB) remains plastic throughout life; how GluR1 may be involved in this plasticity is unknown. We have previously shown that neonatal naris occlusion reduces numbers of interneuron cell bodies that are immunoreactive for GluR1 in the external plexiform layer (EPL) of the adult mouse OB. Here, we show that immunoreactivity of mouse EPL interneurons for GluR1 is also dramatically reduced following olfactory deafferentation in adulthood. We further show that expression of glutamic acid decarboxylase (GAD) 65, 1 of 2 GAD isoforms expressed by adult gamma-aminobutyric acidergic interneurons, is reduced, but to a much smaller extent, and that in double-labeled cells, immunoreactivity for the Ca(2+)-binding protein parvalbumin (PV) is also reduced. In addition, GluR1 expression is reduced in presumptive tufted cells and interneurons that are negative for GAD65 and PV. Consistent with previous reports, sensory deafferentation resulted in little neuronal degeneration in the adult EPL, indicating that these differences were not likely due to death of EPL neurons. Together, these results suggest that olfactory input regulates expression of the GluR1 AMPA receptor subunit by tufted cells that may in turn regulate GluR1 expression by interneurons within the OB EPL. 相似文献