首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adolescence is an important period for HPA axis development and synapse maturation and reorganization in the prefrontal cortex (PFC). Thus, stress during adolescence could alter stress‐sensitive brain regions such as the PFC and may alter the impact of future stressors on these brain regions. Given that women are more susceptible to many stress‐linked psychological disorders in which dysfunction of PFC is implicated, and that this increased vulnerability emerges in adolescence, stress during this time could have sex‐dependent effects. Therefore, we investigated the effects of adolescent social instability stress (SIS) on dendritic morphology of Golgi‐stained pyramidal cells in the medial PFC of adult male and female rats. We then examined dendritic reorganization following chronic restraint stress (CRS) with and without a rest period in adult rats that had been stressed in adolescence. Adolescent SIS conferred long‐term alterations in prelimbic of males and females, whereby females show reduced apical length and basilar thin spine density and males show reduced basilar length. CRS in adulthood failed to produce immediate dendritic remodeling in SIS rats. However, CRS followed by a rest period reduced apical dendritic length and increases mushroom spine density in adolescently stressed adult males. Conversely, CRS followed by rest produced apical outgrowth and decreased mushroom spine density in adolescently stressed adult females. These results suggest that stress during adolescence alters development of the PFC and modulates stress‐induced dendritic changes in adulthood.  相似文献   

2.
Prenatal testosterone exposure impacts postnatal reproductive and endocrine function, leading to alterations in sex steroid levels. Because gonadal steroids are key regulators of cardiovascular function, it is possible that alteration in sex steroid hormones may contribute to development of hypertension in prenatally testosterone-exposed adults. The objectives of this study were to evaluate whether prenatal testosterone exposure leads to development of hypertension in adult males and females and to assess the influence of gonadal hormones on arterial pressure in these animals. Offspring of pregnant rats treated with testosterone propionate or its vehicle (controls) were examined. Subsets of male and female offspring were gonadectomized at 7 wk of age, and some offspring from age 7 to 24 wk received hormone replacement, while others did not. Testosterone exposure during prenatal life significantly increased arterial pressure in both male and female adult offspring; however, the effect was greater in males. Prenatal androgen-exposed males and females had more circulating testosterone during adult life, with no change in estradiol levels. Gonadectomy prevented hyperandrogenism and also reversed hypertension in these rats. Testosterone replacement in orchiectomized males restored hypertension, while estradiol replacement in ovariectomized females was without effect. Steroidal changes were associated with defective expression of gonadal steroidogenic genes, with Star, Sf1, and Hsd17b1 upregulation in testes. In ovaries, Star and Cyp11a1 genes were upregulated, while Cyp19 was downregulated. This study showed that prenatal testosterone exposure led to development of gonad-dependent hypertension during adult life. Defective steroidogenesis may contribute in part to the observed steroidal changes.  相似文献   

3.
Fibroblast growth factor 21 (FGF21) is an endocrine hormone which exerts beneficial effects on metabolic regulation in obese and diabetic models. However, the effect of FGF21 on cognition in obese-insulin resistant rats has not been investigated. We hypothesized that FGF21 prevented cognitive decline in obese-insulin resistant rats by improving hippocampal synaptic plasticity, dendritic spine density, brain mitochondrial function and brain FGF21 signaling as well as decreasing brain cell apoptosis. Eighteen male Wistar rats were divided into two groups, and received either a normal diet (ND) (n = 6) or a high fat diet (HFD) (n = 12) for 12 weeks. At week 13, the HFD-fed rats were subdivided into two subgroups (n = 6/subgroup) to receive either vehicle or recombinant human FGF21 (0.1 mg/kg/day) for four weeks. ND-fed rats were given vehicle for four weeks. At the end of the treatment, cognitive function, metabolic parameters, pro-inflammatory markers, brain mitochondrial function, cell apoptosis, hippocampal synaptic plasticity, dendritic spine density and brain FGF21 signaling were determined. The results showed that vehicle-treated HFD-fed rats developed obese-insulin resistance and cognitive decline with impaired hippocampal synaptic plasticity, decreased dendritic spine density, brain mitochondrial dysfunction and increased brain cell apoptosis. Impaired brain FGF 21 signaling was found in these obese-insulin resistant rats. FGF21-treated obese-insulin resistant rats had improved peripheral insulin sensitivity, increased hippocampal synaptic plasticity, increased dendritic spine density, restored brain mitochondrial function, attenuated brain cells apoptosis and increased brain FGF21 signaling, leading to a prevention of cognitive decline. These findings suggest that FGF21 treatment exerts neuroprotection in obese-insulin resistant rats.  相似文献   

4.
This study addressed the question of how early learning processes in females influence later preferences for a male trait. I tested whether exposure to song alone (of a male other than the father) was sufficient for inducing a stable (repeatable) preference in female zebra finches (Taeniopygia guttata) by limiting early exposure to tape tutoring. A group of controls heard no songs before also being tested in adulthood. Repeated tests for preferences for tutor or unfamiliar song were made, interspersed with additional tests involving new songs. Preferences were tested in an operant task where pecking of response keys led to song playback. Most females significantly preferred one of the two songs in a given test. In the first test, the relative preference for the tutor song was significantly higher for the tutored than for the control females. Subsequently, tutored females' preferences for the tutor song remained higher on average, but the two groups did not differ significantly. However, tutored, but not untutored females' preferences were highly repeatable between tests, suggesting that early exposure to song might lead to a consolidation ol choice behaviour, a previously unknown effect of early exposure to song in female songbirds.  相似文献   

5.
6.
A wide body of research has indicated that perinatal exposure to stressors alters the organism, notably by programming behavioral and neuroendocrine responses and sensitivity to drugs of abuse in adulthood. Recent evidence suggests that adolescence also may represent a sensitive period of brain development, and yet there has been little research on the long-lasting effects of stressors during this period. We investigated the effects of pubertal social stress (PS; daily 1-h isolation followed by pairing with a new cage mate on postnatal days 33-48) on locomotor sensitization to injections of nicotine and corticosterone response to restraint stress when the rats were adults (approximately 3 weeks after PS). There were no differences among the groups in locomotor activity to injections of saline. However, PS females had enhanced locomotor sensitization to repeated doses of nicotine compared to control (non-stressed; NS) females, whereas PS males and NS males did not differ. PS enhanced the corticosterone response to restraint in male rats previously sensitized to nicotine and decreased the corticosterone response in nonsensitized male rats. In contrast, PS females and NS females did not differ in plasma corticosterone levels in response to restraint stress, but NS females showed enhanced corticosterone release to restraint after sensitization to nicotine. Thus, during adolescence, social stressors can have long-lasting effects, and the effects appear to differ for males and females.  相似文献   

7.
Clinical and experimental studies have repeatedly indicated that overloaded hearts have a higher vulnerability to ischemia/reperfusion injury. The aim of the present study was to answer the question whether the degree of tolerance to oxygen deprivation in hearts of spontaneously hypertensive rats (SHR) may be sex-dependent. For this purpose, adult SHR and their normotensive control Wistar Kyoto (WKY) rats were used. The isolated hearts were perfused according to Langendorff at constant pressure (proportionally adjusted to the blood pressure in vivo). Recovery of contractile parameters (left ventricular systolic, diastolic and developed pressure as well as the peak rate of developed pressure) was measured during reperfusion after 20 min of global no-flow ischemia in 5 min intervals. Mean arterial blood pressure was measured by direct puncture of carotid artery under light ether anesthesia in a separate group of animals. The degree of hypertension was comparable in both sexes of SHR. The recovery of contractile functions in SHR males and females was significantly lower than in WKY rats during the whole investigated period. There was no sex difference in the recovery of WKY animals; on the other hand, the recovery was significantly better in SHR females than in SHR males. It may be concluded that the hearts of female SHR are more resistant to ischemia/reperfusion injury as compared with male SHR. This fact could have important clinical implications for the treatment of cardiovascular disease in women.  相似文献   

8.
Synaptic damage and loss are factors that affect the degree of dementia experienced in Alzheimer disease (AD) patients. Multicolor DiOlistic labeling of the hippocampus has been undertaken which allows the full dendritic arbor of targeted neurons to be imaged. Using this labeling technique the neuronal morphology of two transgenic mouse lines (J20 and APP/PS1) expressing mutant forms of the Amyloid Precursor Protein (APP), at various ages, have been visualized and compared to Wild Type (WT) littermate controls. Swollen bulbous dystrophic neurites with loss of spines were apparent in the transgenic animals. Upon quantification, statistically significant reductions in the number of spines and total dendrite area was observed in both transgenic mouse lines at 11 months of age. Similar morphological abnormalities were seen in human AD hippocampal tissue both qualitatively and quantitatively. Immunohistochemistry and DiOlistic labeling was combined so that Aβ plaques were imaged in relation to the dendritic trees. No preferential localization of these abnormal dystrophic neurites was seen in regions with plaques. DiI labeled reative astrocytes were often apparent in close proximity to Aβ plaques.  相似文献   

9.
Social support has a positive influence on the course of a depression and social housing of rats could provide an animal model for studying the neurobiological mechanisms of social support. Male and female rats were subjected to chronic footshock stress for 3 weeks and pair-housing of rats was used to mimic social support. Rats were isolated or housed with a partner of the opposite sex. A plastic tube was placed in each cage and subsequently used as a 'safe' area in an open field test. Time spent in the tube was used as a measurement of anxiety levels. Chronic stress increased adrenal weights in all groups, except for isolated females who showed adrenal hypertrophy in control conditions. In isolated males, chronic stress resulted in an increase in the time the animals spent in the tube. While stress did not affect this parameter in socially housed males, males with a stressed partner showed a similar response as isolated stressed males. Even though adrenal weights showed that isolated females were more affected by stress, after chronic stress exposure, they spent less time in the tube than socially housed females. Socially housed stressed females spent less time in the 'safe' tube compared to control counterparts, indicating that stress has a gender-specific behavioral effect. In conclusion: pair-housing had a stress-reducing effect on behavior in males. Isolation of females was stressful by itself. Pair housing of females was not able to prevent stress-induced behavioral changes completely, but appeared to reduce the effects of chronic stress.  相似文献   

10.
In this paper, we tested the hypothesis that exposure to estrogens of different source and estrogenic potency at early puberty could affect the development of socio-sexual behavior in the male rat. Puberty is regarded as a second stage of the ontogenetic period, in the sexual maturation of mammals, particularly sensitive to gonadal hormone milieu. We treated animals orally, from postnatal day 23 to 30, with an environmentally compatible dose of bisphenol A (BPA, 40 microg/kg/day) and with a dosage of ethinylestradiol (EE, 0.4 microg/kg/day) comparable to the human oral contraceptives. Exposure to EE altered the temporal pattern of male sexual activity, reducing performance, in the adult animals; slight modifications, in the same direction, were observed with BPA. Short-term behavioral effects were observed in the treated animals, both with BPA and EE: the exploratory drive, directed to a stimulus object and to the environment, as well as to conspecifics, was reduced in the juveniles. Modifications in the circulating T levels were observed after treatments: T was reduced in the juveniles, both with BPA and EE. The decrement persisted in the adult animals but reached significance only in the BPA group. On the whole, effects of pubertal exposure on behavior are more marked with EE than BPA. This can be due to the much higher estrogenic potency of EE; the direction of the behavioral effects of BPA, compared with EE, is however indicative of an estrogenic mechanism.  相似文献   

11.
We have reported that dietary inorganic phosphate (Pi) deprivation induces a Pi-seeking behavior in juvenile male rats. The purpose of the present study was to determine whether the Pi appetite is present in adult animals, and if so, whether it is altered during times of increased demand for Pi, such as pregnancy and lactation. Both male and female animals fed a low-phosphate diet (LPD) ingested significantly greater amounts of PiH(2)O daily than their normal phosphate diet (NPD) controls, and per 100 g of body weight (BW), the female animals fed LPD tended to ingest greater amounts of PiH(2)O than male rats fed LPD. Pregnant and lactating rats fed LPD ingested significantly more PiH(2)O than those fed NPD, however, neither group displayed a Pi appetite different than virgin females. However, lactation further reduced Pi levels in plasma and cerebral spinal fluid compared with control values. Despite the additional Pi from the PiH(2)O in the mothers fed LPD, pup birth weight was significantly lower than in NPD litters, and this was exacerbated 9 days after birth. This attenuated BW gain was associated with lower plasma Pi levels in the pups. In conclusion, a mild but consistent Pi-seeking behavior is induced in adult male and female rats after only 2 days of dietary Pi restriction. On a relative basis, the amount of PiH(2)O ingested is greater in female than in male animals, but does not increase further during pregnancy and lactation.  相似文献   

12.
We investigated the effect of repetitive postnatal (2-7 days) intracerebroventricular administration of neuropeptide Y (NPY) on food intake and body weight gain in the 3- to 120-day-old Sprague-Dawley rats. NPY caused a 32% transient increase in body weight gain with elevated circulating insulin concentrations within 24 h. This early intervention led to the persistence of hyperinsulinemia and relative hyperleptinemia with euglycemia in the 120-day-old female alone. This perturbation was associated with 50% suppression in adult female hypothalamic NPY concentrations and a 50-85% decline in NPY immunoreactivity in the paraventricular and arcuate nuclei. This change was paralleled by a approximately 20% decline in food intake and body weight gain at 60 and 120 days. However, when exogenous NPY was stereotaxically reinjected into the paraventricular nucleus of the approximately 120-day-old adult females who were pretreated with NPY postnatally, an increase in food intake and body weight gain was noted, attesting to no disruption in the NPY end-organ responsivity. We conclude that postnatal intracerebroventricular NPY has long-lasting effects that predetermine the resultant adult phenotype in a sex-specific manner.  相似文献   

13.
Hepatic injury by acetaminophen (APAP) has been extensively studied, although the alterations of renal functions and arterial blood pressure (ABP) after APAP exposure are still uncertain, and the impact of Nigella sativa oil (NSO) in this case is poorly defined. Sixty adult male albino rats were involved in two sets of experiments. The first was exposed to a single high dose of APAP (2.5 g/kg) orally preceded by 4 ml NSO/kg orally, while the second received 750 mg APAP/kg/day orally for seven consecutive days and was pretreated with 2 ml NSO/kg/day. Proximal tubular injury was assessed by laboratory and histological studies, and arterial blood pressure was recorded in all animals. In both experiments, urinary α-glutathione S-transferase and neutral endopeptidase, and microproteinuria were dramatically increased early indicating glomerulus and proximal tubule dysfunction that was mediated by raising 8-isoprostanes. Concomitantly, urinary albumin, total protein, creatinine, urea, glomerular filtration rate, Na and K levels, plasma creatinine, and urea were all changed significantly after APAP administration. Currently, ABP increased significantly after APAP which was mostly mediated by renal impairment and increased both renin activity and aldosterone secretion. Pretreatment with NSO produced significant normalization of physiological parameters as well as suppression of structural changes. In conclusion, measurement of urinary biomarkers can be considered a powerful tool for early screening of renal injury and alteration of ABP after APAP treatment. Concomitant administration of NSO can counterbalance these detrimental effects.  相似文献   

14.
15.
16.
We investigated changes in thymic tissue of male rats exposed to a 900 megahertz (MHz) electromagnetic field (EMF) on postnatal days 22–59. Three groups of six 21-day-old male Sprague-Dawley rats were allocated as: control (CG), sham (SG) and EMF (EMFG) groups. No procedure was performed on the CG rats. SG rats were placed in a Plexiglas cage for 1 h every day between postnatal days 22 and 59 without exposure to EMF. EMFG rats were placed in the same cage for the same periods as the SG rats and were exposed to 900 MHz EMF. Rats were sacrificed on postnatal day 60. Sections of thymus were stained for histological assessment. Oxidant/antioxidant parameters were investigated biochemically. Malondialdehyde (MDA) levels in EMFG increased compared to the other groups. Extravascular erythrocytes were observed in the medullary/corticomedullary regions in EMFG sections. We found that 900 MHz EMF applied for 1 h/day on postnatal days 22–59 can increase tissue MDA and histopathological changes in male rat thymic tissue.  相似文献   

17.
Androgen exposure during intrauterine life in nonhuman primates and in sheep results in a phenocopy of the reproductive and metabolic features of polycystic ovary syndrome (PCOS). Such exposure also results in reproductive features of PCOS in rodents. We investigated whether transient prenatal androgen treatment produced metabolic abnormalities in adult female rats and the mechanisms of these changes. Pregnant dams received free testosterone or vehicle injections during late gestation, and their female offspring were fed regular or high-fat diet (HFD). At 60 days of age, prenatally androgenized (PA) rats exhibited significantly increased body weight; parametrial and subcutaneous fat; serum insulin, cholesterol and triglyceride levels; and hepatic triglyceride content (all P < 0.0125). There were no significant differences in insulin sensitivity by intraperitoneal insulin tolerance test or insulin signaling in liver or skeletal muscle. HFD had similar effects to PA on body weight and composition as well as on circulating triglyceride levels. HFD further increased hepatic triglyceride content to a similar extent in both PA and control rats. In PA rats, HFD did not further increase circulating insulin, triglyceride, or cholesterol levels. In control rats, HFD increased insulin levels, but to a lesser extent than PA alone ( approximately 2.5- vs. approximately 12-fold, respectively). We conclude that transient prenatal androgen exposure produces features of the metabolic syndrome in adult female rats. Dyslipidemia and hepatic steatosis appear to be mediated by PA-induced increases in adiposity, whereas hyperinsulinemia appears to be a direct result of PA.  相似文献   

18.
Testosterone-dependent olfactory signals emitted by male are well known to accelerate female puberty in mice (Vandenbergh effect). However, it remains unclear whether these chemosignals also influence adult expression of male-directed odor preference. Therefore, we exposed female mice to intact or castrated male bedding (vs clean bedding as control) during the peripubertal period (postnatal day (PD) 21–38) and measured male-directed odor preference in adulthood. At PD45 or PD60, females exposed to intact male odors, and thus showing puberty acceleration, preferred to investigate odors from intact males over females or castrated males. Females exposed to castrated male odors did not show puberty acceleration but preferred male (intact or castrated) over female odors. Finally, control females did not show any odor preference when tested at PD45, although a preference for male odors emerged later (PD60). In a second experiment, females that were exposed to intact male odors after pubertal transition (PD36–53) also preferred intact male over castrated male odors. In conclusion, our results indicate that peripubertal exposure to male odors induced early expression of male-directed odor preference regardless of puberty-accelerating effect and that induction of male-directed odor preference is not specific to the peripubertal period.  相似文献   

19.
The developmental prolactin-releasing effect of Tryptoline (T), Methoxytryptoline (MT) and Hydroxytryptoline (OHT) was examined comparatively in male and female rats. A single injection of T 15 mg/Kg increased serum prolactin in both sexes; the increase was significant from day 20 onwards. OHT evoked a sharp rise in 12 day-old rats and the releasing effect increased with age, both in males and females. No significant sex differences were observed in T or OHT treated rats. MT caused an increment in prolactin secretion in male rats and this action increased with age. The releasing effect of MT was not significant in females, even at 38 postnatal days. In adult animals, the tryptolines (15 mg/Kg) were able to increase serum prolactin in males and in females in diestrous; a dose of 5 mg/Kg of T was only effective in adult male rats. The prolactin-releasing effect was drastically reduced by orchidectomy and by ovariectomy. LH, FSH and TSH were not modified by any treatment. The present results show for the first time the ontogeny of the prolactin-releasing effect of tryptolines in male and female rats and that this effect depends on the presence of gonadal secretions in adults.  相似文献   

20.
Trace elements participate in the organ specific impact of 1,2-dichloroethane (EDC) and Disulfiram (tetraethylthiuram disulfide; Antabuse (DSF)) administered singly or together, on male Sprague-Dawley rats exposed by diet (AIN-76) to DSF (0 and 0.15% for 10 d before and during exposure to EDC) and by inhalation to EDC (0,153, 304, 455 ppm (v/v); 7 h/d for 5 d/wk for 30 exposure days). Kidney, liver, spleen, and testes at exposure d 30 as well as progressive urine samples were examined for elemental content by simultaneous inductively coupled plasma atomic emission spectroscopy. Each compound singly or together produced EDC dose related (r≥0.8) changes in metal content in organs relative to controls. There were increases induced by EDC alone for P and Sr in the liver and decreases for Fe, Mg, and P in the spleen. EDC in DSF-exposed animals caused increases in Ca, Cu, Fe, Mn, and S and a decrease in K in the liver; increases in Ca, Cu, Fe, Mn, Mo, P, and S and a decrease of Zn in the testes; an increase in Fe and a decrease in K in the spleen; and an increase of P in the kidney. DSF alone increased Cu in the liver but decreased it in the testes and kidney; Pb was increased in the liver and kidney and Zn in the liver, spleen, and kidney; Al and Si were increased also in the liver, S in the spleen, and K in the kidney; Mn and Na were decreased in the kidney. The organs showing histopathology (the liver and testes) both showed increases in Ca, Cu, Fe, Mn, and S. Metals in urine characterized a “shock” impact of the initial exposure by initial excretion of Na and retention of most other elements. After steady state (>12 d), EDC alone caused increases for Sr and Zn; for EDC-DSF, EDC also decreased Na in addition to the changes elicited by DSF alone (increases in S and Zn and a decrease for Cu). The results were interpreted from the perspective of the effects of metals on the glutathione detoxicative pathway, the concentration of free diethyldithiocarbamate in urine, and an interaction with bone. Mechanisms of action of EDC, DSF, and EDC-DSF must include consideration of trace elements in addition to organic intermediates, metabolites, and enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号