共查询到20条相似文献,搜索用时 0 毫秒
1.
Active sulfate transport in Saccharomyces cerevisiae 总被引:4,自引:0,他引:4
2.
Kinetic analysis of simultaneously occurring proton-sorbose symport and passive sorbose transport in Saccharomyces fragilis 总被引:3,自引:0,他引:3
Sorbose transport in Saccharomyces fragilis takes place both via an active sugar-H+ symport system and via facilitated diffusion. To establish whether the two modes of transport proceed via the same transporter or via two different carriers, the kinetic consequences of both models were investigated. The kinetic equations for initial transport were derived for three possible reaction sequences with respect to sugar and H+ binding to the symport carrier: random binding and obligatory ordered binding with either sugar or H+ binding first, yielding six sets of kinetic parameters. Analysis of experimental data of sorbose transport in S. fragilis showed the existence of separate carriers for active, sorbose-H+ symport and facilitated diffusion. Furthermore, it could be concluded that the symport carrier shows random binding of sugar and H+. In recent literature, a similar combination of active and passive sugar transport in Rhodotorula gracilis and Chlorella vulgaris was interpreted as two modes of action of the same carrier, viz., active symport via the protonated, and facilitated diffusion via the unprotonated carrier. Analysis of the experimental data according to the criteria presented in this paper showed, however, that this supposition is untenable and that two different carriers must also be involved in these micro-organisms. 相似文献
3.
4.
5.
6.
7.
8.
9.
Elution of exocellular enzymes from Saccharomyces fragilis and Saccharomyces cerevisiae 总被引:6,自引:2,他引:6
Weimberg, Ralph (Northern Regional Research Laboratory, Peoria, Ill.), and William L. Orton. Elution of exocellular enzymes from Saccharomyces fragilis and Saccharomyces cerevisiae. J. Bacteriol. 91:1-13. 1966.-Invertase and acid phosphatase are repressible exocellular enzymes in Saccharomyces fragilis and S. cerevisiae. The conditions for eluting these enzymes from both organisms were compared. Either KCl or beta-mercaptoethanol eluted the enzymes from S. fragilis, and the amounts eluted varied quantitatively according to the physiological age of the organism. In addition to eluting enzymatic activity from the cells, these reagents also caused a large increase in the amount of activity that remained associated with the cells of S. fragilis. Invertase and acid phosphatase were not removed from cells of S. cerevisiae by KCl or beta-mercaptoethanol. These enzymes were separated from S. cerevisiae cells only when there was some degree of cell-wall digestion by snail gut fluid. 相似文献
10.
11.
Pentobarbital acts as a mixed inhibitor of net D-glucose exit, as monitored photometrically from human red cells. At 30 degrees C the Ki of pentobarbital for inhibition of Vmax of zero-trans net glucose exit is 2.16+/-0.14 mM; the affinity of the external site of the transporter for D-glucose is also reduced to 50% of control by 1. 66+/-0.06 mM pentobarbital. Pentobarbital reduces the temperature coefficient of D-glucose binding to the external site. Pentobarbital (4 mM) reduces the enthalpy of D-glucose interaction from 49.3+/-9.6 to 16.24+/-5.50 kJ/mol (P<0.05). Pentobarbital (8 mM) increases the activation energy of glucose exit from control 54.7+/-2.5 kJ/mol to 114+/-13 kJ/mol (P<0.01). Pentobarbital reduces the rate of L-sorbose exit from human red cells, in the temperature range 45 degrees C-30 degrees C (P<0.001). On cooling from 45 degrees C to 30 degrees C, in the presence of pentobarbital (4 mM), the Ki (sorbose, glucose) decreases from 30.6+/-7.8 mM to 14+/-1.9 mM; whereas in control cells, Ki (sorbose, glucose) increases from 6.8+/-1.3 mM at 45 degrees C to 23.4+/-4.5 mM at 30 degrees C (P<0.002). Thus, the glucose inhibition of sorbose exit is changed from an endothermic process (enthalpy change=+60.6+/-14.7 kJ/mol) to an exothermic process (enthalpy change=-43+/-6.2 7 kJ/mol) by pentobarbital (4 mM) (P<0.005). These findings indicate that pentobarbital acts by preventing glucose-induced conformational changes in glucose transporters by binding to 'non-catalytic' sites in the transporter. 相似文献
12.
13.
14.
15.
Determination of 2-acetamido-2-deoxy-D-galactose and mechanism of formation of chromogens. 下载免费PDF全文
F Serafini-Cessi 《The Biochemical journal》1975,149(3):513-517
A method for the colorimetric determination of 2-acetamido-2-deoxy-D-galactose was developed. The procedure is based on the high reactivity of the aldehyde group of this amidosugar with pentane-2,4-dione in anhydrous alkaline conditions. The product of reaction was crystallized and the structure 1-C-acetonyl-2-acetamido-2-deoxy-D-galactitol was deduced from chemical evidence. When the N-acetyl group of this compound is split off by hydrolysis, the formation of pyrrole groups ensues by condensation of the free amino group with the carbonyl group of the chain at C-1. 2-Methylpyrrole was isolated by steam distillation after mild alkaline hydrolysis and estimated by reaction with p-dimethylaminobenzaldehyde. A more complex pyrrole is formed during acid hydrolysis under the conditions used in the direct Ehrlich reaction. 相似文献
16.
The yeast Saccharomyces cerevisiae is capable of utilizing proline as the sole source of nitrogen. Mutants of S. cerevisiae with defective proline transport were isolated by selecting for resistance to either of the toxic proline analogs L-azetidine-2-carboxylate or 3,4-dehydro-DL-proline. Strains carrying the put4 mutation are defective in the high-affinity proline transport system. These mutants could still grow when given high concentrations of proline, due to the operation of low-affinity systems whose existence as confirmed by kinetic studies. Both systems were repressed by ammonium ions, and either was induce by proline. Low-affinity transport was inhibited by histidine, so put4 mutants were unable to grow on a medium containing high concentrations of proline to which histidine has been added. 相似文献
17.
18.
Urea transport in Saccharomyces cerevisiae occurs by two pathways. The first mode of uptake is via an active transport system which: (i) has an apparent Km value of 14 muM, (ii) is absolutely dependent upon energy metabolism, (iii) requires pre-growth of the cultures in the presence of oxaluric acid, gratuitous inducer of the allantoin degradative enzymes, and (iv) is sensitive to nitrogen repression. The second mode of uptake which occurs at external urea concentrations in excess of 0.5 mM is via either passive or facilitated diffusion. 相似文献
19.
Oxalurate, the gratuitous inducer of the allantoin degradative enzymes, was taken into the cell by an energy-dependent active transport system with an apparent Km of 1.2 mM. Efflux of previously accumulated oxalurate was rapid, with a half-life of about 2 min. The oxalurate uptake system appears to be both constitutively produced and insensitive to nitrogen catabolite repression. The latter observations suggest that failure of oxalurate to bring about induction of allophanate hydrolase in cultures growing under repressive conditions does not result from inducer exclusion, but rather from repression of dur1,2 gene expression. 相似文献
20.
myo-Inositol uptake in Saccharomyces cerevisiae was dependent on temperature, time, and substrate concentration. The transport obeyed saturation kinetics with an apparent Km for myo-inositol of 0.1 mM, myo-Inositol analogs, such as scyllo-inositol, 2-inosose, mannitol, and 1,2-cyclohexanediol, had no effect on myo-inositol uptake, myo-Inositol uptake required metabolic energy. Removal of D-glucose resulted in a loss of activity, and azide and cyanide ions were inhibitory. In the presence of D-glucose, myo-inositol was accumulated in the cells against a concentration gradient. A myo-inositol transport mutant was isolated from UV-mutagenized S. cerevisiae cells using the replica-printing technique. The defect in myo-inositol uptake was due to a single nuclear gene mutation. The activities of L-serine and D-glucose transport were not affected by the mutation. Thus it was shown that S. cerevisiae grown under the present culture conditions possessed a single and specific myo-inositol transport system. myo-Inositol transport activity was reduced by the addition of myo-inositol to the culture medium. The activity was reversibly restored by the removal of myo-inositol from the medium. This restoration of activity was completely abolished by cycloheximide. 相似文献