首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was aimed to evaluate the behavioral and molecular effects of maternal deprivation in adult rats. To this aim, male rats deprived and non-deprived were assessed in the forced swimming and open-field tests in adult phase. In addition adrenocorticotrophin hormone (ACTH) levels was assessed in serum and brain-derived-neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) protein levels were assessed in prefrontal cortex, hippocampus and amygdala. We observed that maternal deprivation increased immobility time, and decreased climbing time, without affecting locomotor activity. ACTH circulating levels were increased in maternal deprived rats. Additionally, BDNF protein levels were reduced in the amygdala and NT-3 and NGF were reduced in both hippocampus and amygdala in maternal deprived rats, compared to control group. In conclusion, our results support the idea that behavioral, ACTH circulating levels and neurotrophins levels altered in maternal deprivation model could contribute to stress-related diseases, such as depression.  相似文献   

2.
Neuropeptide Y (NPY) is a 36-amino acid peptide which exerts several regulatory actions within peripheral and central nervous systems. Among NPY actions preclinical and clinical data have suggested that the anxiolytic and antidepressant actions of NPY may be related to its antagonist action on the hypothalamic-pituitary-adrenal (HPA) axis. The neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are proteins involved in the growth, survival and function of neurons. In addition to this, a possible role of neurotrophins, particularly BDNF, in HPA axis hyperactivation has been proposed. To characterize the effect of NPY on the production of neurotrophins in the hypothalamus we exposed young adult rats to NPY intraperitoneal administration for three consecutive days and then evaluated BDNF and NGF synthesis in this brain region. We found that NPY treatment decreased BDNF and increased NGF production in the hypothalamus. Given the role of neurotrophins in the hypothalamus, these findings, although preliminary, provide evidence for a role of NPY as inhibitor of HPA axis and support the idea that NPY might be involved in pathologies characterized by HPA axis dysfunctions.  相似文献   

3.
Many works showed that nerve growth factor (NGF) injected into the brain of animal model emerges potential antidepressant effects. However, this route of administration significantly restricts the application of NGF clinically. Here, we reported that intranasal NGF could provide an alternative to intraventricular injection. The behavioral analysis showed that intranasal administration of NGF reduced the immobility time in forced swimming test (FST) and tail suspension test (TST) in mice. Likewise, intranasal NGF increased the sucrose intake and the locomotor activity in rats after unpredictable chronic mild stress (UCMS). Furthermore, intranasal NGF increased the levels of monoamine neurotransmitters (norepinephrine, dopamine) in the frontal cortex and hippocampus and affected the number of 5-bromodeoxyuridine (BrdU), c-fos and caspase-3 positive neurons in dentate gyrus of hippocampus in rats after UCMS. In summary, intranasal NGF had significant antidepressant effects on animal models of depression and this route of administration may provide a promising way to deliver NGF to brain in a therapeutic perspective.  相似文献   

4.
The problem of drug-resistant depression indicates a strong need for alternative antidepressant therapies. In our earlier papers we described synergistic, antidepressant-like effects of a combination of imipramine (IMI) and amantadine (AMA) in the forced swimming test in rats, an animal model of depression. Moreover, preliminary clinical data showed that the above-mentioned combination had beneficial effects in treatment-resistant patients. In addition, a number of studies predicted a role of the brain-derived neurotrophic factor (BDNF) in the mechanism of action of antidepressant drugs (ADs). Since the most potent effect of ADs on BDNF gene expression was found after prolonged treatment, in the present study we investigated the influence of repeated treatment with IMI (5 or 10 mg/kg) and AMA (10 mg/kg), given separately or jointly (twice daily for 14 day), on mRNA level (the Northern blot) in the hippocampus and cerebral cortex. The experiment was carried out on male Wistar rats. The tissue for biochemical assays was dissected 24 h after the last dose of IMI and AMA. We also studied the effect of repeated treatment with IMI and AMA on the action of 5-HT(1A)- and 5-HT(2A) receptor agonists (8-OH-DPAT and (+/-)DOI, respectively) in behavioral tests. The obtained results showed that in the hippocampus IMI (10 mg/kg), and in the cerebral cortex IMI (5 and 10 mg/kg) and AMA (10 mg/kg) significantly elevated BDNF mRNA level. Joint administration of IMI (5 or 10 mg/kg) and AMA (10 mg/kg) induced a more potent increase BDNF gene expression in the hippocampus (but not in cerebral cortex) and either inhibited the behavioral syndrome induced by (+/-)DOI or did not change the action of 8-OH-DPAT (compared to treatment with either drug alone). The obtained results suggest that the enhancement of BDNF gene expression may be essential for the therapeutic effect of co-administration of IMI and AMA to drug-resistant depressed patients, and that among other mechanisms, 5-HT(2A) receptors possibly play some role in this effect.  相似文献   

5.
Recent studies indicate a role of the brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression, as well as in the mechanism of action of antidepressant drugs (ADs). It has been shown that serum BDNF levels are decreased in depressed patients. Moreover, antidepressant treatment increases serum BDNF levels and it is positively correlated with medication response. In addition, repeated administration of ADs induces an increase in rat hippocampal or cortical BDNF gene expression. Since the most potent effect of ADs on BDNF gene expression was found after prolonged treatment, in the present study we investigated the influence of repeated treatment (twice daily for 14 days) of the new AD mirtazapine (5 or 10 mg/kg) on BDNF mRNA level (the Northern blot) in rat hippocampus and cerebral cortex. Imipramine was used as a reference compound. The experiment was carried out on male Wistar rats. The tissue for biochemical assays was collected 24 h after the last doses of mirtazapine and imipramine. We also studied the effect of repeated mirtazapine on the action of the 5-HT2A receptor agonist (+/-)DOI in the behavioral test (head twitches induced by (+/-)DOI) in rats. The obtained results showed that, like imipramine (10 mg/kg), mirtazapine (10 mg/kg) increased BDNF gene expression in both the examined brain regions: in the hippocampus by 24.0 and 26.5%, in the cerebral cortex by 29.9 and 41.5%, respectively, compared with the vehicle-treated control. Neither mirtazapine nor imipramine administered repeatedly at a lower dose (5 mg/kg) significantly changed BDNF mRNA levels in the hippocampus and cerebral cortex. Repeated treatment with mirtazapine (10, but not 5 mg/kg) inhibited the behavioral syndrome induced by (+/-)DOI. This study provides first conclusive evidence that repeated mirtazapine administration increases BDNF mRNA levels; moreover, it indicates that the enhancement of BDNF gene expression may be essential for the clinical effect of mirtazapine.  相似文献   

6.
The action of 1.0 and 10.0 mg/kg (i.p.) of corticosterone on serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents and on serotonin turnover, measured by an MAO-inhibitor method, was studied at 30 and 120 min after administration. A 1.0 mg/kg dose of corticosterone increased the serotonin content and turnover in the hypothalamus and mesencephalon 30 min after administration; however, it was ineffective on dorsal hippocampus and frontal and parietal cortex. 5-HIAA content did not change significantly in any of the brain areas studied. A 10.0 mg/kg dose of corticosterone decreased the serotonin content and turnover in the hypothalamus and mesencephalon; it was ineffective in other brain areas investigated. 5-HIAA content significantly decreased in the hypothalamus while it increased in the mesencephalon and dorsal hippocampus. In the parietal and frontal cortex, 5-HIAA content did not change following administration of 10.0 mg/kg of corticosterone. At 120 min after corticosterone administration, neither 5-HT content and turnover nor 5-HIAA content showed any change in the brain areas investigated. The results suggest that corticosteroids might change the activity of the brain serotoninergic system in a dose- and time-dependent manner, and in this way the serotoninergic system might play an important role in mediation of the corticosteroid effect exerted on brain function.  相似文献   

7.
Depression is a major social and health problem worldwide. Compound K (CK), an intestinal metabolite of panaxadiol ginsenosides, has been demonstrated to possess significant pharmacological effects on the central nervous system (CNS). Here, we set up this study to investigate the antidepressant effect of CK, and to explore the potential mechanisms underlying this activity. The behavioral despair model and chronic unpredictable mild stress (CUMS) model were established in mice or rats, respectively. Forced swimming test (FST), tail suspension test (TST) and locomotor activity were performed in mice, while the open-field test, food consumption and sucrose preference were assessed in rats. To investigate the underlying mechanism, the levels of endogenous noradrenaline, dopamine (DA), 5-hydroxytryptamine (5-HT) and their metabolites in the prefrontal cortex (PFC) and hippocampus were detected by HPLC coupled with electron detector. The dopamine degradation enzyme (COMT and MAO) expression was measured by western blot. The BDNF and NGF expression were investigated by immunohistochemical staining analysis. The results showed CK (10, 30 mg/kg) intragastric administration for 14 days significantly shorten the immobility time in FST and TST, which could be partially reversed by a D1 receptor antagonist Sch23390. For CUMS rats, CK alleviated the depressant-like behaviors, including decreased food consumption, spontaneous locomotor activity and lower sucrose preference, while WAY-100635, a 5-HT1A receptor antagonist, could attenuate this effect. In addition, CK increased the levels of 5-HT, DA and their metabolites in the PFC and hippocampus of CUMS rats, and could reverse overexpression of MAOB in PFC and hippocampus. CK also increased the GSH and GPx activity in the hippocampus and PFC. The IHC results revealed the BDNF and NGF expression were increased in CK-treated rats. The obtained results indicate that CK exhibits antidepressant effects in rodents, which may be due to the regulation of monoamine neurotransmitter concentration, enhancement of antioxidant capacity, as well as increase of neurotrophin expression in the CNS.  相似文献   

8.
Feng H  Lu LM  Huang Y  Zhu YC  Yao T 《生理学报》2005,57(5):537-544
高浓度的皮质酮可引起海马形态与功能的损伤,其中脑源性神经营养因子(brain-derived neurotrophic factor,BDNF) 表达的改变在海马形态与功能损伤中扮演重要角色。本实验的目的是观察单次皮下注射皮质酮后海马内BDNF-mRNA、前 体蛋白及成熟型蛋白表达的改变,并观察N-甲基-D-天冬氨酸(N-methyl-D-aspartate NMDA)受体阻滞剂MK801对皮质酮 作用的影响。实验结果显示,单次皮下注射皮质酮2 mg/kg,3 h后海马内BDNF mRNA、前体蛋白及成熟型蛋白的表达 均降低;MK801(0.1 mg/kg)对皮质酮的这一作用有增强效果。单独给予皮质酮或注射MK801 30 min后再给予皮质酮, 均能明显降低海马中cAMP反应元件结合蛋白(cAMP response element binding protein,CREB)的磷酸化水平,MK801与 皮质酮联用时CREB的磷酸化水平降低更为显著(与单独给予皮质酮相比,P<0.05)。实验结果提示,CREB磷酸化水平降 低可能是皮质酮引起海马BDNF表达减少的重要中间环节,阻断NMDA受体可加强皮质酮降低BDNF表达的效应。  相似文献   

9.
A significant upregulation of neurotrophins particularly brain-derived neurotrophic factor (BDNF) is believed to be involved in the initiation of epileptogenic changes such as the aberrant axonal sprouting and synaptic reorganization in the injured hippocampus. However, it is unknown which of the neurotrophins are upregulated during the peak period of aberrant mossy fiber sprouting in the chronically injured hippocampus. We measured chronic changes in the levels of BDNF, nerve growth factor (NGF) and neurotrophin-3 (NT-3) in the adult hippocampus using enzyme-linked immunosorbent assay (ELISA) after a unilateral intracerebroventricular administration of kainic acid (KA), a model of temporal lobe epilepsy. For comparison, neurotrophins were also measured from the control intact hippocampus. Further, to see the association between changes in neurotrophin levels and the progression of mossy fiber sprouting, chronic changes in the mossy fiber distribution within the dentate supragranular layer (DSGL) were quantified. In the KA-lesioned hippocampus, the neurotrophins BDNF and NGF were upregulated at 4 days post-lesion, in comparison to their levels in the intact hippocampus. However, the concentration of BDNF reached the baseline level at 45 days post-lesion and dramatically diminished at 120 days post-lesion. In contrast, the upregulation of NGF observed at 4 days post-lesion was sustained at both 45 days and 120 days post-lesion. The concentration of NT-3 was upregulated at 45 days post-lesion but remained comparable to baseline levels at 4 days and 120 days post-lesion. Interestingly, analysis of mossy fiber sprouting revealed that most of the aberrant sprouting in the lesioned hippocampus occurs between 45 days and 120 days post-lesion. Taken together, these results suggest that the period of robust mossy fiber sprouting does not correlate with the phase of post-lesion BDNF upregulation. Rather, it shows a relationship with the time of upregulation of neurotrophins NGF and NT-3.  相似文献   

10.
We investigated the efficacy of Ocimum basilicum (OB) essential oils for treating depression related behavioral, biochemical and histopathological changes caused by exposure to chronic unpredictable mild stress (CUMS) in mice and to explore the mechanism underlying the pathology. Male albino mice were divided into four groups: controls; CUMS; CUMS plus fluoxetine, the antidepressant administered for pharmacological validation of OB; and CUMS plus OB. Behavioral tests included the forced swim test (FST), elevated plus-maze (EPM) and the open ?eld test (OFT); these tests were performed at the end of the experiment. We assessed serum corticosterone level, protein, gene and immunoexpression of brain-derived neurotropic factor (BDNF) and glucocorticoid receptors (GRs) as well as immunoexpression of glial fibrillary acidic protein (GFAP), Ki67, caspase-3 in the hippocampus. CUMS caused depression in the mice as evidenced by prolonged immobility in the FST, prolonged time spent in the open arms during the EPM test and reduction of open field activity in the OFT. OB ameliorated the CUMS induced depressive status. OB significantly reduced the corticosterone level and up-regulated protein and gene expressions of BDNF and GR. OB reduced CUMS induced hippocampal neuron atrophy and apoptosis, and increased the number of the astrocytes and new nerve cells. OB significantly increased GFAP-positive cells as well as BDNF and GR immunoexpression in the hippocampus.  相似文献   

11.
Acute fasting induced antidepressant‐like effects. However, the exact brain region and mechanism of these actions are still largely unknown. Therefore, in this study the antidepressant‐like effects of acute fasting on c‐Fos expression and BDNF levels were investigated. Consistent with our previous findings, immobility time was remarkably shortened by 9 hrs fasting in the forced swimming test. Furthermore, these antidepressant‐like effects of 9 fasting were inhibited by a 5‐HT2A/2C receptor agonist (±)‐1‐(2, 5‐dimethoxy‐4‐iodophenyl)‐2‐aminopropane hydrochloride (DOI), and the effect of DOI was blocked by pretreatment with a selective 5‐HT2A receptor antagonist ketanserin. Immunohistochemical study has shown that c‐Fos level was significantly increased by 9 hrs fasting in prefrontal cortex but not hippocampus and habenular. Fasting‐induced c‐Fos expression was further enhanced by DOI in prefrontal cortex, and these enhancements were inhibited by ketanserin. The increased BDNF levels by fasting were markedly inhibited by DOI in frontal cortex and hippocampus, and these effects of DOI on BDNF levels were also blocked by ketanserin. These findings suggest that the antidepressant‐like effects of acute fasting may be exerted via 5‐HT2A receptor and particularly sensitive to neural activity in the prefrontal cortex. Furthermore, these antidepressant‐like effects are also mediated by CREB and BDNF pathway in hippocampus and frontal cortex. Therefore, fasting may be potentially helpful against depression.  相似文献   

12.
The gastrin-releasing peptide receptor (GRPR) has emerged as a novel molecular target in neurological and psychiatric disorders, and previous animal studies suggest that GRPR antagonists might display cognitive-enhancing and antipsychotic properties. Hyperlocomotion produced by administration of D-amphetamine (D-AMPH) to rats has been put forward as a model of the manic phase of bipolar disorder (BD). In the present study, we examined the effects of a single systemic administration of the GRPR antagonist [D-Tpi(6), Leu(13) psi(CH(2)NH)-Leu(14)] bombesin (6-14) (RC-3095) on hyperlocomotion induced by a single systemic injection of D-AMPH in male rats. We also evaluated the levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the hippocampus of rats treated with D-AMPH and RC-3095. Administration of RC-3095 at any of the doses used blocked D-AMPH-induced hyperlocomotion. Specific doses of RC-3095 increased the levels of NGF and BDNF in the dorsal hippocampus. Administration of D-AMPH did not affect NGF or BDNF levels by itself, but blocked the RC-3095 effects. The results suggest that GRPR antagonists might display anti-manic activity.  相似文献   

13.
Abstract: Although alterations in serotonin levels and neurotransmission are associated with depressive disorders and effective antidepressant therapy, the exact cause of these disorders and the mode of action of anti-depressant drugs are poorly understood. In a genetic rat model of depression [Flinders sensitive line (FSL) rats], deviations from normal serotonin (5-HT) levels and metabolism in specific brain regions were determined. The levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in tissue punches of various brain regions were quantitated simultaneously with an HPLC apparatus coupled to an electrochemical detector. In the nucleus accumbens, prefrontal cortex, hippocampus, and hypothalamus of FSL rats, the levels of 5-HT and 5-HIAA were three- to eightfold higher than in control Sprague-Dawley rats. Significant differences in the levels of 5-HT and 5-HIAA in the striatum and raphe nucleus of the "depressed" and normal rats were not observed. After chronic treatment with the antidepressant desipramine (5 mg/kg/day for 18 days), the immobility score in a swim test, as a measure of a behavioral deficit, and 5-HT levels of the FSL rats became normalized, but these parameters in the control rats did not change. The [5-HIAA]/[5-HT] ratio was lower in the nucleus accumbens and hypothalamus of the FSL than in the control rats, and increased after desipramine treatment only in the nucleus accumbens of the FSL rats. These results indicate that the behavioral deficits expressed in the FSL model for depression correlate with increased 5-HT levels in specific limbic sites and suggest the FSL rats as a novel model for clarification of the molecular mechanism of clinically used antidepressant drugs.  相似文献   

14.
Hypoxia is a common cause of neonatal morbidity and mortality. We have previously demonstrated a dramatic ACTH-independent activation of adrenal steroidogenesis in hypoxic neonatal rats, leading to increases in circulating corticosterone levels. The purpose of the present study was to determine if this ACTH-independent increase in corticosterone inhibits the ACTH response to acute stimuli. Neonatal rats were exposed to normoxia (control) or hypoxia from birth to 5 or 7 days of age. At the end of the exposure, plasma ACTH and corticosterone were measured before and after either ether vapors were administered for 3 min or CRH (10 microg/kg) was given intraperitoneally. Thyroid function, pituitary pro-opiomelanocortin (POMC) mRNA and ACTH content, and hypothalamic corticotropin-releasing hormone (CRH), neuropeptide Y (NPY), and AVP mRNA were also assessed. Hypoxia led to a significant increase in corticosterone without a large increase in ACTH, confirming previous studies. The ACTH responses to ether or CRH administration were almost completely inhibited in hypoxic pups. Hypoxia did not affect the established regulators of the neonatal hypothalamic-pituitary-adrenal axis, including pituitary POMC or ACTH content, hypothalamic CRH, NPY, or AVP mRNA (parvo- or magnocellular), or thyroid function. We conclude that hypoxia from birth to 5 or 7 days of age leads to an attenuated ACTH response to acute stimuli, most likely due to glucocorticoid negative feedback. The neural and biochemical mechanism of this effect has yet to be elucidated.  相似文献   

15.
A large body of evidence has established a link between stressful life events and development or exacerbation of depression. At the cellular level, evidence has emerged indicating neuronal atrophy and cell loss in response to stress and in depression. At the molecular level, it has been suggested that these cellular deficiencies, mostly detected in the hippocampus, result from a decrease in the expression of brain-derived neurotrophic factor (BDNF) associated with elevation of glucocorticoids. Thus, an increase in expression of BDNF, facilitating both neuronal survival and neurogenesis, is thought to represent a converging mechanism of action of various types of antidepressant treatments (e.g., antidepressant drugs and transcranial magnetic stimulation). However, as also revealed by converging lines of evidence, high levels of glucocorticoids down-regulate hippocampal synaptic connectivity ('negative' metaplasticity), whereas an increase in expression of BDNF up-regulates connectivity in the hippocampus ('positive' metaplasticity). Therefore, antidepressant treatments might not only restore cell density but also regulate higher-order synaptic plasticity in the hippocampus by abolishing 'negative' metaplasticity, and thus restore hippocampal cognitive processes that are altered by stress and in depressed patients. This antidepressant regulatory effect on hippocampal synaptic plasticity function, which may, in turn, suppress 'negative' metaplasticity in other limbic structures, is discussed.  相似文献   

16.
Alarin is a newly identified member of the galanin family of peptides. Galanin has been shown to exert regulatory effects on depression. Similar to galanin in distribution, alarin is also expressed in the medial amygdala and hypothalamus, i.e., regions interrelated with depression. However, it remains a puzzle whether alarin is involved in depression. Accordingly, we established the depression-like mouse model using behavioral tests to ascertain the possible involvement of alarin, with fluoxetine as a positive control. With the positive antidepressant-like effects of alarin, we further examined its relationship to HPA axis activity and brain-derived neurotrophic factor (BDNF) levels in different brain areas in a chronic unpredictable mild stress (CUMS) paradigm. In the acute studies, alarin produced a dose-related reduction in the immobility duration in tail suspension test (TST) in mice. In the open-field test, intracerebroventricular (i.c.v.) injection of alarin (1.0 nmol) did not impair locomotion or motor coordination in the treated mice. In the CUMS paradigm, alarin administration (1.0 nmol, i.c.v.) significantly improved murine behaviors (FST and locomotor activity), which was associated with a decrease in corticotropin-releasing hormone (CRH) mRNA levels in the hypothalamus, as well as a decline in serum levels of CRH, adrenocorticotropic hormone (ACTH) and corticosterone (CORT), all of which are key hormones of the HPA axis. Furthermore, alarin upregulated BDNF mRNA levels in the prefrontal cortex and hippocampus. These findings suggest that alarin may potentiate the development of new antidepressants, which would be further secured with the identification of its receptor(s).  相似文献   

17.
The inflammatory hypothesis is one of the most important mechanisms of depression. Fucoidan is a bioactive sulfated polysaccharide abundant in brown seaweeds with anti-inflammatory activity. However, the antidepressant effects of fucoidan on chronic stress-induced depressive-like behaviors have not been well elucidated. Here, we used two different depressive-like mouse models, lipopolysaccharide (LPS) and chronic restraint stress (CRS) models, to explore the detailed molecular mechanism underlying its antidepressant-like effects in C57BL/6J mice by combining multiple behavioral, molecular and immunofluorescence experiments. Adenovirus-mediated overexpression of caspase-1 and pharmacological inhibitors were also used to clarify the antidepressant mechanisms of fucoidan. We found that acute administration of fucoidan did not produce antidepressant effects in the tail suspension test (TST) and forced swim test (FST). Interestingly, chronic fucoidan administration not only dose-dependently reduced stress-induced depressive-like behaviors in the TST, FST, sucrose preference test (SPT), and novelty-suppressed feeding test (NSFT), but also alleviated the downregulation of brain-derived neurotrophic factor (BDNF)-dependent synaptic plasticity via inhibiting caspase-1-mediated inflammation in the hippocampus of mice. Moreover, fucoidan significantly ameliorated behavioral and synaptic plasticity abnormalities in the overexpression of caspase-1 in the hippocampus of mice. Furthermore, blocking BDNF abolished the antidepressant-like effects of fucoidan in mice. Therefore, our findings clearly indicate that fucoidan provides a potential supplementary noninvasive treatment for depression by inhibition of hippocampal inflammation.  相似文献   

18.
Honokiol (HNK), the main active component of Magnolia officinalis, has shown a variety of pharmacological activities. In the present study, we measured the antidepressant-like effects of HNK in a rat model of chronic unpredictable mild stress (CUMS) and explored its possible mechanisms. The antidepressant-like effects of HNK were assessed in rats by an open field test (OFT), sucrose preference test (SPT) and forced swimming test (FST). Then, serum levels of corticotrophin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) and hippocampal brain-derived neurotrophic factor (BDNF) and glucocorticoid receptor α (GRα) levels were assessed to explore the possible mechanisms. We identified that HNK treatment (2, 4, and 8 mg/kg) alleviated the CUMS-induced behavioural deficits. Treatment with HNK also normalized the CUMS-induced hyperactivity of the limbic hypothalamic–pituitary–adrenal (HPA) axis, as indicated by reduced CRH, ACTH and CORT serum levels. In addition, HNK increased the expression of GRα (mRNA and protein) and BDNF (mRNA and protein) in the hippocampus. These data confirmed the antidepressant-like effects of HNK, which may be related to its normalizing the function of the HPA axis and increasing the BDNF level in the hippocampus.  相似文献   

19.
Following intraventricular (i.v.t.) administration of increasing doses of neuropeptide Y (NPY; 7.5-750 pmol/rat) the catecholamine levels and turnover were quantitatively measured in discrete hypothalamic regions by means of histofluorometry. In the same rats the adenohypophyseal hormones as well as vasopressin, aldosterone (ALDO) and corticosterone (CORTICO) levels in serum were determined. Neuropeptide Y seems to induce a biphasic change in amine utilization in the tuberoinfundibular dopamine (DA) neurons and in the noradrenergic (NA) utilization in various hypothalamic areas. Thus, the lowest doses seem to inhibit the catecholamine utilization while higher doses seem to enhance it. NPY (250-750 pmol) reduced the serum levels of thyreotropine (TSH), prolactin (PRL) and growth hormone (GH) but increased CORTICO, adrenocorticotropin (ACTH) and ALDO serum levels. In conclusion, it is suggested that the NPY induced changes in DA utilization in the tuberoinfundibular DA neurons may contribute to the NPY induced changes in PRL and TSH secretion. The increases in paraventricular NA utilization may contribute to the increases in ACTH, ALDO and CORTICO secretion induced by NPY. These data give further support for NPY as an important neuroendocrine modulator.  相似文献   

20.
Effects of chronic intranasal administration of ACTH(4-10) analog Semax (MEHFPGP) on exploratory activity, anxiety level, and depression-like behaviour were studied in white rats. The peptide was injected daily in dose 0.05 mg/kg during 10 or 14 days. It was shown that chronic Semax administration at 1-2 weeks induced anxiolytic and antidepressant effects but did not influenced the exploratory activity in non-stressogenic environment. The Semax effects may be the results of activation of the brain serotoninergic system as well as increased BDNF expression in the rat hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号