首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome of influenza A viruses comprises eight negative-strand RNA segments. Although all eight segments must be present in cells for efficient viral replication, the mechanism(s) by which these viral RNA (vRNA) segments are incorporated into virions is not fully understood. We recently found that sequences at both ends of the coding regions of the HA, NA, and NS vRNA segments of A/WSN/33 play important roles in the incorporation of these vRNAs into virions. In order to similarly identify the regions of the PB2, PB1, and PA vRNAs of this strain that are critical for their incorporation, we generated a series of mutant vRNAs that possessed the green fluorescent protein gene flanked by portions of the coding and noncoding regions of the respective segments. For all three polymerase segments, deletions at the ends of their coding regions decreased their virion incorporation efficiencies. More importantly, these regions not only affected the incorporation of the segment in which they reside, but were also important for the incorporation of other segments. This effect was most prominent with the PB2 vRNA. These findings suggest a hierarchy among vRNA segments for virion incorporation and may imply intersegment association of vRNAs during virus assembly.  相似文献   

2.
The genomes of influenza A viruses consist of eight negative-strand RNA segments. Recent studies suggest that influenza viruses are able to specifically package their segmented genomes into the progeny virions. Segment-specific packaging signals of influenza virus RNAs (vRNAs) are located in the 5' and 3' noncoding regions, as well as in the terminal regions, of the open reading frames. How these packaging signals function during genome packaging remains unclear. Previously, we generated a 7-segmented virus in which the hemagglutinin (HA) and neuraminidase (NA) segments of the influenza A/Puerto Rico/8/34 virus were replaced by a chimeric influenza C virus hemagglutinin/esterase/fusion (HEF) segment carrying the HA packaging sequences. The robust growth of the HEF virus suggested that the NA segment is not required for the packaging of other segments. In this study, in order to determine the roles of the other seven segments during influenza A virus genome assembly, we continued to use this HEF virus as a tool and analyzed the effects of replacing the packaging sequences of other segments with those of the NA segment. Our results showed that deleting the packaging signals of the PB1, HA, or NS segment had no effect on the growth of the HEF virus, while growth was greatly impaired when the packaging sequence of the PB2, PA, nucleoprotein (NP), or matrix (M) segment was removed. These results indicate that the PB2, PA, NP, and M segments play a more important role than the remaining four vRNAs during the genome-packaging process.  相似文献   

3.
Identification and characterization of a coronavirus packaging signal.   总被引:14,自引:11,他引:3       下载免费PDF全文
J A Fosmire  K Hwang    S Makino 《Journal of virology》1992,66(6):3522-3530
Previously, a mouse hepatitis virus (MHV) genomic sequence necessary for defective interfering (DI) RNA packaging into MHV particles (packaging signal) was mapped to within a region of 1,480 nucleotides in the MHV polymerase gene by comparison of two DI RNAs. One of these, DIssF, is 3.6 kb in size and exhibits efficient packaging, whereas the other, DIssE, which is 2.3 kb, does not. For more precise mapping, a series of mutant DIssF RNAs with deletions within this 1,480-nucleotide region were constructed. After transfection of in vitro-synthesized mutant DI RNA in MHV-infected cells, the virus product was passaged several times. The efficiency of DI RNA packaging into MHV virions was then estimated by viral homologous interference activity and by analysis of intracellular virus-specific RNAs and virion RNA. The results indicated that an area of 190 nucleotides was necessary for packaging. A computer-generated secondary structural analysis of the A59 and JHM strains of MHV demonstrated that within this 190-nucleotide region a stable stem-loop of 69 nucleotides was common between the two viruses. A DIssE-derived DI DNA which had these 69 nucleotides inserted into the DIssE sequence demonstrated efficient DI RNA packaging. Site-directed mutagenic analysis showed that of these 69 nucleotides, the minimum sequence of the packaging signal was 61 nucleotides and that destruction of the secondary structure abolished packaging ability. These studies demonstrated that an MHV packaging signal was present within the 61 nucleotides, which are located on MHV genomic RNA 1,381 to 1,441 nucleotides upstream of the 3' end of gene 1.  相似文献   

4.
Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.  相似文献   

5.
The influenza A virus NEP (NS2) protein is an structural component of the viral particle. To investigate whether this protein has an effect on viral RNA synthesis, we examined the expression of an influenza A virus-like chloramphenicol acetyltransferase (CAT) RNA in cells synthesizing the four influenza A virus core proteins (nucleoprotein, PB1, PB2, and PA) and NEP from recombinant plasmids. Influenza A virus NEP inhibited drastically, and in a dose-dependent manner, the level of CAT expression mediated by the recombinant influenza A virus polymerase. This inhibitory effect was not observed in an analogous artificial system in which expression of a synthetic CAT RNA is mediated by the core proteins of an influenza B virus. This result ruled out the possibility that inhibition of reporter gene expression was due to a general toxic effect induced by NEP. Analysis of the virus-specific RNA species that accumulated in cells expressing the type A recombinant core proteins and NEP showed that there was an important reduction in the levels of minireplicon-derived vRNA, cRNA, and mRNA molecules. Taken together, the results obtained suggest a regulatory role for NEP during virus-specific RNA synthesis, and this finding is discussed regarding the biological implications for the virus life cycle.  相似文献   

6.
7.
The genome of influenza A virus consists of eight single-strand negative-sense RNA segments, each comprised of a coding region and a noncoding region. The noncoding region of the NS segment is thought to provide the signal for packaging; however, we recently showed that the coding regions located at both ends of the hemagglutinin and neuraminidase segments were important for their incorporation into virions. In an effort to improve our understanding of the mechanism of influenza virus genome packaging, we sought to identify the regions of NS viral RNA (vRNA) that are required for its efficient incorporation into virions. Deletion analysis showed that the first 30 nucleotides of the 3' coding region are critical for efficient NS vRNA incorporation and that deletion of the 3' segment-specific noncoding region drastically reduces NS vRNA incorporation into virions. Furthermore, silent mutations in the first 30 nucleotides of the 3' NS coding region reduced the incorporation efficiency of the NS segment and affected virus replication. These results suggested that segment-specific noncoding regions together with adjacent coding regions (especially at the 3' end) form a structure that is required for efficient influenza A virus vRNA packaging.  相似文献   

8.
I Mena  A Vivo  E Prez    A Portela 《Journal of virology》1996,70(8):5016-5024
We have shown previously that COS-1 cells infected with a vaccinia virus recombinant (vTF7-3) which expresses the T7 RNA polymerase gene and then transfected with four pGEM-derived plasmids encoding the influenza A virus core proteins (nucleoprotein, PB1, PB2, and PA polypeptides) can express a synthetic influenza virus-like chloramphenicol [correction of chloramphenical] acetyltransferase (CAT) RNA (I. Mena, S. de la Luna, C. Albo, J. Martín, A. Nieto, J. Ortín, and A. Portela, J. Gen. Virol. 75:2109-2114, 1994). Here we demonstrate that by supplying the vTF7-3-infected cells with plasmids containing cDNAs of all 10 influenza virus-encoded proteins, the transfected CAT RNA can be expressed and rescued into particles that are budded into the supernatant fluids. The released particles can transfer the enclosed CAT RNA to MDCK cultures and resemble true influenza virions in that they require trypsin treatment to deliver the RNA to fresh cells and are neutralized by a monoclonal antibody specific for the influenza A virus hemagglutinin. Moreover, analysis by electron microscopy showed that the culture medium harvested from the transfected cells contained vesicles that could be labeled with an anti-HA monoclonal antibody and that were similar in size and morphology to authentic influenza virus particles. It is also shown that detection of recombinant particles capable of transmitting the CAT RNA does not require expression of the influenza virus nonstructural protein NS1. All of these data indicate that influenza virus-like particles enclosing a synthetic virus-like RNA can be assembled in cells expressing all viral structural components from recombinant plasmids.  相似文献   

9.
Influenza virus defective interfering (DI) particles are naturally occurring noninfectious virions typically generated during in vitro serial passages in cell culture of the virus at a high multiplicity of infection. DI particles are recognized for the role they play in inhibiting viral replication and for the impact they have on the production of infectious virions. To date, influenza virus DI particles have been reported primarily as a phenomenon of cell culture and in experimentally infected embryonated chicken eggs. They have also been isolated from a respiratory infection of chickens. Using a sequencing approach, we characterize several subgenomic viral RNAs from human nasopharyngeal specimens infected with the influenza A(H1N1)pdm09 virus. The distribution of these in vivo-derived DI-like RNAs was similar to that of in vitro DIs, with the majority of the defective RNAs generated from the PB2 (segment 1) of the polymerase complex, followed by PB1 and PA. The lengths of the in vivo-derived DI-like segments also are similar to those of known in vitro DIs, and the in vivo-derived DI-like segments share internal deletions of the same segments. The presence of identical DI-like RNAs in patients linked by direct contact is compatible with transmission between them. The functional role of DI-like RNAs in natural infections remains to be established.  相似文献   

10.
Liang Y  Hong Y  Parslow TG 《Journal of virology》2005,79(16):10348-10355
The influenza A virus genome consists of eight negative-sense RNA segments. The cis-acting signals that allow these viral RNA segments (vRNAs) to be packaged into influenza virus particles have not been fully elucidated, although the 5' and 3' untranslated regions (UTRs) of each vRNA are known to be required. Efficient packaging of the NA, HA, and NS segments also requires coding sequences immediately adjacent to the UTRs, but it is not yet known whether the same is true of other vRNAs. By assaying packaging of genetically tagged vRNA reporters during plasmid-directed influenza virus assembly in cells, we have now mapped cis-acting sequences that are sufficient for packaging of the PA, PB1, and PB2 segments. We find that each involves portions of the distal coding regions. Efficient packaging of the PA or PB1 vRNAs requires at least 40 bases of 5' and 66 bases of 3' coding sequences, whereas packaging of the PB2 segment requires at least 80 bases of 5' coding region but is independent of coding sequences at the 3' end. Interestingly, artificial reporter vRNAs carrying mismatched ends (i.e., whose 5' and 3' ends are derived from different vRNA segments) were poorly packaged, implying that the two ends of any given vRNA may collaborate in forming specific structures to be recognized by the viral packaging machinery.  相似文献   

11.
Specificity of retroviral RNA packaging.   总被引:28,自引:25,他引:3  
  相似文献   

12.
Brome mosaic virus (BMV) packages its genomic RNAs (RNA1, RNA2, and RNA3) and subgenomic RNA4 into three different particles. However, since the RNAs in the virions have distinct lengths and electrostatic charges, we hypothesize that subsets of the virions should have distinct properties. A glutamine to cysteine substitution at position 120 of the capsid protein (CP) was found to result in a mutant virus named QC that exhibited a dramatically altered ratio of the RNAs in virions. RNA2 was far more abundant than the other RNAs, although the ratios could be affected by the host plant species. RNAs with the QC mutation were competent for replication early in the infection, suggesting that they were either selectively packaged or degraded after packaging. In support of the latter idea, low concentrations of truncated RNA1 that co-migrated with RNA2 were found in the QC virions. Spectroscopic analysis and peptide fingerprinting experiments showed that the QC virus capsid interacted with the encapsidated RNAs differently than did the wild type. Furthermore, wild-type BMV RNA1 was found to be more susceptible to nuclease digestion relative to RNA2 as a function of the buffer pH. Other BMV capsid mutants also had altered ratios of packaged RNAs.  相似文献   

13.
A final step in the influenza virus replication cycle is the assembly of the viral structural proteins and the packaging of the eight segments of viral RNA (vRNA) into a fully infectious virion. The process by which the RNA genome is packaged efficiently remains poorly understood. In an approach to analyze how vRNA is packaged, we rescued a seven-segmented virus lacking the hemagglutinin (HA) vRNA (deltaHA virus). This virus could be passaged in cells constitutively expressing HA protein, but it was attenuated in comparison to wild-type A/WSN/33 virus. Supplementing the deltaHA virus with an artificial segment containing green fluorescent protein (GFP) or red fluorescent protein (RFP) with HA packaging regions (45 3' and 80 5' nucleotides) partially restored the growth of this virus to wild-type levels. The absence of the HA vRNA in the deltaHA virus resulted in a 40 to 60% reduction in the packaging of the PA, NP, NA, M, and NS vRNAs, as measured by quantitative PCR (qPCR), and the packaging of these vRNAs was partially restored in the presence of GFP/RFP packaging constructs. To further define nucleotides of the HA coding sequence which are important for vRNA packaging, synonymous mutations were introduced into the full-length HA cDNA of influenza A/WSN/33 and A/Puerto Rico/8/34 viruses, and mutant viruses were rescued. qPCR analysis of vRNAs packaged in these mutant viruses identified a key region of the open reading frame (nucleotides 1659 to 1671) that is critical for the efficient packaging of an influenza virus H1 HA segment.  相似文献   

14.
15.
16.
17.
S Makino  K Yokomori    M M Lai 《Journal of virology》1990,64(12):6045-6053
We have previously shown that most of the defective interfering (DI) RNA of mouse hepatitis virus (MHV) are not packaged into virions. We have now identified, after 21 serial undiluted passages of MHV, a small DI RNA, DIssF, which is efficiently packaged into virions. The DIssF RNA replicated at a high efficiency on its transfection into the helper virus-infected cells. The virus released from the transfected cells interfered strongly with mRNA synthesis and growth of helper virus. cDNA cloning and sequence analysis of DIssF RNA revealed that it is 3.6 kb and consists of sequences derived from five discontinuous regions of the genome of the nondefective virus. The first four regions (domains I to IV) from the 5' end are derived from gene 1, which presumably encodes the RNA polymerase of the nondefective virus. The entire domain I (859 nucleotides) and the first 750 nucleotides of domain II are also present in a previously characterized DI RNA, DIssE, which is not efficiently packaged into virions. Furthermore, the junction between these two domains is identical between the two DI RNAs. The remaining 77 nucleotides at the 3' end of domain II and all of domains III (655 nucleotides) and IV (770 nucleotides) are not present in DIssE RNA. These four domains are derived from gene 1. In contrast, the 3'-most domain (domain V, 447 nucleotides) is derived from the 3' end of the genomic RNA and is also present in DIssE. The comparison of primary sequences and packaging properties between DIsse and DIssF RNAs suggested that domains III and IV and part of the 3' end of domain II contain the packaging signal for MHV RNA. This conclusion was confirmed by inserting these DIssF-unique sequences into a DIssE cDNA construct; the in vitro-transcribed RNA from this hybrid construct was efficiently packaged into virion particles. DIssF RNA also contains an open reading frame, which begins from domain I and ends at the 5'-end 20 bases of domain III. In vitro translation of DIssF RNA and metabolic labeling of the virus-infected cells showed that this open reading frame is indeed translated into a 75-kDa protein. The structures of both DIssE and DIssF RNAs suggest that a protein-encoding capability is a common characteristic of MHV DI RNA.  相似文献   

18.
The dimerization initiation site (DIS) and the dimer linkage sequences (DLS) of human immunodeficiency virus type 1 have been shown to mediate in vitro dimerization of genomic RNA. However, the precise role of the DIS-DLS region in virion assembly and RNA dimerization in virus particles has not been fully elucidated, since deletion or mutation of the DIS-DLS region also abolishes the packaging ability of genomic RNA. To characterize the DIS-DLS region without altering packaging ability, we generated mutant constructs carrying a duplication of approximately 1,000 bases including the encapsidation signal and DIS-DLS (E/DLS) region. We found that duplication of the E/DLS region resulted in the appearance of monomeric RNA in virus particles. No monomers were observed in virions of mutants carrying the E/DLS region only at ectopic positions. Monomers were not observed when pol or env regions were duplicated, indicating an absolute need for two intact E/DLS regions on the same RNA for generating particles with monomeric RNA. These monomeric RNAs were most likely generated by intramolecular interaction between two E/DLS regions on one genome. Moreover, incomplete genome dimerization did not affect RNA packaging and virion formation. Examination of intramolecular interaction between E/DLS regions could be a convenient tool for characterizing the E/DLS region in virion assembly and RNA dimerization within virus particles.  相似文献   

19.
Genome segmentation facilitates reassortment and rapid evolution of influenza A virus. However, segmentation complicates particle assembly as virions must contain all eight vRNA species to be infectious. Specific packaging signals exist that extend into the coding regions of most if not all segments, but these RNA motifs are poorly defined. We measured codon variability in a large dataset of sequences to identify areas of low nucleotide sequence variation independent of amino acid conservation in each segment. Most clusters of codons showing very little synonymous variation were located at segment termini, consistent with previous experimental data mapping packaging signals. Certain internal regions of conservation, most notably in the PA gene, may however signify previously unidentified functions in the virus genome. To experimentally test the bioinformatics analysis, we introduced synonymous mutations into conserved codons within known packaging signals and measured incorporation of the mutant segment into virus particles. Surprisingly, in most cases, single nucleotide changes dramatically reduced segment packaging. Thus our analysis identifies cis-acting sequences in the influenza virus genome at the nucleotide level. Furthermore, we propose that strain-specific differences exist in certain packaging signals, most notably the haemagglutinin gene; this finding has major implications for the evolution of pandemic viruses.  相似文献   

20.
The RNA-dependent RNA polymerase of influenza A virus is composed of three subunits that together synthesize all viral mRNAs and also replicate the viral genomic RNA segments (vRNAs) through intermediates known as cRNAs. Here we describe functional characterization of 16 site-directed mutants of one polymerase subunit, termed PA. In accord with earlier studies, these mutants exhibited diverse, mainly quantitative impairments in expressing one or more classes of viral RNA, with associated infectivity defects of varying severity. One PA mutant, however, targeting residues 507 and 508, caused only modest perturbations of RNA expression yet completely eliminated the formation of plaque-forming virus. Polymerases incorporating this mutant, designated J10, proved capable of synthesizing translationally active mRNAs and of replicating diverse cRNA or vRNA templates at levels compatible with viral infectivity. Both the mutant protein and its RNA products were appropriately localized in the cytoplasm, where influenza virus assembly occurs. Nevertheless, J10 failed to generate infectious particles from cells in a plasmid-based influenza virus assembly assay, and hemagglutinating material from the supernatants of such cells contained little or no nuclease-resistant genomic RNA. These findings suggest that PA has a previously unrecognized role in assembly or release of influenza virus virions, perhaps influencing core structure or the packaging of vRNAs or other essential components into nascent influenza virus particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号