首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C S Chan  L Rastelli    V Pirrotta 《The EMBO journal》1994,13(11):2553-2564
Segmentation genes provide the signals for the activation and regulation of homeotic genes in Drosophila but cannot maintain the resulting pattern of expression because their activity ceases halfway through embryogenesis. Maintenance of the pattern is due to the Polycomb group of genes (Pc-G) and the trithorax group of genes (trx-G), responsible for the persistence of the active or repressed state of homeotic genes. We have identified a regulatory element in the Ubx gene that responds to Pc-G and trx-G genes. Transposons carrying this element create new binding sites for Pc-G products in the polytene chromosomes. This Pc-G maintenance element (PRE), establishes a repressive complex that keeps enhancers repressed in cells in which they were originally repressed and maintains this state through many cell divisions. The trx-G products stimulate the expression of enhancers in cells in which they were originally active. This mechanism is responsible for the correct regulation of imaginal disc enhancers, which lack themselves antero-posterior positional information. The PRE also causes severe variegation of the mini-white gene present in the transposon, a phenomenon very similar to heterochromatic position-effect variegation. The significance of this mechanism for homeotic gene regulation is discussed.  相似文献   

2.
3.
In Drosophila melanogaster, segment identity is determined by specific expression of homeotic genes (Hox). The Hox expression pattern is first initiated by gap and pair-rule genes and then maintained by genes of the Polycomb-group (Pc-G) and the trithorax-group (trx-G). The corto gene is a putative regulator of the Hox genes since mutants exhibit homeotic transformations. We show here that, in addition to previously reported genetic interactions with the Pc-G genes Enhancer of zeste, Polycomb and polyhomeotic, mutations in corto enhance the extra-sex-comb phenotype of multi sex combs, Polycomb-like and Sex combs on midleg. corto also genetically interacts with a number of trx-G genes (ash1, kismet, kohtalo, moira, osa, Trithorax-like and Vha55). The interactions with genes of the trx-G lead to phenotypes displayed in the wing, in the postpronotum or in the thoracic mechanosensory bristles. In addition, we analyzed the regulation of the Hox gene Ultrabithorax (Ubx) in corto mutants. Our results provide evidence that corto maintains the anterior border of Ubx expression in third-instar larvae. We suggest that this regulation is accomplished through an interaction with the products of the Pc-G and trx-G genes.  相似文献   

4.
Transcriptional silencing by the Polycomb protein in Drosophila embryos.   总被引:2,自引:2,他引:0  
J Müller 《The EMBO journal》1995,14(6):1209-1220
  相似文献   

5.
6.
7.
8.
Members of the Polycomb group (Pc-G) and trithorax group (trx-G) of genes, as well as the enhancers of trx-G and Pc-G (ETP), function together to maintain segment identity during Drosophila development. In order to obtain new marked P mutations in these genes, we screened for dominant modifiers of the extra-sex-combs phenotype displayed by males mutant for the polyhomeotic (ph) gene, a member of the Pc-G group. Five P(lacW) insertions in four different genes were found to stably suppress ph: two are allelic to trithorax, one is the first allele specific to the Minute(2)21C gene, and the remaining two define new trx-G genes, toutatis (tou) in 48A and taranis (tara) in 89B10-13. tou is predicted to encode a 3109 amino acid sequence protein (TOU), which contains a TAM DNA-binding domain, a WAKZ motif, two PHD zinc fingers and a C-terminal bromodomain, and as such is likely to be involved in regulation of chromatin structure as a subunit of a novel chromatin remodelling complex. In a previous study, we found that insertion of a P(ph) transposable element containing ph regulatory sequences creates a high frequency of mutations modifying ph homeotic phenotypes. One such insertion enhanced the ph phenotype and we show that it is a new allele of UbcD1/eff, a gene encoding a ubiquitin-conjugating enzyme that is involved in telomere association and potentially in chromatin remodelling.  相似文献   

9.
10.
We have molecularly characterized the lin-49 and lin-59 genes in C. elegans, and found their products are related to Drosophila trithorax group (trx-G) proteins and other proteins implicated in chromatin remodelling. LIN-49 is structurally most similar to the human bromodomain protein BR140, and LIN-59 is most similar to the Drosophila trx-G protein ASH1. In C. elegans, lin-49 and lin-59 are required for the normal development of the mating structures of the adult male tail, for the normal morphology and function of hindgut (rectum) cells in both males and hermaphrodites and for the maintenance of structural integrity in the hindgut and egg-laying system in adults. Expression of the Hox genes egl-5 and mab-5 is reduced in lin-49 and lin-59 mutants, suggesting lin-49 and lin-59 regulate HOM-C gene expression in C. elegans as the trx-G genes do in Drosophila. lin-49 and lin-59 transgenes are expressed widely throughout C. elegans animals. Thus, in contrast to the C. elegans Polycomb group (Pc-G)-related genes mes-2 and mes-6 that function primarily in the germline, we propose lin-49 and lin-59 function in somatic development similar to the Drosophila trx-G genes.  相似文献   

11.
12.
13.
14.
Decoville M  Giacomello E  Leng M  Locker D 《Genetics》2001,157(1):237-244
The Drosophila dsp1 gene, which encodes an HMG-like protein, was originally identified in a screen for corepressors of Dorsal. Here we report that loss of dsp1 function causes homeotic transformations resembling those associated with loss of function in the homeotic genes Sex combs reduced (Scr), Ultrabithorax (Ubx), and Abdominal-B. The expression pattern of Scr is altered in dsp1 mutant imaginal discs, indicating that dsp1 is required for normal expression of this gene. Genetic interaction studies reveal that a null allele of dsp1 enhances trithorax-group gene (trx-G) mutations and partially suppresses Polycomb-group gene (Pc-G) mutations. On the contrary, overexpression of dsp1 induces an enhancement of the transformation of wings into halteres and of the extra sex comb phenotype of Pc. In addition, dsp1 male mutants exhibit a mild transformation of A4 into A5. Comparison of the chromatin structure at the Mcp locus in wild-type and dsp1 mutant embryos reveals that the 300-bp DNase I hypersensitive region is absent in a dsp1 mutant context. We propose that DSP1 protein is a chromatin remodeling factor, acting as a trx-G or a Pc-G protein depending on the considered function.  相似文献   

15.
We used the white gene as an enhancer trap and reporter of chromatin structure. We collected white+ transgene insertions presenting a peculiar pigmentation pattern in the eye: white expression is restricted to the dorsal half of the eye, with a clear-cut dorsal/ventral (D/V) border. This D/V pattern is stable and heritable, indicating that phenotypic expression of the white reporter reflects positional information in the developing eye. Localization of these transgenes led us to identify a unique genomic region encompassing 140 kb in 69D1-3 subject to this D/V effect. This region contains at least three closely related homeobox-containing genes that are constituents of the iroquois complex (IRO-C). IRO-C genes are coordinately regulated and implicated in similar developmental processes. Expression of these genes in the eye is regulated by the products of the Polycomb-group (Pc-G) and trithorax-group (trx-G) genes but is not modified by classical modifiers of position-effect variegation. Our results, together with the report of a Pc-G binding site in 69D, suggest that we have identified a novel cluster of target genes for the Pc-G and trx-G products. We thus propose that ventral silencing of the whole IRO-C in the eye occurs at the level of chromatin structure in a manner similar to that of the homeotic gene complexes, perhaps by local compaction of the region into a heterochromatin-like structure involving the Pc-G products.  相似文献   

16.
Polycomb group (Pc-G) proteins regulate homeotic gene expression in Drosophila, mouse, and humans. Mouse Pc-G proteins are also essential for adult hematopoietic development and contribute to cell cycle regulation. We show that human Pc-G expression patterns correlate with different B cell differentiation stages and that they reflect germinal center (GC) architecture. The transition of resting mantle B cells to rapidly dividing Mib-1(Ki-67)+ follicular centroblasts coincides with loss of BMI-1 and RING1 Pc-G protein detection and appearance of ENX and EED Pc-G protein expression. By contrast, differentiation of centroblasts into centrocytes correlates with reappearance of BMI-1/RING1 and loss of ENX/EED and Mib-1 expression. The mutually exclusive expression of ENX/EED and BMI-1/RING1 reflects the differential composition of two distinct Pc-G complexes. The Pc-G expression profiles in various GC B cell differentiation stages suggest a role for Pc-G proteins in GC development.  相似文献   

17.
Polycomb group (PcG) proteins play essential roles in animal and plant life cycles by controlling the expression of important developmental regulators. These structurally heterogeneous proteins form multimeric protein complexes that control higher order chromatin structure and, thereby, the expression state of their target genes. Once established, PcG proteins maintain silent gene expression states over many cell divisions providing a molecular basis for a cellular 'memory.' PcG proteins are best known for their role in the control of homeotic genes in Drosophila and mammals. In addition, they play important roles in the control of cell proliferation in vertebrate and invertebrate systems. Recent studies in plants have shown that PcG proteins regulate diverse developmental processes and, as in animals, they affect both homeotic gene expression and cell proliferation. Thus, the function of PcG proteins has been widely conserved between the plant and animal kingdoms.  相似文献   

18.
19.
Genomic imprinting is a form of epigenetic inheritance that is characterized by differential expression of a gene depending on its parental origin. The mini-X chromosome Dp(1;f)LJ9 in Drosophila shows this type of classical imprinting; when transmitted by the maternal parent genes on this chromosome are fully expressed, but when the chromosome is transmitted by the male parent at least three genes are subject to silencing, resulting in a variegated expression pattern. Chemical and environmental modifiers of position-effect variegation have been shown to alter the somatic maintenance of the imprint. To extend these observations, several mutations in chromatin-associated proteins were examined for their effect on imprinting on the Dp(1;f)LJ9 mini-X chromosome. Effects on establishment and maintenance were independently assessed by genetically associating the mutations in chromatin modifiers with the mini-X chromosome in either the parents, where the imprint is established, or the progeny, in which the imprint must be maintained. Nine Suppressor of variegation [ Su(var)] mutations, including alleles of the Su(var)2-5 gene, which encodes the well characterized heterochromatin-associated protein HP1, abolished maintenance but not the establishment of the imprint. Mutant alleles of two genes in the trithorax group ( trx-G), brahma and trithorax, showed a maternal-effect enhancement of the paternal imprint. Surprisingly, however, with the exception of an Enhancer of Polycomb [ E(Pc)] allele, none of the Polycomb-group ( Pc-G) mutations tested affected the imprint. Thus, the maintenance of this imprint relies on the wild-type products of Su(var) and trx-G, but not Pc-G, genes. Finally, none of the mutations tested affected the maintenance of the maternal imprint or the establishment of either the maternal or paternal imprint, suggesting that the maternal and paternal imprints depend on different molecular processes and that imprint establishment and maintenance are independently regulated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号