首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endoplasmic reticulum-resident chaperone heat-shock protein 47 (HSP47) plays an essential role in procollagen biosynthesis. The function of HSP47 relies on its specific interaction with correctly folded triple-helical regions comprised of Gly-Xaa-Yaa repeats, and Arg residues at Yaa positions have been shown to be important for this interaction. The amino acid at the Yaa position (Yaa(-3)) in the N-terminal-adjoining triplet containing the critical Arg (defined as Arg(0)) was also suggested to be directly recognized by HSP47 (Koide, T., Asada, S., Takahara, Y., Nishikawa, Y., Nagata, K., and Kitagawa, K. (2006) J. Biol. Chem. 281, 3432-3438). Based on this finding, we examined the relationship between the structure of Yaa(-3) and HSP47 binding using synthetic collagenous peptides. The results obtained indicated that the structure of Yaa(-3) determined the binding affinity for HSP47. Maximal binding was observed when Yaa(-3) was Thr. Moreover, the required relative spatial arrangement of these key residues in the triple helix was analyzed by taking advantage of heterotrimeric collagen-model peptides, each of which contains one Thr(-3) and one Arg(0). The results revealed that HSP47 recognizes the Yaa(-3) and Arg(0) residues only when they are on the same peptide strand. Taken together, the data obtained led us to define the HSP47-binding structural epitope in the collagen triple helix and also define the HSP47-binding motif in the primary structure. A motif search against human protein database predicted candidate clients for this molecular chaperone. The search result indicated that not all collagen family proteins require the chaperoning by HSP47.  相似文献   

2.
3.
The collagen binding chaperone HSP47 interacts with procollagen in the endoplasmic reticulum and plays a crucial role in the biosynthesis of collagen. We recently demonstrated that typical collagen model peptides, (Pro-Pro-Gly)(n), possess sufficient structural information for interaction with HSP47 (Koide, T., Asada, S., and Nagata, K. (1999) J. Biol. Chem. 274, 34523-34526). Here we show that binding of (Gly-Pro-Pro)(n) peptides to HSP47 can be detected using the two-hybrid system in yeast if a trimerizing domain is fused to the C termini of the peptides. Some peptides interacted with HSP47 at a lowered assay temperature at 24 degrees C but not at 30 degrees C, indicating the importance of conformational change of the substrate peptides. To analyze the spectrum of HSP47 substrate sequences, we performed two-hybrid screening of collagen-like peptides in designed random peptide libraries using HSP47 as a bait. In selected peptides, the enrichment ratio calculated for each amino acid residue correlated strongly with the contribution of the residue to triple-helix stability independently determined using synthetic collagen model peptides. Taken together, our results suggest that HSP47 preferentially recognizes collagenous Gly-X-Y repeats in triple-helical conformation. We also demonstrated that screening of combinatorial peptide libraries is a powerful strategy to determine conformational requirements as well as the elucidation of binding motifs in primary structure.  相似文献   

4.
HSP47 is an essential procollagen-specific molecular chaperone that resides in the endoplasmic reticulum of procollagen-producing cells. Recent advances have revealed that HSP47 recognizes the (Pro-Pro-Gly)(n) sequence but not (Pro-Hyp-Gly)(n) and that HSP47 recognizes the triple-helical conformation. In this study, to better understand the substrate recognition by HSP47, we synthesized various collagen model peptides and examined their interaction with HSP47 in vitro. We found that the Pro-Arg-Gly triplet forms an HSP47-binding site. The HSP47 binding was observed only when Arg residues were incorporated in the Yaa positions of the Xaa-Yaa-Gly triplets. Amino acids in the Xaa position did not largely affect the interaction. The recognition of the Arg residue by HSP47 was specific to its side-chain structure because replacement of the Arg residue by other basic amino acids decreased the affinity to HSP47. The significance of Arg residues in HSP47 binding was further confirmed by using residue-specific chemical modification of types I and III collagen. Our results demonstrate that Xaa-Arg-Gly sequences in the triple-helical procollagen molecule are dominant binding sites for HSP47 and enable us to predict HSP47-binding sites in homotrimeric procollagen molecules.  相似文献   

5.
Prior to secretion, procollagen molecules are correctly folded to triple helices in the endoplasmic reticulum (ER). HSP47 specifically associates with procollagen in the ER during its folding and/or modification processes and is thought to function as a collagen-specific molecular chaperone (Nagata, K. (1996) Trends Biochem. Sci. 21, 23-26). However, structural requirements for substrate recognition and regulation of the binding have not yet been elucidated. Here, we show that a typical collagen model sequence, (Pro-Pro-Gly)(n), possesses sufficient structural information required for recognition by HSP47. A structure-activity relationship study using synthetic analogs of (Pro-Pro-Gly)(n) has revealed the requirements in both chain length and primary structure for the interaction. The substrate recognition of HSP47 has also been shown to be similar but distinct from that of prolyl 4-hydroxylase, an ER resident enzyme. Further, it has shown that the interaction of HSP47 with the substrate peptides is abolished by prolyl 4-hydroxylation of the second Pro residues in Pro-Pro-Gly triplets and that the fully prolyl 4-hydroxylated peptide, (Pro-Hyp-Gly)(n), does not interact with HSP47. We thus have proposed a model in which HSP47 dissociates from procollagen during the process of prolyl 4-hydroxylation in the ER.  相似文献   

6.
Heat-shock protein 47 (HSP47) is a chaperone that facilitates the proper folding of procollagen. Our previous studies showed that the high-affinity HSP47-binding motif in the collagen triple helix is Xaa-(Thr/Pro)-Gly-Xaa-Arg-Gly. In this study, we further investigated structural requirements for the HSP47-binding motif, using synthetic triple-helical collagen-model peptides with systematic amino acid substitutions at either the Thr/Pro (=Yaa?3) or the Arg (=Yaa0) position. Results obtained from in vitro binding assays indicated that HSP47 detects the side-chain structure of Arg at the Yaa0-position, while the Yaa?3 amino acid serves as the secondary recognition site that affects affinity to HSP47.  相似文献   

7.
8.
The amino acid sequence of the largest fragment, CNBr Ia (203 residues) has been reported (Yokota, E., and Riggs, A. F. (1984) J. Biol. Chem. 259, 4739-4749). The amino acid sequences of the second largest fragment, CNBr Ib (142 residues), and of the 12 smaller fragments are reported in accompanying papers (Moore, M. D., Behrens, P. Q., and Riggs, A. F. (1986) J. Biol. Chem. 261, 10511-10519; Behrens, P. Q., Nakashima, H., and Riggs, A. F. (1986) J. Biol. Chem. 261, 10520-10525). The complete amino acid sequence of hemocyanin component II has been established by isolation and analysis of 13 methionine-containing peptides from either a tryptic digest or a Staphylococcus aureus strain V8 protease digest of whole carboxamidomethylated hemocyanin II. Hemocyanin II is composed of 628 residues and has a molecular weight with two copper atoms of 72,946.  相似文献   

9.
Photoaffinity labeling methods have allowed a definition of the sites of interaction between Taxol and its cellular target, the microtubule, specifically beta-tubulin. Our previous studies have indicated that [(3)H]3'-(p-azidobenzamido)Taxol photolabels the N-terminal 31 amino acids of beta-tubulin (Rao, S., Krauss, N. E., Heerding, J. M., Swindell, C. S., Ringel, I., Orr, G. A., and Horwitz, S. B. (1994) J. Biol. Chem. 269, 3132-3134) and [(3)H]2-(m-azidobenzoyl)Taxol photolabels a peptide containing amino acid residues 217-233 of beta-tubulin (Rao, S., Orr, G. A., Chaudhary, A. G., Kingston, D. G. I., and Horwitz, S. B. (1995) J. Biol. Chem. 270, 20235-20238). The site of photoincorporation of a third photoaffinity analogue of Taxol, [(3)H]7-(benzoyldihydrocinnamoyl) Taxol, has been determined. This analogue stabilizes microtubules polymerized in the presence of GTP, but in contrast to Taxol, does not by itself enhance the polymerization of tubulin to its polymer form. CNBr digestion of [(3)H]7-(benzoyldihydrocinnamoyl)Taxol-labeled tubulin, with further arginine-specific cleavage by clostripain resulted in the isolation of a peptide containing amino acid residues 277-293. Amino acid sequence analysis indicated that the photoaffinity analogue cross-links to Arg(282) in beta-tubulin. Advances made by electron crystallography in understanding the structure of the tubulin dimer have allowed us to visualize the three sites of photoincorporation by molecular modeling. There is good agreement between the binding site of Taxol in beta-tubulin as determined by photoaffinity labeling and electron crystallography.  相似文献   

10.
11.
Adiponectin is a multifunctional adipokine that circulates as several oligomeric complexes in the blood stream. However, the molecular basis that regulates the production of the adiponectin oligomers remains largely elusive. We have shown previously that several conserved lysine residues (positions 68, 71, 80, and 104) within the collagenous domain of adiponectin are modified by hydroxylation and glycosylation (Wang, Y., Xu, A., Knight, C., Xu, L. Y., and Cooper, G. J. (2002) J. Biol. Chem. 277, 19521-19529). Here, we investigated the potential roles of these post-translational modifications in oligomeric complex formation of adiponectin. Gel filtration chromatography revealed that adiponectin produced from mammalian cells formed trimeric, hexameric, and high molecular weight (HMW) oligomeric complexes. These three oligomeric forms were differentially glycosylated, with the HMW oligomer having the highest carbohydrate content. Disruption of hydroxylation and glycosylation by substitution of the four conserved lysines with arginines selectively abrogated the intracellular assembly of the HMW oligomers in vitro as well as in vivo. In type 2 diabetic patients, both the ratios of HMW to total adiponectin and the degree of adiponectin glycosylation were significantly decreased compared with healthy controls. Functional studies of adiponectin-null mice revealed that abrogation of lysine hydroxylation/glycosylation markedly decreased the ability of adiponectin to stimulate phosphorylation of AMP-activated protein kinase in liver tissue. Chronic treatment of db/db diabetic mice with wild-type adiponectin alleviated hyperglycemia, hypertriglyceridemia, hepatic steatosis, and insulin resistance, whereas full-length adiponectin without proper post-translational modifications and HMW oligomers showed substantially decreased activities. Taken together, these data suggest that hydroxylation and glycosylation of the lysine residues within the collagenous domain of adiponectin are critically involved in regulating the formation of its HMW oligomeric complex and consequently contribute to the insulin-sensitizing activity of adiponectin in hepatocytes.  相似文献   

12.
The amino acid sequence of rat brain prostaglandin D synthetase (Urade, Y., Fujimoto, N., and Hayaishi, O. (1985) J. Biol. Chem. 260, 12410-12415) was determined by a combination of cDNA and protein sequencing. cDNA clones specific for this enzyme were isolated from a lambda gt11 rat brain cDNA expression library. Nucleotide sequence analyses of cloned cDNA inserts revealed that this enzyme consisted of a 564- or 549-base pair open reading frame coding for a 188- or 183-amino acid polypeptide with a Mr of 21,232 or 20,749 starting at the first or second ATG. About 60% of the deduced amino acid sequence was confirmed by partial amino acid sequencing of tryptic peptides of the purified enzyme. The recognition sequence for N-glycosylation was seen at two positions of amino acid residues 51-53 (-Asn-Ser-Ser-) and 78-80 (-Asn-Leu-Thr-) counted from the first Met. Both sites were considered to be glycosylated with carbohydrate chains of Mr 3,000, since two smaller proteins with Mr 23,000 and 20,000 were found during deglycosylation of the purified enzyme (Mr 26,000) with N-glycanase. The prostaglandin D synthetase activity was detected in fusion proteins obtained from lysogens with recombinants coding from 34 and 19 nucleotides upstream and 47 and 77 downstream from the first ATG, indicating that the glycosyl chain and about 20 amino acid residues of N terminus were not essential for the enzyme activity. The amino acid composition of the purified enzyme indicated that about 20 residues of hydrophobic amino acids of the N terminus are post-translationally deleted, probably as a signal peptide. These results, together with the immunocytochemical localization of this enzyme to rough-surfaced endoplasmic reticulum and other nuclear membrane of oligodendrocytes (Urade, Y., Fujimoto, N., Kaneko, T., Konishi, A., Mizuno, N., and Hayaishi, O. (1987) J. Biol. Chem. 262, 15132-15136) suggest that this enzyme is a membrane-associated protein.  相似文献   

13.
The crystal structure of the W47A/W242A mutant of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis has been solved to 1.8A resolution. The W47A/W242A mutant is an interfacially challenged enzyme, and it has been proposed that one or both tryptophan side chains serve as membrane interfacial anchors (Feng, J., Wehbi, H., and Roberts, M. F. (2002) J. Biol. Chem. 277, 19867-19875). The crystal structure supports this hypothesis. Relative to the crystal structure of the closely related (97% identity) wild-type PI-PLC from Bacillus cereus, significant conformational differences occur at the membrane-binding interfacial region rather than the active site. The Trp --> Ala mutations not only remove the membrane-partitioning aromatic side chains but also perturb the conformations of the so-called helix B and rim loop regions, both of which are implicated in interfacial binding. The crystal structure also reveals a homodimer, the first such observation for a bacterial PI-PLC, with pseudo-2-fold symmetry. The symmetric dimer interface is stabilized by hydrophobic and hydrogen-bonding interactions, contributed primarily by a central swath of aromatic residues arranged in a quasiherringbone pattern. Evidence that interfacially active wild-type PI-PLC enzymes may dimerize in the presence of phosphatidylcholine vesicles is provided by fluorescence quenching of PI-PLC mutants with pyrene-labeled cysteine residues. The combined data suggest that wild-type PI-PLC can form similar homodimers, anchored to the interface by the tryptophan and neighboring membrane-partitioning residues.  相似文献   

14.
Topological studies of multi-spanning membrane proteins commonly use sequentially truncated proteins fused to a C-terminal translocation reporter to deduce transmembrane (TM) segment orientation and key biogenesis events. Because these truncated proteins represent an incomplete stage of synthesis, they transiently populate intermediate folding states that may or may not reflect topology of the mature protein. For example, in Xenopus oocytes, the aquaporin-1 (AQP1) water channel is cotranslationally directed into a four membrane-spanning intermediate, which matures into the six membrane-spanning topology at a late stage of synthesis (Skach, W. R., Shi, L. B., Calayag, M. C., Frigeri, A., Lingappa, V. R., and Verkman, A. S. (1994) J. Cell Biol. 125, 803-815 and Lu, Y., Turnbull, I. R., Bragin, A., Carveth, K., Verkman, A. S., and Skach, W. R. (2000) Mol. Biol. Cell 11, 2973-2985). The hallmark of this process is that TM3 initially acquires an Nexo/Ccyto (Type I) topology and must rotate 180 degrees to acquire its mature orientation. In contrast, recent studies in HEK-293 cells have suggested that TM3 acquires its mature topology cotranslationally without the need for reorientation (Dohke, Y., and Turner, R. J. (2002) J. Biol. Chem. 277, 15215-15219). Here we re-examine AQP1 biogenesis and show that irrespective of the reporter or fusion site used, oocytes and mammalian cells yielded similar topologic results. AQP1 intermediates containing the first three TM segments generated two distinct cohorts of polypeptides in which TM3 spanned the ER membrane in either an Ncyto/Cexo (mature) or Nexo/Ccyto (immature) topology. Pulse-chase analyses revealed that the immature form was predominant immediately after synthesis but that it was rapidly degraded via the proteasome-mediated endoplasmic reticulum associated degradation (ERAD) pathway with a half-life of less than 25 min in HEK cells. As a result, the mature topology predominated at later time points. We conclude that (i) differential stability of biogenesis intermediates is an important factor for in vivo topological analysis of truncated chimeric proteins and (ii) cotranslational events of AQP1 biogenesis reflect a common AQP1 folding pathway in diverse expression systems.  相似文献   

15.
The endoproteolytic activity previously detected in rat intestinal mucosal extracts (Beinfeld M., Bourdais, J., Kuks, P., Morel, A., and Cohen, P. (1989) J. Biol. Chem. 264, 4460-4465), was purified to homogeneity as a 65-kDa molecular species. This putative proprotein-processing enzyme cleaves the peptide bond on the carboxyl side of a single arginine residue in hepta-[Leu62-Gln-Arg-Ser-Ala-Asn-Ser68] or trideca-[Asp56-Glu-Met-Arg-Leu-Glu-Leu-Gln-Arg-Ser-Ala-Asn-+ ++Ser68] peptides, reproducing the prosomatostatin sequence around Arg64, the locus for endoproteolytic release of either somatostatin-28 or its NH2-terminal fragment, somatostatin-28-(1-12), from their common precursor. This enzyme exhibits a strict selectivity for arginyl residues, as demonstrated with related substrates, and did not cleave at lysyl residues. Moreover, only arginyl residues belonging to peptides of the prosomatostatin family were cleaved, since no hydrolysis of peptides from other prohormones was detected. In addition, the arginine residue situated at position -5 on the NH2-terminal side of Arg64 not only did not function as a cleavage locus, but had no effect on the overall cleavage kinetics of the prosomatostatin-(56-68) peptide substrate. This enzyme also cleaved, but with much less efficiency, the peptide bond on the carboxyl side of an arginine in peptides containing either an Arg-Lys or a Lys-Arg doublet corresponding to prohormone cleavage sites. This enzyme was insensitive to divalent cation chelators, was completely inhibited by aprotinin and leupeptin, and was somewhat inhibited by other serine-protease inhibitors. It is concluded that this endoprotease is a serine protease and could be involved in prohormone or proprotein post-translational processing at single arginine cleavage sites.  相似文献   

16.
Complete amino acid sequence of staphylococcal enterotoxin A   总被引:10,自引:0,他引:10  
The amino acid sequence of staphylococcal enterotoxin A is presented. Staphylococcal enterotoxin A is a single-chain polypeptide which consists of 233 amino acid residues with a molecular weight of 27,078 and has the amino acid composition Cys2, Asp17, Asn19, Thr16, Ser13, Glu15, Gln12, Pro4, Gly15, Ala7, Val13, Met2, Ile10, Leu23, Tyr18, Phe8, His6, Lys24, Arg7, Trp2, with serine as both amino- and carboxyl-terminal amino acids. Automated sequence analysis of intact enterotoxin A, as well as characterization of the peptides obtained from cyanogen bromide treatment and trypsin and chymotrypsin digestion, led to the elucidation of the complete primary structure of this protein. Less structural homology is observed among staphylococcal enterotoxins A, B (Huang, I-Y., and Bergdoll, M. S. (1970) J. Biol. Chem. 245, 3518-3525), and C1 (Schmidt, J. J., and Spero, L. (1983) J. Biol. Chem. 258, 6300-6306) than that seen between enterotoxins B and C1.  相似文献   

17.
Previous studies of the amino acid sequence of the NAD-specific glutamate dehydrogenase of Neurospora crassa (EC 1.4.1.2) resulted in the assignments of peptides to four fragments, the longest being the COOH-terminal 669 residues of the protein. A further study of peptides derived by cyanogen bromide cleavage by different separation methods has yielded additional peptides that have provided new information concerning the sequence and has given overlaps of previously known sequences. This has permitted establishment of 313 residues in one sequence (fragment II). This is in addition to a sequence of 43 residues (fragment I) at the NH2-terminal end and a sequence of 669 residues (fragment III) previously established at the COOH-terminal end of the molecule. The present status of our knowledge of the overall sequence is given in the accompanying papers, together with some views regarding the conformation of the protein (Haberland, M.E., Chen, C.-W., and Smith, E.L. (1980) J. Biol. Chem. 255, 7993-8000, and Austen, B.M., Haberland, M.E., and Smith, E.L. (1980) J. Biol. Chem. 255, 8001-8004).  相似文献   

18.
A third chain, alpha 3(IV), of basement membrane collagen was recently discovered and was identified as the primary target for the autoantibodies of patients with Goodpasture syndrome (Saus, J., Wieslander, J., Langeveld, J. P. M., Quinones, S., and Hudson, B. G. (1988) J. Biol. Chem. 263, 13374-13380). In the present study, this chain was excised in the form of a truncated promoter by cleavage of basement membrane with Pseudomonas aeruginosa elastase and characterized. The triple helical structure and NC1 domain were retained. Elastase selectively cleaved at a site within the triple helical domain of the alpha 3 chain that is distinct from the cleavage site of the alpha 1 and alpha 2 chains. The truncated alpha 3 chain was found to contain 1460 residues, of which 1225 comprise the collagenous domain, and is cross-linked within this domain by disulfide bonds, forming a high Mr complex (greater than 300,000). Truncated protomers with a length of 340 nm corresponding to the theoretical length for the truncated alpha 3 chain were observed by electron microscopy as suprastructures in which the triple helical domains of three protomers were interwined. These protomers were also connected to each other and to the 140-nm protomers that appear to be comprised of the alpha 1 and alpha 2 chains. These results extended the known length of the alpha 3 chain by about 1000 residues and suggested that protomers of this chain self-associate through interactions between their triple helical domains and between their NC1 domains.  相似文献   

19.
Trialysin is a pore-forming protein found in the saliva of Triatoma infestans (Hemiptera, Reduviidae), the insect vector of Chagas' disease. The protein is active against a broad range of cell types from bacteria to eukaryotic cells. Recognizing that the N-terminus of trialysin harbors the lytic motif [Amino, R., Martins, R. M., Procopio, J., Hirata, I. Y., Juliano, M. A., and Schenkman, S. (2002) J. Biol. Chem. 277, 6207-6213], we designed a set of peptides scanning this region to investigate the structural basis of its biological function. Peptides encompassing residues 1-32 (P6), 1-27 (P7), and 6-32 (P5) efficiently induced lysis of the protozoan parasite Trypanosoma cruzi and Escherichia coli in the 0.4-9.0 microM range, while much higher concentrations were required to cause hemolysis. Other more internal peptides, including peptide P2 (residues 21-47) and others up to residue 52, were less effective. P6 turned out to be the most active of all. P7 has a significantly higher activity than P5 against E. coli, while P5 has a hemolytic activity comparable to that of P6. CD spectroscopy showed that all tested peptides acquire a comparable helical content in solvent mixtures or in detergent micelles. The solution structure of P2 and P5-P7 was determined in a 30% trifluoroethanol/water mixture by nuclear magnetic resonance. All peptides exhibit a structure characterized by a central helical fold, and except for P2, which does not show a continuous hydrophobic surface, they are amphipathic. The structural models show that P5 and P7 extend their structural similarities with the most active peptide, P6, in either the C-terminus or the N-terminus. Amino acid substitutions in the N-terminus of P6 improved hemolysis but did not change the activity against T. cruzi. These results suggest that while amphipathicity is essential for the lytic activity, the selectivity of the active peptides for specific organisms appears to be associated with the structural features of their N- and C-termini.  相似文献   

20.
In the human disease alpha-1-proteinase inhibitor deficiency, some variants of human alpha-1-proteinase inhibitor are not secreted. These secretory variants contain frameshift mutations leading to products with normal amino acid sequences to the points of the mutations followed by short, aberrant C-terminal sequences and then premature termination (Nukiwa, T., Takahashi, H., Brantly, M., Courtney, M., and Crystal, R. (1987) J. Biol. Chem. 262, 11999-12004; Sifers, R. N., Brashears-Macatee, S., Kidd, V. J., Muensch, H., and Woo, S. L. C. (1988) J. Biol. Chem. 263, 7330-7335; Curiel, D., Brantly, M., Curiel, E., Stier, L., and Crystal, R. G. (1989) J. Clin. Invest. 83, 1144-1152). To examine possible causes for lack of secretion of these null variants, we have altered the alpha-1-proteinase inhibitor cDNA to encode a series of abbreviated forms of this protein that retain authentic sequences to the points of truncation. Examination of the fates of these shortened proteins in transiently transfected Cos 1 cells indicates that the aberrant C-terminal sequences in the naturally occurring variants are not responsible for their lack of secretion and show that truncation prior to Pro391 prevents movement from the endoplasmic reticulum to the Golgi apparatus and therefore secretion. These truncated forms of alpha-1-proteinase inhibitor do not form inclusion bodies in the endoplasmic reticulum, rather they are degraded, probably by the pre-Golgi pathway. Our results support the idea that a sequence of at least 391 of the normal 394 residues is essential for the secretion of alpha-1-proteinase inhibitor and suggest that residue 391 plays an especially important role, perhaps in allowing or directing proper folding or as part of a transport signal, in the secretion of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号