首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of p53 in mediating nitric oxide (NO)-induced cell death remains uncertain. The exogenous NO donor S-nitrosoglutathione (GSNO) produced a concentration-dependent reduction in cell viability in embryonic chick cardiomyocytes in culture. Western blotting and immunocytochemistry for p53 showed that p53 was increased in whole cell lysates by GSNO: 0.001 mM GSNO led to 1.3 +/- 0.5-fold increase compared to control, and significantly (p < 0.05) increased to 1.6 +/- 0.2-fold after 0.01 mM GSNO. Higher GSNO concentrations did not further increase p53 protein expression despite producing significant increases in cell death. The p53 inhibitor pifithrin did not block GSNO-induced cell death. GSNO induced morphological changes of DNA fragmentation, nuclear condensation, and cell shrinkage. Pifithrin failed to block these morphologic changes, while it antagonized the similar cellular changes induced by adriamycin, which operates in part through p53. NO induced a concentration-dependent DNA damage. When assessed by the comet assay, the damage was 2.1 +/- 0.3-fold and 2.6 +/- 0.5-fold more than the control following 0.01 mM and 1.0 mM GSNO treatments, respectively. The DNA damage was not reduced by treatment with the pifithrin, which markedly reduced DNA damage induced by adriamycin. There was no p53 translocation to mitochondria, any major cytochrome c release from mitochondria, or change in mitochondrial membrane potential. Furthermore, cyclosporin A, which inhibits mitochondrial pore opening and cytochrome c loss, did not alter NO-induced cell death. Translocation of p53 from the cytosol to the nucleus occurred with a maximal increase of 2.9-fold in the nucleus following 1.0 mM GSNO for 24 h. These data indicate that in cardiomyocytes, NO induced marked DNA damage and translocation of p53 to the nucleus, suggesting that p53 is involved in the cellular response to NO, perhaps to modulate the genomic response to NO-induced cellular toxicity. NO-induced cell death, however, operates through p53-independent pathways, including a mitochondrial apoptotic pathway.  相似文献   

2.
We tried to determine the mechanisms by which Ca2+ mediated NO-induced programmed cell death (PCD) in tobacco protoplasts. Treatment of tobacco protoplasts with the NO donor sodium nitroprusside (SNP) resulted in a rapid [Ca2+]cyt accumulation and decrease in mitochondrial membrane potential (ΔΨm) before the appearance of PCD. NO-induced PCD could be largely prevented not only by NO scavenger c-PTIO, but also by EGTA (Ca2+ chelator), LaCl3 (Ca2+-channel blocker) or CsA (a specific mitochondrial permeability transition pore inhibitor, which also inhibit Ca2+ cycling by mitochondria). All results suggested that NO-induced PCD is mediated through mitochondrial pathway and regulated by Ca2+.  相似文献   

3.
Neuronal injury is intricately linked to the activation of three distinct neuronal endonucleases. Since these endonucleases are exquisitely pH dependent, we investigated in primary rat hippocampal neurons the role of intracellular pH (pH(i)) regulation during nitric oxide (NO)-induced toxicity. Neuronal injury was assessed by both a 0.4% Trypan blue dye exclusion survival assay and programmed cell death (PCD) with terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) 24 h following treatment with the NO generators sodium nitroprusside (300 microM), 3-morpholinosydnonimine (300 microM), or 6-(2-hyrdroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hex anamine (300 microM). The pH(i) was measured using the fluorescent probe BCECF. NO exposure yielded a rapid intracellular acidification during the initial 30 min from pH(i) 7.36 +/- 0.01 to approximately 7.00 (p <.0001). Within 45 min, a biphasic alkaline response was evident, with pH(i) reaching 7.40 +/- 0.02, that was persistent for a 6-h period. To mimic the effect of NO-induced acidification, neurons were acid-loaded with ammonium ions to yield a pH(i) of 7.09 +/- 0.02 for 30 min. Similar to NO toxicity, neuronal survival decreased to 45 +/- 2% (24 h) and DNA fragmentation increased to 58 +/- 8% (24 h) (p <.0001). Although neuronal caspases did not play a dominant role, neuronal injury and the induction of PCD during intracellular acidification were dependent upon enhanced endonuclease activity. Furthermore, maintenance of an alkaline pH(i) of 7.60 +/- 0.02 during the initial 30 min of NO exposure prevented neuronal injury, suggesting the necessity for the rapid but transient induction of intracellular acidification during NO toxicity. Through the identification of the critical role of both NO-induced intracellular acidification and the induction of the neuronal endonuclease activity, our work suggests a potential regulatory trigger for the prevention of neuronal degeneration.  相似文献   

4.
Yang ES  Park JW 《Biochimie》2006,88(7):869-878
Nitric oxide (NO), a radical species produced by many types of cells, is known to play a critical role in many regulatory processes, yet it may also participate in collateral reactions at higher concentrations, leading to cellular oxidative damage. The protective role of antioxidant enzymes against NO-induced oxidative damage in U937 cells was investigated in control and cells pre-treated with diethyldithiocarbamic acid, aminotriazole, and oxlalomalate, specific inhibitors of superoxide dismutase, catalase, and NADP(+)-dependent isocitrate dehydrogenase, respectively. Upon exposure to 1 mM S-nitroso-N-acetylpenicillamine (SNAP), the nitric oxide donor, to U937 cells, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in inhibitor-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2'7'-dichlorodihydrofluorescin as well as the significant decrease in the intracellular GSH level in inhibitor-treated U937 cells upon exposure to NO. Upon exposure to 0.2 mM SNAP, which induced apoptotic cell death, a clear inverse relationship was observed between the control and inhibitor-treated U937 cells in their susceptibility to apoptosis. These results suggest that antioxidant enzymes play an important role in cellular defense against NO-induced cell death including necrosis and apoptosis.  相似文献   

5.
In the present study, we investigated the involvement of the mitochondrial permeability transition pore (PTP) in nitric oxide (NO)-induced plant cell death. NO donors such as sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine inhibited growth and caused death in suspension-cultured cells of Citrus sinensis. Cells treated with SNP showed chromatin condensation and fragmentation, characteristic of apoptosis. SNP caused loss of the mitochondrial membrane electrical potential, which was prevented by cyclosporin A (CsA), a specific inhibitor of PTP formation. CsA also prevented the nuclear apoptosis and subsequent Citrus cell death induced by NO. These findings indicate that mitochondrial PTP formation is involved in the signaling pathway by which NO induces apoptosis in cultured Citrus cells.  相似文献   

6.
BackgroundAntibiotic resistance is a global problem and there is an urgent need to augment the arsenal against pathogenic bacteria. The emergence of different drug resistant bacteria is threatening human lives to be pushed toward the pre-antibiotic era. Antimicrobial peptides (AMPs) are a host defense component against infectious pathogens in response to innate immunity. PMAP-23, an AMP derived from porcine myeloid, possesses antibacterial activity. It is currently not clear how the antibacterial activity of PMAP-23 is manifested.MethodsThe disruptive effect of nitric oxide (NO) on the catalase activity, reactive oxygen species (ROS) production, DNA oxidation and apoptosis-like death were evaluated using the NO generation inhibitor.ResultsIn this investigation, PMAP-23 generates NO in a dose dependent manner. NO deactivated catalase and this antioxidant could not protect Escherichia coli against ROS, especially hydroxyl radical. This redox imbalance was shown to induce oxidative stress, thus leading to DNA strand break. Consequently, PMAP-23 treated E. coli cells resulted in apoptosis-like death. These physiological changes were inhibited when NO generation was inhibited. In the ΔdinF mutant, the levels of DNA strand break sharply increased and the cells were more sensitive to PMAP-23 than wild type.ConclusionOur data strongly indicates that PMAP-23 mediates apoptosis-like cell death through affecting intracellular NO homeostasis. Furthermore, our results demonstrate that DinF functioned in protection from oxidative DNA damage.General significanceThe identification of PMAP-23 antibacterial activity and mechanism provides a promising antibacterial agent, supporting the role of NO in cell death regulation.  相似文献   

7.
Hypoxia induces the expression of the pro-apoptotic gene BNIP3   总被引:14,自引:0,他引:14  
It has been shown that oxygen deprivation results in apoptotic cell death, and that hypoxia inducible factor 1 (HIF1) and the tumor suppressor p53 play key roles in this process. However, the molecular mechanism through which hypoxia and HIF1 induce apoptosis is not clear. Here we show that the expression of pro-apoptotic gene BNIP3 is dramatically induced by hypoxia in various cell types, including primary rat neonatal cardiomyocytes. Overexpression of HIF1alpha, but not p53, induces the expression of BNIP3. Overexpression of BNIP3 leads to a rather unusual type of apoptosis, as no cytochrome c leakage from mitochondria was detected and inhibitors of caspases were unable to prevent cell death. Taken together, these data suggest that HIF1-dependent induction of BNIP3 may play a significant role during hypoxia-induced cell death.  相似文献   

8.
Sodium nitroprusside (SNP), a NO donor, has been recognized as an inducer of apoptosis in various cell lines. Here, we demonstrated the intracellular formation of ceramide, a lipid signal mediator, in SNP-induced apoptosis in human leukemia HL-60 cells and investigated the mechanisms of ceramide generation. The levels of intracellular ceramide increased to, at most, 160% of the control level in a time- and dose-dependent manner when the cells were treated with 1 mM SNP. SNP also decreased the sphingomyelin level to approximately 70% of the control level and increased magnesium-dependent neutral sphingomyelinase (N-SMase) activity to 160% of the control activity 2 h after treatment. Neither acid SMase nor magnesium-independent N-SMase was affected by SNP. Caspases are thought to be key enzymes in apoptotic cell death. Acetyl-Asp-Glu-Val-Asp-aldehyde, a synthetic tetrapeptide inhibitor of caspases, inhibited magnesiumdependent N-SMase, ceramide generation, and apoptosis. Moreover, recombinant purified caspase-3 increased magnesium-dependent N-SMase in a cell-free system. These results suggest that the findings that SNP increased ceramide generation and magnesium-dependent N-SMase activity via caspase-3 are interesting to future study to determine the relation between caspases and sphingolipid metabolites in NO-mediated signaling.  相似文献   

9.
The objective of this study was to determine whether nitric oxide (NO)-induced cell death in cardiomyocytes was operative through de novo synthesis of ceramide by determining whether the ceramide synthase inhibitor fumonisin blocked NO-mediated cell death. Neonatal mouse cardiomyocytes in culture were pretreated with fumonisin B1 (FB1). FB1 is a competitive inhibitor of sphinganine N-acyl transferase, also known as ceramide synthase (EC 2.3.1.24). Cell viability was assessed by the (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, which is based on the ability of viable cells to reduce MTT. Treatment with the NO donor nitroso-glutathione (NO-GSH) for 24h produced a significant (p<0.05) concentration-dependent reduction in OD(570) or an increase in cell death. Sodium nitroprusside (SNP) treatment for 24h produced a significant (p<0.001) concentration-dependent reduction in OD(570) and an increase in cardiomyocyte cell death but the effects of SNP were greater than those of NO-GSH. FB1 significantly (p<0.05) reduced cell death induced by either SNP or NO-GSH. The SNP (0.1mM) increase in cell death of 36.9+/-2.8% was significantly (p<0.05) reduced to 24.7+/-1.8% by FB1 (10 microM). The effect of FB1 was not mediated through inhibition of the cell death effects of H(2)O(2), which is produced by SNP, as FB1 did not prevent H(2)O(2)-induced cell death. Confirmation of the ability of ceramide to produce cell death was demonstrated by the cell-permeable ceramide analogue, C(2)-ceramide (100 and 200 microM), which induced, respectively, 23.4+/-11.3 and 78.0+/-3.7% increases in cell death. The cell death effects of SNP and NO-GSH are likely independent of cGMP signal transduction pathways, which are activated by either SNP or NO-GSH, as there was no significant concentration-dependent change in cardiomyocyte viability after treatment with the cell-permeable analogue dibutyryl-GMP. These data show that FB1 blunts SNP- and NO-induced cardiomyocyte death and raise the novel possibility of preventing some of SNP- or NO-induced cardiomyocyte cell death by ceramide synthase inhibition.  相似文献   

10.
Nitric oxide induces BNIP3 expression that causes cell death in macrophages   总被引:4,自引:0,他引:4  
Nitric oxide (NO) is involved in many physiological processes and also causes pathological effects by inducing apoptosis. It can enhance or suppress apoptosis depending on its concentration and the cell type involved. In this report, we used cDNA microarray analysis to show that SNAP, an NO donor, strongly induces Bcl-2/adenovirus E1B 19kDa-interacting protein 3 (BNIP3) in macrophages. BNIP3 is a mitochondrial pro-apoptotic protein that contains a Bcl-2 homology 3 domain and a COOH-terminal transmembrane (TM) domain. Macrophages activated by LPS/IFN-gamma produce nitric oxide synthase 2 (NOS2) and release endogenous NO. Expression of BNIP3 was also induced in macrophages by LPS/IFN-gamma, and the induction was blocked by a NOS2 inhibitor, S-methyl-isothiourea. Peritoneal macrophages from NOS2-null mice failed to produce BNIP3 in response to LPS/IFN-gamma. We conclude that BNIP3 expression in macrophages is controlled by the intracellular level of nitric oxide. Overexpression of BNIP3 but not of BNIP3 deltaTM, a BNIP3 mutant without the TM domain and C-terminal tail, led to apoptosis of the cells. Promoter analysis showed that the region between -281 and -1 of the 5'-upstream enhancer region of murine BNIP3 was sufficient for NO-dependent expression of BNIP3.  相似文献   

11.
To test the hypothesis that the phosphatidylinositol 3-kinase (PI3 kinase)/protein kinase Akt signaling pathway is involved in nitric oxide (NO)-induced endothelial cell migration and angiogenesis, we treated human and bovine endothelial cells with NO donors, S-nitroso-L-glutathione (GSNO) and S-nitroso-N-penicillamine (SNAP). Both GSNO and SNAP increased Akt phosphorylation and activity, which were blocked by cotreatment with the PI3 kinase inhibitor wortmannin. The mechanism was due to the activation of soluble guanylyl cyclase because 8-bromo-cyclic GMP activated PI3 kinase and the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ) blocked NO-induced PI3 kinase activity. Indeed, transfection with adenovirus containing endothelial cell NO synthase (eNOS) or protein kinase G (PKG) increased endothelial cell migration, which was inhibited by cotransfection with a dominant-negative mutant of PI3 kinase (dnPI3 kinase). In a rat model of hind limb ischemia, adenovirus-mediated delivery of human eNOS cDNA in adductor muscles resulted in time-dependent expression of recombinant eNOS, which was accompanied by significant increases in regional blood perfusion and capillary density. Coinjection of adenovirus carrying dnPI3 kinase abolished neovascularization in ischemic hind limb induced by eNOS gene transfer. These findings indicate that NO promotes endothelial cell migration and neovascularization via cGMP-dependent activation of PI3 kinase and suggest that this pathway is important in mediating NO-induced angiogenesis.  相似文献   

12.
Selective cell death of dopaminergic neurons in the substantia nigra is the major cause of Parkinson disease. Current evidence suggests that this cell death could be mediated by nitric oxide by-products such as nitrate and peroxynitrite. Because protein kinase C (PKC)-delta is implicated in apoptosis of various cell types, we studied its roles and activation mechanisms in nitric oxide (NO)-induced apoptosis of SN4741 dopaminergic cells. When cells were treated with sodium nitroprusside (SNP), a NO donor, endogenous PKC-delta was nitrated and activated. Immunoprecipitation revealed that p53 co-immunoprecipitated with PKC-delta and was phosphorylated at the 15th serine residue in SNP-treated cells. An in vitro kinase assay revealed that p53 was directly phosphorylated by SNP-activated PKC-delta. The p53 Ser-15 phosphorylation was suppressed in SNP-treated cells when the NO-mediated activation of PKC-delta was inhibited by rottlerin or (-)-epigallocatechin gallate. Within 3 h of p53 phosphorylation, its protein levels increased because of decreased ubiquitin-dependent proteosomal proteolysis, whereas the protein levels of MDM2, ubiquitin-protein isopeptide ligase, were down-regulated in a p53 phosphorylation-dependent fashion. Taken together, these results demonstrate that nitration-mediated activation of PKC-delta induces the phosphorylation of the Ser-15 residue in p53, which increases its protein stability, thereby contributing to the nitric oxide-mediated apoptosis-like cell death pathway. These findings may be expanded to provide new insight into the cellular mechanisms of Parkinson disease.  相似文献   

13.
14.
《Autophagy》2013,9(2):195-204
Hypoxia (lack of oxygen) is a physiological stress often associated with solid tumors. Hypoxia correlates with poor prognosis since hypoxic regions within tumors are considered apoptosis-resistant. Autophagy (cellular “self digestion”) has been associated with hypoxia during cardiac ischemia and metabolic stress as a survival mechanism. However, although autophagy is best characterized as a survival response, it can also function as a mechanism of programmed cell death. Our results show that autophagic cell death is induced by hypoxia in cancer cells with intact apoptotic machinery. We have analyzed two glioma cell lines (U87, U373), two breast cancer cell lines (MDA-MB-231, ZR75) and one embryonic cell line (HEK293) for cell death response in hypoxia (  相似文献   

15.
16.
Feng X  Liu X  Zhang W  Xiao W 《The EMBO journal》2011,30(16):3397-3415
Hypoxia stabilizes the tumour suppressor p53, allowing it to function primarily as a transrepressor; however, the function of p53 during hypoxia remains unclear. In this study, we showed that p53 suppressed BNIP3 expression by directly binding to the p53-response element motif and recruiting corepressor mSin3a to the BNIP3 promoter. The DNA-binding site of p53 must remain intact for the protein to suppress the BNIP3 promoter. In addition, taking advantage of zebrafish as an in vivo model, we confirmed that zebrafish nip3a, a homologous gene of mammalian BNIP3, was indeed induced by hypoxia and p53 mutation/knockdown enhanced nip3a expression under hypoxia resulted in cell death enhancement in p53 mutant embryos. Furthermore, p53 protected against hypoxia-induced cell death mediated by p53 suppression of BNIP3 as illustrated by p53 knockdown/loss assays in both human cell lines and zebrafish model, which is in contrast to the traditional pro-apoptotic role of p53. Our results suggest a novel function of p53 in hypoxia-induced cell death, leading to the development of new treatments for ischaemic heart disease and cerebral stroke.  相似文献   

17.
Developing oligodendrocytes, collectively termed ‘pre‐myelinating oligodendrocytes’ (preOLs), are vulnerable to hypoxic or ischemic insults. The underlying mechanism of this vulnerability remains unclear. Previously, we showed that Bcl‐2?E1B‐19K‐interacting protein 3 (BNIP3), a proapoptotic member of the Bcl‐2 family proteins, induced neuronal death in a caspase‐independent manner in stroke. In this study, we investigated the role of BNIP3 in preOL cell death induced by hypoxia or ischemia. In primary oligodendrocyte progenitor cell (OPC) cultures exposed to oxygen–glucose deprivation, we found that BNIP3 was upregulated and levels of BNIP3 expression correlated with the death of OPCs. Up‐regulation of BNIP3 was observed in preOLs in the white matter in a neonatal rat model of stroke. Knockout of BNIP3 significantly reduced death of preOLs in the middle cerebral artery occlusion model in mice. Our results demonstrate a role of BNIP3 in mediating preOLs cell death induced by hypoxia or ischemia, and suggest that BNIP3 may be a new target for protecting oligodendrocytes from death after stroke.

  相似文献   


18.
Hypoxia (lack of oxygen) is a physiological stress often associated with solid tumors. Hypoxia correlates with poor prognosis since hypoxic regions within tumors are considered apoptosisresistant. Autophagy (cellular "self digestion") has been associated with hypoxia during cardiac ischemia and metabolic stress as a survival mechanism. However, although autophagy is best characterized as a survival response, it can also function as a mechanism of programmed cell death. Our results show that autophagic cell death is induced by hypoxia in cancer cells with intact apoptotic machinery. We have analyzed two glioma cell lines (U87, U373), two breast cancer cell lines (MDA-MB-231, ZR75) and one embryonic cell line (HEK293) for cell death response in hypoxia (<1% O(2)). Under normoxic conditions, all five cell lines undergo etoposide-induced apoptosis whereas hypoxia fails to induce these apoptotic responses. All five cell lines induce an autophagic response and undergo cell death in hypoxia. Hypoxia-induced cell death was reduced upon treatment with the autophagy inhibitor 3-methyladenine, but not with the caspase inhibitor z-VAD-fmk. By knocking down the autophagy proteins Beclin-1 or ATG5, hypoxia-induced cell death was also reduced. The pro-cell death Bcl-2 family member BNIP3 (Bcl-2/adenovirus E1B 19kDainteracting protein 3) is upregulated during hypoxia and is known to induce autophagy and cell death. We found that BNIP3 overexpression induced autophagy, while expression of BNIP3 siRNA or a dominant-negative form of BNIP3 reduced hypoxia-induced autophagy. Taken together, these results suggest that prolonged hypoxia induces autophagic cell death in apoptosis-competent cells, through a mechanism involving BNIP3.  相似文献   

19.
Many apoptotic signaling pathways are directed to mitochondria, where they initiate the release of apoptogenic proteins and open the proposed mitochondrial permeability transition (PT) pore that ultimately results in the activation of the caspase proteases responsible for cell disassembly. BNIP3 (formerly NIP3) is a member of the Bcl-2 family that is expressed in mitochondria and induces apoptosis without a functional BH3 domain. We report that endogenous BNIP3 is loosely associated with mitochondrial membrane in normal tissue but fully integrates into the mitochondrial outer membrane with the N terminus in the cytoplasm and the C terminus in the membrane during induction of cell death. Surprisingly, BNIP3-mediated cell death is independent of Apaf-1, caspase activation, cytochrome c release, and nuclear translocation of apoptosis-inducing factor. However, cells transfected with BNIP3 exhibit early plasma membrane permeability, mitochondrial damage, extensive cytoplasmic vacuolation, and mitochondrial autophagy, yielding a morphotype that is typical of necrosis. These changes were accompanied by rapid and profound mitochondrial dysfunction characterized by opening of the mitochondrial PT pore, proton electrochemical gradient (Deltapsim) suppression, and increased reactive oxygen species production. The PT pore inhibitors cyclosporin A and bongkrekic acid blocked mitochondrial dysregulation and cell death. We propose that BNIP3 is a gene that mediates a necrosis-like cell death through PT pore opening and mitochondrial dysfunction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号