首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Autocrine signaling systems are commonly studied under cell culture conditions. In a typical cell culture assay, a layer of liquid medium covers a random two-dimensional dispersion of cells, which secrete ligands. In a growing number of experiments, it is important to characterize the spatial range of autocrine and paracrine cell communication. Currently, the spatial distribution of diffusing signals can be analyzed only indirectly, from their effects on the intracellular signaling or physiological responses of autocrine cells. To directly characterize the spatial range of secreted ligands, we propose a stochastic model for autocrine cell cultures and analyze it using a combination of analytical and computational tools. The two main results derived within the framework of this model are 1), an expression for the fraction of autocrine trajectories, i.e., the probability for a ligand to be trapped by the same cell from which it has been secreted; and 2), an expression for the spatial distribution of trapping points of paracrine trajectories. We test these analytical results by stochastic simulations with efficient Brownian dynamics code and apply our model to analyze the spatial operation of autocrine epidermal growth factor receptor systems.  相似文献   

2.
Autocrine loops formed by growth factors and their receptors have been identified in a large number of developmental, physiological, and pathological contexts. In general, the spatially distributed and recursive nature of autocrine signaling systems makes their experimental analysis, and often even their detection, very difficult. Here, we combine Brownian motion theory, Monte Carlo simulations, and reaction-diffusion models to analyze the spatial operation of autocrine loops. Within this modeling framework, the ability of autocrine cells to recapture the endogenous ligand and the distances traveled by autocrine ligands are explicitly related to ligand diffusion coefficients, density of surface receptors, ligand secretion rate, and rate constants of ligand binding and endocytic internalization. Applying our models to study autocrine loops in the epidermal growth factor receptor system, we find that autocrine loops can be highly localized--even at the level of a single cell. We demonstrate how the variations in molecular and cellular parameters may "tune" the spatial range of autocrine signals over several orders of magnitude: from microns to millimeters. We argue that this versatile regulation of the spatial range of autocrine signaling enables autocrine cells to perceive a broad spectrum of environmental information.  相似文献   

3.
We have developed an experimental system for testing mathematical model predictions concerning escape of autocrine ligands into the extracellular bulk medium. This system employs anti-receptor blocking antibodies against the epidermal growth factor receptor (EGFR)/transforming growth factor alpha (TGFalpha) receptor/ligand pair. TGFalpha was expressed under the control of a tetracycline-repressed promoter, together with a constitutively expressed human EGFR in B82 mouse fibroblast cells. This expression system allowed us to vary TGFalpha synthesis rates over a roughly 300-fold range by adjusting tetracycline concentration. TGFalpha accumulation in the extracellular bulk medium was then measured as a function of cell density, TGFalpha synthesis rate, and anti-EGFR blocking antibody concentration. Consistent with model predictions, amounts of ligand in the medium on a per cell basis were found to diminish as cell density was increased but with reduced dependence on cell density at higher ligand synthesis rates. Similarly consistent with model predictions, higher ligand synthesis rates also decreased the effect of anti-receptor blocking antibodies. Our investigation has established that we can successfully analyze and understand autocrine ligand secretion behavior from the basis of our theoretical model.  相似文献   

4.
5.
A major limitation of the widespread use of stem cells in a variety of biotechnological applications is the relatively low level of knowledge about how to maintain these cells in vitro without losing the long-term multilineage growth properties required for their clinical utility. An experimental and theoretical framework for predicting and controlling the outcome of stem cell stimulation by exogenous cytokines would thus be useful. An emerging theme from recent hematopoietic stem cell (HSC)-expansion studies is that a net gain in HSC numbers requires the maintenance of critical signaling ligand(s) above a threshold level. These ligand-receptor complex thresholds can be maintained, for example, by high concentrations of soluble cytokines or by cytokine presentation on cell surfaces. According to such a model, when the relevant ligand-receptor interaction falls below this threshold level, the probability of a differentiation response is increased; otherwise, self-renewal is favored. Taking advantage of the ability of the cytokine leukemia inhibitory factor (LIF) to maintain embryonic stem (ES) cell pluripotentiality at high concentrations, we are testing this model by investigating critical parameters in the control of ES cell responses. We have developed quantitative assays of ES cell differentiation by measuring cell-surface alkaline phosphatase activity, cell-surface stage specific embryonic antigen (SSEA)-1 expression, and the ability of ES cells to form embryoid bodies. Examination of ES cell responses over a range of LIF concentrations shows that LIF supplementation has little effect on ES cell-growth rate but significantly alters the probability of a cell undergoing a self-renewal vs. a differentiation division. In vitro culture parameters such as inoculum cell density, medium exchange, as well as cell-intrinsic processes such as autocrine secretion are shown to affect this decision. In addition to yielding new information on stem cell regulation by exogenous factors, these studies provide important clues about culture of these cells and should stimulate further investigations into the mechanistic basis of stem cell differentiation control.  相似文献   

6.
Recent studies have suggested that autocrine signaling through epidermal growth factor receptor (EGFR) might be involved in generating or maintaining an intrinsic polarity in tissue cells, possibly via spatial localization of EGFR-mediated signaling. The difficulty of experimental investigation of autocrine signaling makes especially valuable an application of computational modeling for critical hypotheses about the dynamic operation of the underlying signaling circuits, both intracellular and extracellular. Toward this end, we develop and analyze here a spatially distributed dynamic computational model of autocrine EGFR signaling. Under certain conditions, the model spontaneously evolves into a state wherein sustained signaling is spatially localized on smaller than cell dimension, conferring a polarity to the otherwise nonpolar model cell. Conditions of a sufficiently large rate of autocrine EGFR ligand release and of a sufficiently small exogenous ligand concentration are qualitatively consistent with experimental observations of EGFR-mediated migration. Thus, computational analysis supports the concept that autocrine EGFR signaling circuits could play a role in helping generate and/or maintain an intrinsic cell spatial polarity, possibly related to migration as well as tissue organization. We additionally offer particular suggestions for critical nodes in the EGFR signaling circuits governing this self-organization capability.  相似文献   

7.
We have studied the estrogenic regulation and the potential autocrine role of transforming growth factor alpha (TGF alpha) in the human breast cancer cell line MCF-7. A biologically active apparent mol wt 30 k TGF alpha was identified by gel filtration chromatography in medium conditioned by MCF-7 breast cancer cells. We previously reported induction of TGF alpha levels in medium by 17 beta-estradiol. We now report correlated increases in TGF alpha mRNA, by Northern and slot blot analysis, after estrogen treatment of MCF-7 cells in vitro. In vivo experiments confirmed these data: estrogen withdrawal from MCF-7 tumor-bearing nude mice resulted in a decline in tumor size and TGF alpha mRNA levels. To explore the functional significance of TGF alpha in MCF-7 cells, anti-TGF alpha antibody was added to MCF-7 soft agar cloning assays. Inhibition of MCF-7 growth resulted, supporting an autocrine role for TGF alpha. Further experiments using an anti-EGF receptor antibody expanded this data, demonstrating inhibition of estrogen-stimulated monolayer MCF-7 cell growth. Examining the generality of TGF alpha expression, 4.8 kilobase TGF alpha mRNAs were seen in three other human breast cancer cell lines, MDA-MB-231, ZR 75B, and T47D. Expression of TGF alpha mRNA was detected in 70% of estrogen receptor positive and negative primary human breast tumors from 40 patients when examined by slot blot and Northern analysis. Thus, we have demonstrated broad expression of TGF alpha in human breast cancer, its hormonal regulation in an estrogen-responsive cell line, and its possible functional significance in MCF-7 cell growth.  相似文献   

8.
We describe a mechanism for context-dependent cell signaling mediated by autocrine loops with positive feedback. We demonstrate that the composition of the extracellular medium can critically influence the intracellular signaling dynamics induced by extracellular stimuli. Specifically, in the epidermal growth factor receptor (EGFR) system, amplitude and duration of mitogen-activated protein kinase (MAPK) activation are modulated by the positive-feedback loop formed by the EGFR, the Ras-MAPK signaling pathway, and a ligand-releasing protease. The signaling response to a transient input is short-lived when most of the released ligand is lost to the cellular microenvironment by diffusion and/or interaction with an extracellular ligand-binding component. In contrast, the response is prolonged or persistent in a cell that is efficient in recapturing the endogenous ligand. To study functional capabilities of autocrine loops, we have developed a mathematical model that accounts for ligand release, transport, binding, and intracellular signaling. We find that context-dependent signaling arises as a result of dynamic interaction between the parts of an autocrine loop. Using the model, we can directly interpret experimental observations on context-dependent responses of autocrine cells to ionizing radiation. In human carcinoma cells, MAPK signaling patterns induced by a short pulse of ionizing radiation can be transient or sustained, depending on cell type and composition of the extracellular medium. On the basis of our model, we propose that autocrine loops in this, and potentially other, growth factor and cytokine systems may serve as modules for context-dependent cell signaling.  相似文献   

9.
10.
Several protein-coding genes have been identified to play essential roles in cancer biology, and they are dysregulated in many tumors. Transmembrane protein 106C (TMEM106C) is differentially expressed in several human and porcine diseases; however, the expression and biological functions of TMEM106C in hepatocellular carcinoma (HCC) are not clear. In our study, we obtained paired tissue samples from patients undergoing resection for HCC and public databases, which were analyzed for TMEM106C expression using quantitative real-time polymerase chain reaction (qRT-PCR). We further conducted in vitro and in vivo experiments in HCC cell lines and nude mice, respectively, in which TMEM106C was overexpressed or knocked down. Cell-Counting Kit-8 and colony formation experiments were used to determine the influence of TMEM106C on cell proliferation, flow cytometric assays were used to detect the influence on cell cycle distribution and apoptosis, and transwell assays were used for detecting changes in cell migration and invasion. TMEM106C levels were significantly elevated in HCC tissues and cell lines from public databases and our collected specimens from patients. Moreover, higher TMEM106C expression levels predicted a poor prognosis in HCC patients in survival analysis. Overexpression of TMEM106C in HCC cells accelerated cell growth, migration, and invasion, but it inhibited cell apoptosis by targeting forkhead box O-1 (FOXO1) and FOXO3. Conversely, TMEM106C knockdown impeded cell proliferation and metastasis, whereas it enhanced the rate of apoptosis. More important, knockdown of the expression of TMEM106C in HCC cells inhibited the growth of xenograft tumors in vivo. Collectively, these results suggest that TMEM106C acts as an oncogene and can serve as a potential therapeutic target for HCC in the future.  相似文献   

11.
We measured the kinetic parameters for interaction of epidermal growth factor (EGF) with fetal rat lung (FRL) cells under two sets of experimental conditions and applied sensitivity analysis to see which parameters were well-defined. In the first set of experiments (method 1), the kinetics of internalization and dissociation of radiolabeled EGF were measured with a temperature-shift protocol in medium initially devoid of free ligand. The initial concentration of radiolabeled EGF bound to the cell surface corresponded to levels of receptor occupancy ranging from approximately 200 receptors per cell to approximately 18,000 receptors per cell, a level at which EGF binding approaches saturation. In the second set of experiments (method 2), carried out at a constant temperature, we began with no surface-bound or internalized ligand. The initial free ligand concentration was varied from 0.2 to 50 ng/mL. In both sets of experiments, we measured surface-bound, internalized, and free 125I-EGF as functions of time and evaluated the parameters of a mathematical model of endocytosis. Sensitivity analysis showed that three rate constants were well-defined in this combination of two experimental approaches: ke, the endocytic rate constant; ka, the association rate constant; and kd, the dissociation rate constant. The endocytic parameter ke was found to be independent of initial surface receptor occupancy (method 1); there was some indication that it increased with initial free ligand concentration in method 2. Neither kd nor ka was found to change with extent of initial surface receptor occupancy or initial free ligand concentration, respectively, a finding of significance, since diffusion theory predicts these parameters will vary with surface receptor occupancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We have previously developed Epitheliome, a software agent representation of the growth and repair characteristics of epithelial cell populations, where cell behaviour is governed by a number of simple rules. In this paper, we describe how this model has been extended to incorporate an example of a molecular 'mechanism' behind a rule-in this case, how signalling by both endogenous and exogenous ligands of the epidermal growth factor receptor (EGFR) can impact on the proliferation of cell agents. We have developed a mathematical model representing release of endogenous ligand by cells, three-dimensional diffusion of the secreted molecules through a volume of cell culture medium, ligand-receptor binding, and bound receptor internalization and trafficking. Information relating to quantities of molecular species associated with each cell agent is frequently exchanged between the agent and signalling models, and the ratio of bound to free receptors determines cell cycle progression and hence the proliferative behaviour of the cell agents. We have applied this integrated model to examine the effect of plating density on tissue growth via autocrine/paracrine signalling. This predicts that cell growth is dependent on the concentration of exogenous ligand, but where this is limited, then growth becomes dependent on cell density and the availability of endogenous ligand. We have further modified the calcium concentration of the medium to modulate the formation of intercellular bonds between cells and shown that the increased propensity for cells to form colonies in physiological calcium does not result in significantly different patterns of receptor occupancy. In conclusion, our approach demonstrates that by combining agent-based and mathematical modelling paradigms, it is possible to probe the complex feedback relationship between the behaviour of individual cells and their interaction with one another and their environment.  相似文献   

13.
MOTIVATION: Biological assays are often carried out on tissues that contain many cell lineages and active pathways. Microarray data produced using such material therefore reflect superimpositions of biological processes. Analysing such data for shared gene function by means of well-matched assays may help to provide a better focus on specific cell types and processes. The identification of genes that behave similarly in different biological systems also has the potential to reveal new insights into preserved biological mechanisms. RESULTS: In this article, we propose a hierarchical Bayesian model allowing integrated analysis of several microarray data sets for shared gene function. Each gene is associated with an indicator variable that selects whether binary class labels are predicted from expression values or by a classifier which is common to all genes. Each indicator selects the component models for all involved data sets simultaneously. A quantitative measure of shared gene function is obtained by inferring a probability measure over these indicators. Through experiments on synthetic data, we illustrate potential advantages of this Bayesian approach over a standard method. A shared analysis of matched microarray experiments covering (a) a cycle of mouse mammary gland development and (b) the process of in vitro endothelial cell apoptosis is proposed as a biological gold standard. Several useful sanity checks are introduced during data analysis, and we confirm the prior biological belief that shared apoptosis events occur in both systems. We conclude that a Bayesian analysis for shared gene function has the potential to reveal new biological insights, unobtainable by other means. AVAILABILITY: An online supplement and MatLab code are available at http://www.sykacek.net/research.html#mcabf  相似文献   

14.
Stimulation of cell behavioral functions by ligand/receptor binding can be accomplished in autocrine fashion, where cells secrete ligand capable of binding to receptors on their own surfaces. This proximal secretion of autocrine ligands near the surface receptors on the secreting cell suggests that control of these systems by inhibitors of receptor/ligand binding may be more difficult than for systems involving exogenous ligands. Hence, it is of interest to predict the conditions under which successful inhibition of cell receptor binding by the autocrine ligand can be expected. Previous theoretical work using a compartmentalized model for autocrine cells has elucidated the conditions under which addition of solution decoys for the autocrine ligand can interrupt cell receptor/ligand binding via competitive binding of the secreted molecules (Forsten, K. E., and D. A. Lauffenburger. 1992. Biophys. J. 61:1-12.) We now apply a similar modeling approach to examine the addition of solution blockers targeted against the cell receptor. Comparison of the two alternative inhibition strategies reveals that a significantly lower concentration of receptor blockers, compared to ligand decoys, will obtain a high degree of inhibition. The more direct interruption scheme characteristic of the receptor blockers may make them a preferred strategy when feasible.  相似文献   

15.
Autocrine ligands have been demonstrated to regulate cell proliferation, cell adhesion, and cell migration in a number of different systems and are believed to be one of the underlying causes of malignant cell transformation. Binding of these ligands to their cellular receptors can be compromised by diffusive transport of ligand away from the secreting cell. Exogenous addition of antibodies or solution receptors capable of competing with cellular receptors for these autocrine ligands has been proposed as a means of inhibiting autocrine-stimulated cell behavioral responses. Such "decoys" complicate cellular binding by offering alternative binding targets, which may also be capable of aiding or abating transport of the ligand away from the cell surface. We present a mathematical model incorporating autocrine ligand production and the presence of competing cellular and solution receptors. We elucidate effects of key system parameters including ligand diffusion rate, binding rate constants, cell density, and secretion rate on the ability of solution receptors to inhibit cellular receptor binding. Both plated and suspension cell systems are considered. An approximate analytical expression relating the key parameters to the critical concentration of solution "decoys" required for inhibition is derived and compared to the numerical calculations. We find that in order to achieve essentially complete inhibition of surface receptor binding, the concentration of decoys may need to be as much as four to eight orders of magnitude greater than the equilibrium disociation constant for ligand binding to surface receptors.  相似文献   

16.
17.
18.
We have previously shown that SUM-149 human breast cancer cells require an amphiregulin (AREG) autocrine loop for cell proliferation. We also demonstrated that AREG can increase epidermal growth factor receptor (EGFR) stability and promote EGFR localization to the plasma membrane. In the present studies we successfully knocked-down AREG expression in SUM-149 cells by lentiviral infection of AREG shRNA. In the absence of AREG expression, SUM-149 cell growth was slowed, but not completely inhibited. Furthermore, cells infected with AREG shRNA constructs showed an increase in EGFR protein expression by Western blot. Immunofluorescence and confocal microscopy showed that following AREG knock-down, EGFR continued to localize to the cell surface. Soft agar assays demonstrated that AREG knock-down cells retain anchorage-independent growth capacity. Additionally mammosphere forming assays and Adefluor staining analysis showed that knock-down of AREG expression did not affect the expression of stem cell phenotypes. However, following AREG knock-down, SUM-149 cells demonstrated a dramatic decrease in their ability to invade a Matrigel matrix. Consistent with this observation, microarray analysis comparing cells infected with a non-silencing vector to the AREG knock-down cells, identified genes associated with the invasive phenotype such as RHOB and DKK1, and networks associated with cell motility such as integrin-linked kinase signaling, and focal adhesion kinase signaling. AREG was also found to modulate WNT and Notch signaling in these cells. Thus, AREG functions in regulating the invasive phenotype, and we propose that this regulation may be through altered signaling that occurs when AREG activates plasma membrane localized EGFR.  相似文献   

19.
20.
Cytokines and chemokines are responsible for regulating inflammation and the immune response. Cytokine and chemokine release is typically measured by quantitative enzyme-linked immunosorbant assay (ELISA) or Western blot analysis. To expedite the analysis of samples for multiple cytokines/chemokines, we have developed slide-based Thermo Scientific ExcelArray Antibody Sandwich Microarrays. Each slide consists of 16 subarrays (wells), each printed with 12 specific antibodies in triplicate and positive and negative control elements. This 16-well format allows for the analysis of 10 test samples using a six-point standard curve. The array architecture is based on the "sandwich" ELISA, in which an analyte protein is sandwiched between an immobilized capture antibody and a biotinylated detection antibody, using streptavidin-linked Thermo Scientific DyLight 649 Dye for quantitation. The observed sensitivity of this assay was <10 pg/mL. In our experiments, the Jurkat cell line was used as a model for human T-cell leukemia, and the A549 cell line was used as a model for human non-small cell lung cancer. To evoke a cytokine/chemokine response, cells were stimulated with tumor necrosis factor alpha (TNFalpha), phorbol-12-myristate-13-acetate (PMA, TPA), and phytohemagglutinin (PHA). Cell supernatants derived from both untreated and stimulated cells were analyzed on four different arrays (Inflammation I, Inflammation II, Angiogenesis, and Chemotaxis), enabling the quantitation of 41 unique analytes. Stimulated cells showed an increase in the expression level of many of the test analytes, including IL-8, TNF-alpha, and MIP-1alpha, compared to the non-treated controls. Our experiments clearly demonstrate the utility of antibody microarray analysis of cell-culture supernatants for the profiling of cellular inflammatory mediator release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号