首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have previously demonstrated that adolescent exposure of rats to bisphenol-A (BPA), an environmental endocrine disrupter, increases anxiety, impairs spatial memory, and decreases dendritic spine density in the CA1 region of the hippocampus (CA1) and medial prefrontal cortex (mPFC) when measured in adolescents in both sexes. The present study examined whether the behavioral and morphological alterations following BPA exposure during adolescent development are maintained into adulthood. Male and female, adolescent rats received BPA, 40 μg/kg/bodyweight, or control treatments for one week. In adulthood, subjects were tested for anxiety and locomotor activity, spatial memory, non-spatial visual memory, and sucrose preference. Additionally, stress-induced serum corticosterone levels and dendritic spine density in the mPFC and CA1 were measured. BPA-treated males, but not females, had decreased arm visits on the elevated plus maze, but there was no effect on anxiety. Non-spatial memory, object recognition, was also decreased in BPA treated males, but not in females. BPA exposure did not alter spatial memory, object placement, but decreased exploration during the tasks in both sexes. No significant group differences in sucrose preference or serum corticosterone levels in response to a stress challenge were found. However, BPA exposure, regardless of sex, significantly decreased spine density of both apical and basal dendrites on pyramidal cells in CA1 but had no effect in the mPFC. Current data are discussed in relation to BPA dependent changes, which were present during adolescence and did, or did not, endure into adulthood. Overall, adolescent BPA exposure, below the current reference safe daily limit set by the U.S.E.P.A., leads to alterations in some behaviors and neuronal morphology that endure into adulthood.  相似文献   

2.
Evidence suggests that women are more susceptible to stress-related disorders than men. Animal studies demonstrate a similar female sensitivity to stress and have been used to examine the underlying neurobiology of sex-specific effects of stress. Although our understanding of the sex-specific effects of chronic adolescent stress has grown in recent years, few studies have reported the effects of adolescent stress on depressive-like behavior. The purpose of this study was to determine if a chronic mixed modality stressor (consisting of isolation, restraint, and social defeat) during adolescence (PND 37-49) resulted in differential and sustained changes in depressive-like behavior in male and female Wistar rats. Female rats exposed to chronic adolescent stress displayed decreased sucrose consumption, hyperactivity in the elevated plus maze, decreased activity in the forced swim test, and a blunted corticosterone response to an acute forced swim stress compared to controls during both adolescence (PND 48-57) and adulthood (PND 96-104). Male rats exposed to chronic adolescent stress did not manifest significant behavioral changes at either the end of adolescence or in adulthood. These data support the proposition that adolescence may be a stress sensitive period for females and exposure to stress during adolescence results in behavioral effects that persist in females. Studies investigating the sex-specific effects of chronic adolescent stress may lead to a better understanding of the sexually dimorphic incidence of depressive and anxiety disorders in humans and ultimately improve prevention and treatment strategies.  相似文献   

3.
Fifteen percent of women worldwide develop postpartum depression; however, many women also suffer from mood disorders during pregnancy. Our knowledge of how these stress-related disorders affect the neurobiology of the mother is very limited. In animal models, depressive-like behavior is often associated with repeated stress and alterations in adult neurogenesis in the hippocampus. However, research has yet to investigate the effect of stress on affective-like behavior and hippocampal neurogenesis in the pregnant female. The aim of the present study was to determine whether stress during gestation alters affective-like behaviors, corticosterone levels, and hippocampal cell proliferation and new cell survival in the pregnant female, and whether these effects differ from virgin females. Age-matched pregnant and virgin Sprague-Dawley rats were divided into two conditions: 1) stress and 2) control. Females in the stress condition were repeatedly restrained during gestation, and at matched time points in virgin females. Affective-like behaviors were assessed at the end of gestation, and at matched time points in virgin females. Results demonstrate that regardless of repeated restraint stress, pregnant females have increased anxiety-like behavior, decreased depressive-like behavior, and lower corticosterone levels, compared to non-stressed, and at times stressed, virgin females. In addition, stressed virgin females have lower levels of depressive-like behavior compared to control virgin females. Interestingly, hippocampal cell proliferation was increased in both virgin and pregnant females after stress. Understanding how stress affects the female during different reproductive states will aid in improving the health and well being of the mother and child.  相似文献   

4.
A wide body of research has indicated that perinatal exposure to stressors alters the organism, notably by programming behavioral and neuroendocrine responses and sensitivity to drugs of abuse in adulthood. Recent evidence suggests that adolescence also may represent a sensitive period of brain development, and yet there has been little research on the long-lasting effects of stressors during this period. We investigated the effects of pubertal social stress (PS; daily 1-h isolation followed by pairing with a new cage mate on postnatal days 33-48) on locomotor sensitization to injections of nicotine and corticosterone response to restraint stress when the rats were adults (approximately 3 weeks after PS). There were no differences among the groups in locomotor activity to injections of saline. However, PS females had enhanced locomotor sensitization to repeated doses of nicotine compared to control (non-stressed; NS) females, whereas PS males and NS males did not differ. PS enhanced the corticosterone response to restraint in male rats previously sensitized to nicotine and decreased the corticosterone response in nonsensitized male rats. In contrast, PS females and NS females did not differ in plasma corticosterone levels in response to restraint stress, but NS females showed enhanced corticosterone release to restraint after sensitization to nicotine. Thus, during adolescence, social stressors can have long-lasting effects, and the effects appear to differ for males and females.  相似文献   

5.
产前母体处于应激状态下,可以削弱子代的神经系统对外界不良刺激影响的抵抗能力.但产前应激状态是否可以影响抗精神疾病药物对动物行为的增益作用,目前还没有明确的结论.此外,在动物实验中,动物需要经常接受注射操作,注射操作本身是否会影响动物行为,尚未有相关研究.在本实验中,探索了产前轻微应激状态、围产期注射操作和抗精神疾病药物对动物行为可能的交互影响.母鼠在经历产前轻微应激状态后生产子代,雄性仔鼠在围产期(日龄第7, 9, 11天)不接受注射或接受盐水或奥氮平注射(2 mg/kg,腹腔注射).在其亚成年期(日龄第35天)和成年期(日龄第60天),观察其社交和嗅觉辨识行为,分析了总探索时间和对新旧刺激的偏好程度两个参数.我们发现,围产期重复注射操作可以改变产前应激组大鼠在社交和嗅觉辨识实验中的偏好程度,对无应激组大鼠没有影响.奥氮平注射可以增长无应激组大鼠在社交活动中的总探索时间,对应激组大鼠没有影响.研究表明,产前轻微应激状态可以易化诸如围产期注射操作等不良环境刺激导致的行为异常,并减弱抗精神疾病药物的对神经系统的影响.  相似文献   

6.
Many neural systems are undergoing marked development over adolescence, which may heighten an animal's vulnerability to stressors. One consequence may be altered sensitivity to drugs of abuse. We previously reported that social stressors in adolescence increased behavioral sensitization to nicotine in adulthood in female, but not male, rats. Here we examined whether social stressors in adolescence alter the functioning of the hypothalamic-pituitary-adrenal (HPA) axis by examining corticosterone release in response to restraint in adulthood. To further assess effects of social stressors on behavioral sensitivity to psychostimulants, we examined locomotor activity in response to nicotine and to amphetamine. In a second set of experiments, we investigated whether the same procedure of social stressors administered in adulthood produces effects similar to that observed when administered in adolescence. Rats underwent daily 1 h isolation followed by pairing with a new cage mate on either postnatal days 33-48 (pubertal stress: PS) or days 65-80 (adult stress: AS). Three weeks later rats tested for either: (a) corticosterone levels were measured in response to restraint, or (b) locomotor sensitization to nicotine (0.25 mg/kg; 5 days) followed by an amphetamine challenge (0.5 mg/kg) 24 h later. Effects of social stressors were evident only in females. PS females had increased locomotor activity to amphetamine compared to controls, and AS females had increased corticosterone release compared to controls. No effect of the social stressors was found in males at either age except for reduced weight gain during the stress procedure. Thus, females are more susceptible to the enduring effects of these moderate social stressors than are males. However, in terms of behavioral sensitivity to drugs of abuse, females may be more susceptible to stressors during adolescence than adulthood, although the reverse appears to be true for HPA function.  相似文献   

7.
Epidemiological studies have produced evidence that unfavorable intrauterine environments during fetal life may lead to adverse outcomes in adulthood. We have previously shown that a low-sodium diet, given to pregnant rats over the last week of gestation, results in intrauterine growth restriction (IUGR). We hypothesize that pups born with IUGR are more susceptible to the development of hypertension in adulthood. IUGR fetuses and rats aged 1 wk were characterized for organ growth and renal morphogenesis. The adults (12 wk) were evaluated for weight, systolic blood pressure, activity of the renin-angiotensin-aldosterone system (RAAS), and renal function; hearts and kidneys underwent a histological examination. Brain and cardiac ventricle-to-body ratios were increased in IUGR fetuses compared with age-matched controls, whereas the kidney-to-body ratio was unchanged. Systolic blood pressure was elevated in both IUGR male and female adults. Plasma aldosterone levels were not correlated with increased plasma renin activity. Moreover, urinary sodium was decreased, whereas plasma urea was elevated in both males and females, and creatinine levels were augmented only in females, suggesting a glomerular filtration impairment in IUGR. In our model of IUGR induced by a low-sodium diet given to pregnant rats, high blood pressure, alteration of the RAAS, and renal dysfunction are observed in adult life. Differences observed between male and female adults suggest the importance of gender in outcomes in adulthood after IUGR.  相似文献   

8.
Puberty is a time of significant change in preparation for adulthood. Here, we examined how stressful experience affects cognitive and related hormonal responses in male and female rats prior to, during and after puberty. Groups were exposed to an acute stressor of brief periodic tailshocks and tested 24 h later in an associative memory task of trace eyeblink conditioning. Exposure to the stressor did not alter conditioning in males or females prior to puberty but enhanced conditioning in both males and females during puberty. The enhancement occurred in pubescent females irrespective of the estrous cycle. In adulthood, sex differences in trace conditioning and the response to stress emerged: females outperformed males under unstressed conditions, but after stressor exposure, trace conditioning in females was impaired whereas that in males was enhanced. These differences were not related to changes in gross motor activity or other nonspecific measures of performance. The effects of acute stress on corticosterone, estradiol, progesterone, and testosterone were also measured. Stressor exposure increased the concentration of corticosterone in all age groups, although sex differences were only evident in adults. All reproductive hormones except estradiol increased with age in a predictable and sex dependent fashion and none were affected by stressor exposure. Estradiol decreased in male rats across age, and remained stable for female rats. Together, these data indicate that males and female respond similarly to learning opportunities and stressful experience before and during puberty; it is in adulthood that sex differences and the opposite responses to stress arise.  相似文献   

9.
Mice exposed to repeated restraint (RR: 2 h of restraint on each of 3 consecutive days) lose weight and do not return to the weight of non-stressed controls after restraint ends. These mice also exhibit an exaggerated endocrine response to mild stressors in the post-stress period. To determine if other aspects of the stress response are altered, NIH Swiss mice were repeatedly restrained then evaluated for anxiety-like behavior in various behavioral tests. Twelve days after the end of RR half of the control and RR mice were subjected to the mild stress of an intraperitoneal injection of saline before placement in an elevated plus maze. RR mice not subjected to mild stress showed the same level of anxiety as the control and RR mice exposed to mild stress. Placement in a light-dark box 20 days after restraint also indicated an increase in anxiety-like behavior in RR mice that had not been exposed to mild stress. In contrast, RR mice displayed no increase in anxiety-like behavior in the defensive withdrawal apparatus and the marble burying test 6 and 17 days, respectively, after restraint. RR mice released more corticosterone than non-restrained controls exposed to defensive withdrawal or EPM apparatus although baseline corticosterone remained at control levels. These results suggest that RR induces an exaggeration of both endocrine and behavioral responses to subsequent mild stressors. This post-stress hypersensitivity to mild stress may contribute to the sustained reduction in the body weight of RR animals.  相似文献   

10.
Social isolation of rodents during development is thought to be a relevant model of early-life chronic stress. We investigated the effects of early-life social isolation on later adult fear and anxiety behavior, and on corticosterone stress responses, in male rats. On postnatal day 21, male rats were either housed in isolation or in groups of 3 for a 3 week period, after which, all rats were group-reared for an additional 2 weeks. After the 5-week treatment, adult rats were examined for conditioned fear, open field anxiety-like behavior, social interaction behavior and corticosterone responses to restraint stress. Isolates exhibited increased anxiety-like behaviors in a brightly-lit open field during the first 10 min of the test period compared to group-reared rats. Isolation-reared rats also showed increased fear behavior and reduced social contact in a social interaction test, and a transient increase in fear behavior to a conditioned stimulus that predicted foot-shock. Isolation-reared rats showed similar restraint-induced increases in plasma corticosterone as group-reared controls, but plasma corticosterone levels 2 h after restraint were significantly lower than pre-stress levels in isolates. Overall, this study shows that isolation restricted to an early part of development increases anxiety-like and fear behaviors in adulthood, and also results in depressed levels of plasma corticosterone following restraint stress.  相似文献   

11.
Depression during pregnancy and the postpartum period is a growing health problem, which affects up to 20% of women. Currently, selective serotonin reuptake inhibitor (SSRIs) medications are commonly used for treatment of maternal depression. Unfortunately, there is very little research on the long-term effect of maternal depression and perinatal SSRI exposure on offspring development. Therefore, the aim of this study was to determine the role of exposure to fluoxetine during development on affective-like behaviors and hippocampal neurogenesis in adolescent offspring in a rodent model of maternal depression. To do this, gestationally stressed and non-stressed Sprague-Dawley rat dams were treated with either fluoxetine (5 mg/kg/day) or vehicle beginning on postnatal day 1 (P1). Adolescent male and female offspring were divided into 4 groups: 1) prenatal stress+fluoxetine exposure, 2) prenatal stress+vehicle, 3) fluoxetine exposure alone, and 4) vehicle alone. Adolescent offspring were assessed for anxiety-like behavior using the Open Field Test and depressive-like behavior using the Forced Swim Test. Brains were analyzed for endogenous markers of hippocampal neurogenesis via immunohistochemistry. Results demonstrate that maternal fluoxetine exposure reverses the reduction in immobility evident in prenatally stressed adolescent offspring. In addition, maternal fluoxetine exposure reverses the decrease in hippocampal cell proliferation and neurogenesis in maternally stressed adolescent offspring. This research provides important evidence on the long-term effect of fluoxetine exposure during development in a model of maternal adversity.  相似文献   

12.
In previous studies, we showed for the first time that prenatal stress in rats produces long-term alterations of formalin-induced pain behavior that are dependent on age and sex, and we demonstrated an important role of the serotonergic system in mechanisms of prenatal stress (Butkevich, I.P. and Vershinina, E.A., 2001; Butkevich, I.P. and Vershinina, E.A., 2003; Butkevich, I.P., Mikhailenko, V.A., Vershinina, E.A., Khozhai, L.I., Grigorev, I.P., Otellin, V.A., 2005; Butkevich, I.P., Mikhailenko, V.A., Khozhai, L.I., Otellin, V.A., 2006). In the present study, we focus on the influence of the maternal corticosterone milieu and its role in the effects of stress during pregnancy on formalin-induced pain and the corticosterone response to it in male and female offspring of different ages. For this purpose, we used adrenalectomy (AD) in female rats 3-4 weeks before mating (as distinct from AD typically performed at the beginning of pregnancy). Since AD is considered a reliable method to treat hypercortisolism, researches on the effects of long-term AD in dams on the systems responsible for adaptive behavior in offspring are important (such studies are not described in the literature). The results demonstrate that the differences in the corticosterone response to injection of formalin and saline are obvious in 90-day-old (adult) female offspring but masked in 25-day-old ones. AD promoted the corticosterone response to formalin-induced pain but not to injection of saline in prenatally non-stressed female offspring of both ages. Prenatal stress canceled the differences in corticosterone response to injection of formalin and saline in 25-day-old offspring of AD dams and in adult offspring of sham-operated (SH) dams but caused similar differences in adult offspring of AD dams. Sex differences were found in basal corticosterone levels in AD prenatally stressed rats of both age groups, with a higher level in females, and in the corticosterone response to formalin-induced pain in the adult rats of all groups investigated, with higher corticosterone levels in females. In regard to pain behavior, AD induced significant changes in flexing + shaking in prenatally non-stressed adult offspring and canceled the differences in this behavior between non-stressed and stressed 25-day-old offspring. There were sex differences in pain behavior of the adult rats: greater flexing + shaking in AD non-stressed males but in SH non-stressed females; greater licking in prenatally-stressed AD and SH females. These results indicate that the long-term influences of maternal corticosterone on formalin-induced pain and the corticosterone response to it are determined by the sex and age of the offspring and suggest that other mechanisms, including serotonergic ones revealed in our previous studies, are involved in the effects of prenatal stress on inflammatory pain behavior.  相似文献   

13.
《Hormones and behavior》2011,59(5):835-843
Prenatal alcohol exposure (PAE) alters adult neurogenesis and the neurogenic response to stress in male rats. As the effects of stress on neurogenesis are sexually dimorphic, the present study investigated the effects of PAE on adult hippocampal neurogenesis under both nonstressed and stressed conditions in female rats. Pregnant females were assigned to one of three prenatal treatments: (1) alcohol (PAE)—liquid alcohol (ethanol) diet ad libitum (36% ethanol-derived calories); (2) pair-fed—isocaloric liquid diet, with maltose–dextrin substituted for ethanol, in the amount consumed by a PAE partner (g/kg body wt/day of gestation); and (3) control—lab chow ad libitum. Female offspring were assigned to either nonstressed (undisturbed) or stressed (repeated restraint stress for 9 days) conditions. On day 10, all rats were injected with bromodeoxyuridine (BrdU) and perfused either 24 hours (cell proliferation) or 3 weeks (cell survival) later. We found that PAE did not significantly alter cell proliferation or survival, whereas females from the pair-fed condition exhibited elevated levels of cell survival compared to control females. Importantly, however, the proportion of both new neurons and new glial cells in the hippocampal dentate gyrus was reduced in PAE compared to control females. Exposure to stress did not alter neurogenesis in any of the prenatal treatment groups. In summary, compared to females from the control condition, prenatal dietary restriction enhanced the survival of new neurons, whereas PAE altered the differentiation of newly produced cells in the adult dentate gyrus. Alterations in hippocampal neurogenesis following PAE may contribute to learning and memory deficits seen in individuals with fetal alcohol spectrum disorders.  相似文献   

14.
Post-partum stress and depression (PPD) have a significant effect on child development and behavior. Depression is associated with hypercortisolism in humans, and the fluctuating levels of hormones, including corticosterone, during pregnancy and the post-partum, may contribute to PPD. The present study was developed to investigate the effects of high-level corticosterone (CORT) post-partum in the mother on postnatal neurogenesis and behavior in the offspring. Sprague-Dawley dams were treated with either CORT (40 mg/kg) or sesame oil injections daily for 26 days beginning the day after giving birth. Dams were tested in the forced swim test (FST) and in the open field test (OFT) on days 24-26 post-partum. Results showed that the dams exposed to CORT expressed "depressive-like" behavior compared to controls, with decreased struggling behavior and increased immobility in the FST. To investigate the effects of treatment on hippocampal postnatal cell proliferation and survival in the offspring, males and females from treated dams were injected with BrdU (50 mg/kg) on postnatal day 21 and perfused either 24 h (cell proliferation) or 21 days (cell survival) later. Furthermore, male and female offspring from each litter were tested in adulthood on various behavioral tests, including the forced swim test, open field test, resistance to capture test and elevated plus maze. Intriguingly, male, but not female, offspring of CORT-treated dams exhibited decreased postnatal cell proliferation in the dentate gyrus. Both male and female offspring of CORT-treated dams showed higher resistance to capture and greater locomotor activity as assessed in the open field test. As high levels of CORT may be a characteristic of stress and/or depression, these findings support a model of 'CORT-induced' post-partum stress and possibly depression and demonstrate that the offspring of affected dams can exhibit changes in postnatal neurogenesis and behavior in adulthood.  相似文献   

15.
Previous research has found that adolescent ethanol (EtOH) exposure alters drug seeking behaviors, cognition and neuroplasticity. Using male Sprague Dawley rats, differences in spatial working memory, non-spatial discrimination learning and behavioral flexibility were explored as a function of age at the onset (mid-adolescent vs. adult) of chronic EtOH exposure (CET). Concentrations of mature brain-derived neurotrophic factor (mBDNF) and beta-nerve growth factor (β-NGF) in the prefrontal cortex and hippocampus were also assessed at different time-points: during CET, following acute abstinence (48-hrs), and after protracted abstinence (6–8 wks). Our results revealed that an adolescent onset of CET leads to increased EtOH consumption that persisted into adulthood. In both adult and adolescent onset CET groups, there were significant long-term reductions in prefrontal cortical mBDNF and β-NGF levels. However, only adult onset CET rats displayed decreased hippocampal BDNF levels. Spatial memory, assessed by spontaneous alternation and delayed alternation, was not significantly affected by CET as a function of age of drinking onset, but higher blood–EtOH levels were correlated with lower spontaneous alternation scores. Regardless of the age of onset, EtOH exposed rats were impaired on non-spatial discrimination learning and displayed inflexible behavioral patterns upon reversal learning. Our results indicate that adolescent EtOH exposure changes long-term consumption patterns producing behavioral and neural dysfunctions that persist across the lifespan.  相似文献   

16.
Prenatal alcohol exposure (PAE) alters adult neurogenesis and the neurogenic response to stress in male rats. As the effects of stress on neurogenesis are sexually dimorphic, the present study investigated the effects of PAE on adult hippocampal neurogenesis under both nonstressed and stressed conditions in female rats. Pregnant females were assigned to one of three prenatal treatments: (1) alcohol (PAE)—liquid alcohol (ethanol) diet ad libitum (36% ethanol-derived calories); (2) pair-fed—isocaloric liquid diet, with maltose–dextrin substituted for ethanol, in the amount consumed by a PAE partner (g/kg body wt/day of gestation); and (3) control—lab chow ad libitum. Female offspring were assigned to either nonstressed (undisturbed) or stressed (repeated restraint stress for 9 days) conditions. On day 10, all rats were injected with bromodeoxyuridine (BrdU) and perfused either 24 hours (cell proliferation) or 3 weeks (cell survival) later. We found that PAE did not significantly alter cell proliferation or survival, whereas females from the pair-fed condition exhibited elevated levels of cell survival compared to control females. Importantly, however, the proportion of both new neurons and new glial cells in the hippocampal dentate gyrus was reduced in PAE compared to control females. Exposure to stress did not alter neurogenesis in any of the prenatal treatment groups. In summary, compared to females from the control condition, prenatal dietary restriction enhanced the survival of new neurons, whereas PAE altered the differentiation of newly produced cells in the adult dentate gyrus. Alterations in hippocampal neurogenesis following PAE may contribute to learning and memory deficits seen in individuals with fetal alcohol spectrum disorders.  相似文献   

17.
Environmental factors operating early in life have long-lasting and important consequences for the mental and physical health of the adult organism. In particular, prenatal exposure to stress represents one category of adverse early environmental events that are associated with development of depression and schizophrenia in adulthood. In the present studies, we examined whether prenatal stress alters the habituation of hypothalamic-pituitary-adrenal (HPA) activity that occurs with repeated stress exposure in adulthood. We compared corticosterone responses to the first vs. the eighth restraint, with lower responses to the eighth vs. the first considered evidence of habituation. In males, prenatal stress prevented the habituation of corticosterone responses to repeated restraint that was observed in non-prenatally stressed rats. Limited evidence of habituation was seen in either group of females and prenatally stressed females did not exhibit the enhanced corticosterone response during recovery from the eighth restraint that was seen in non-prenatally stressed females. Together, these results suggest a sex-specific interaction between prenatal stress and adult chronic stress on HPA activity.  相似文献   

18.
Disruptions in the social environment, such as social isolation, are distressing and can induce various behavioral and neural changes in the distressed animal. We conducted a series of experiments to test the hypothesis that long-term social isolation affects brain plasticity and alters behavior in the highly social prairie vole (Microtus ochrogaster). In Experiment 1, adult female prairie voles were injected with a cell division marker, 5-bromo-2′-deoxyuridine (BrdU), and then same-sex pair-housed (control) or single-housed (isolation) for 6 weeks. Social isolation reduced cell proliferation, survival, and neuronal differentiation and altered cell death in the dentate gyrus of the hippocampus and the amygdala. In addition, social isolation reduced cell proliferation in the medial preoptic area and cell survival in the ventromedial hypothalamus. These data suggest that long-term social isolation affects distinct stages of adult neurogenesis in specific limbic brain regions. In Experiment 2, isolated females displayed higher levels of anxiety-like behaviors in both the open field and elevated plus maze tests and higher levels of depression-like behavior in the forced swim test than controls. Further, isolated females showed a higher level of affiliative behavior than controls, but the two groups did not differ in social recognition memory. Together, our data suggest that social isolation not only impairs cell proliferation, survival, and neuronal differentiation in limbic brain areas, but also alters anxiety-like, depression-like, and affiliative behaviors in adult female prairie voles. These data warrant further investigation of a possible link between altered neurogenesis within the limbic system and behavioral changes.  相似文献   

19.
The effect of prenatal stress on the time course of the corticosterone response to acute and chronic stress and on hematological and immunological parameters in the offspring were analized in the present study. Pregnant Sprague-Dawley rats were stressed daily for 2 hours during the last week of gestation, and female and male off-spring were studied during adulthood. Corticosterone response to acute immobilization stress was not significantly different in either control or prenatally stressed rats. However, after 10 days of immobilization stress the corticosterone response completely disappeared in the control animals but not in the prenatally stressed group: high levels of corticosterone were found during the first hour of stress, although they were lower than those found in acutely stressed rats. Adrenal hypertrophy in response to prenatal stress was observed in females but not in male offspring, and chronic stress only increased adrenal weights in the male control group. Prenatal stress decreased the total peripheral leukocyte count, altered its diferential count decreasing lymphocytes and increasing neutrophil and eosinhophil counts, and significantly reduced the percentage of peripheral lymphocyte T CD8+ subset in male offspring. Chronic stress also reduced the percentage of the peripheral T CD8+ lymphocyte subset in the control group but not in the prenatally stressed group. These results suggest that the exposure to stress during pregnancy alters the adaptative response of the hypothalamus-pituitary-adrenocortical axis to chronic stress and presumably the immune competence in the offspring.  相似文献   

20.
Aversive stressful experiences are typically associated with increased anxiety and a predisposition to develop mood disorders. Negative stress also suppresses adult neurogenesis and restricts dendritic architecture in the hippocampus, a brain region associated with anxiety regulation. The effects of aversive stress on hippocampal structure and function have been linked to stress-induced elevations in glucocorticoids. Normalizing corticosterone levels prevents some of the deleterious consequences of stress, including increased anxiety and suppressed structural plasticity in the hippocampus. Here we examined whether a rewarding stressor, namely sexual experience, also adversely affects hippocampal structure and function in adult rats. Adult male rats were exposed to a sexually-receptive female once (acute) or once daily for 14 consecutive days (chronic) and levels of circulating glucocorticoids were measured. Separate cohorts of sexually experienced rats were injected with the thymidine analog bromodeoxyuridine in order to measure cell proliferation and neurogenesis in the hippocampus. In addition, brains were processed using Golgi impregnation to assess the effects of sexual experience on dendritic spines and dendritic complexity in the hippocampus. Finally, to evaluate whether sexual experience alters hippocampal function, rats were tested on two tests of anxiety-like behavior: novelty suppressed feeding and the elevated plus maze. We found that acute sexual experience increased circulating corticosterone levels and the number of new neurons in the hippocampus. Chronic sexual experience no longer produced an increase in corticosterone levels but continued to promote adult neurogenesis and stimulate the growth of dendritic spines and dendritic architecture. Chronic sexual experience also reduced anxiety-like behavior. These findings suggest that a rewarding experience not only buffers against the deleterious actions of early elevated glucocorticoids but actually promotes neuronal growth and reduces anxiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号