首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oviparous development in the extremophile crustacean, Artemia franciscana, generates encysted embryos which enter a profound state of dormancy, termed diapause. Encystment is marked by the synthesis of p26, a polydisperse small heat shock protein thought to protect embryos from stress. In order to elucidate structural/functional relationships within p26 and other polydisperse small heat shock proteins, and to better define the protein's role during diapause, amino acid substitutions R110G, F112R, R114A and Y116D were generated within the p26 alpha-crystallin domain by site-directed mutagenesis. These residues were chosen because they are highly conserved across species boundaries, and molecular modelling indicates that they are part of a key structural interface between dimers. The F112R mutation, which had the greatest impact on oligomerization, placed two charged residues at the p26 dimer-dimer interface, demonstrating the importance of beta-strand 7 in tetramer formation. All mutated versions of p26 were less able than wild-type p26 to confer thermotolerance on transformed bacteria and they exhibited diminished chaperone action in three in vitro assays; however, all variants retained protective activity. This apparent stability of p26 may, by prolonging effective chaperone life in vivo, enhance embryo stress resistance. All substitutions modified p26 intrinsic fluorescence, surface hydrophobicity and secondary structure, and the pronounced changes in variant R114A, as indicated by these physical measurements, correlated with the greatest loss of function. Although mutation R114A had the greatest effect on p26 chaperoning, it had the least on oligomerization. These results demonstrate that in contrast to many other small heat shock proteins, p26 effectiveness as a chaperone is independent of oligomerization. The results also reinforce the idea, occasioned by modelling, that R114 is removed slightly from dimer-dimer interfaces. Moreover, beta-strand 7 is shown to have an important role in oligomerization of p26, a function first proposed for this structural element upon crystallization of wheat Hsp16.9, a small heat shock protein with different quaternary structure.  相似文献   

2.
Artemia franciscana embryos undergo encystment, developmental arrest and diapause, the last characterized by profound metabolic dormancy and extreme stress resistance. Encysted embryos contain an abundant small heat shock protein termed p26, a molecular chaperone that undoubtedly has an important role in development. To understand better the role of p26 in Artemia embryos, the structural and functional characteristics of full-length and truncated p26 expressed in Escherichia coli and COS-1 cells were determined. p26 chaperone activity declined with increasing truncation of the protein, and those deletions with the greatest adverse effect on protection of citrate synthase during thermal stress had the most influence on oligomerization. When produced in either prokaryotic or eukaryotic cells the p26 alpha-crystallin domain consisting of amino acid residues 61-152 existed predominantly as monomers, and p26 variants lacking the amino-terminal domain but with intact carboxyl-terminal extensions were mainly monomers and dimers. The amino terminus was, therefore, required for efficient dimer formation. Assembly of higher order oligomers was enhanced by the carboxyl-terminal extension, although removing the 10 carboxyl-terminal residues had relatively little effect on oligomerization and chaperoning. Full-length and carboxyl-terminal truncated p26 resided in the cytoplasm of transfected COS-1 cells; however, variants missing the complete amino-terminal domain and existing predominantly as monomers/dimers entered the nuclei. A mechanism whereby oligomer disassembly assisted entry of p26 into nuclei was suggested, this of importance because p26 translocates into Artemia embryo nuclei during development and stress. However, when examined in Artemia, the p26 oligomer size was unchanged under conditions that allowed movement into nuclei, suggesting a process more complex than just oligomer dissociation.  相似文献   

3.
Yeh CH  Chen YM  Lin CY 《Plant physiology》2002,128(2):661-668
Rice (Oryza sativa) class I low-molecular mass (LMM) heat shock protein (HSP), Oshsp16.9, has been shown to be able to confer thermotolerance in Escherichia coli. To define the regions for this intriguing property, deletion mutants of this hsp have been constructed and overexpressed in E. coli XL1-blue cells after isopropyl beta-D-thioglactopyranoside induction. The deletion of amino acid residues 30 through 36 (PATSDND) in the N-terminal domain or 73 through 78 (EEGNVL) in the consensus II domain of Oshsp16.9 led to the loss of chaperone activities and also rendered the E. coli incapable of surviving at 47.5 degrees C. To further investigate the function of these two domains, we determined the light scattering changes of Oshsp16.9 mutant proteins at 320 nm under heat treatment either by themselves or in the presence of a thermosensitive enzyme, citrate synthase. It was observed that regions of amino acid residues 30 through 36 and 73 through 78 were responsible for stability of Oshsp16.9 and its interactions with other unfolded protein substrates, such as citrate synthase. Studies of two-point mutants of Oshsp16.9, GST-N74E73K and GST-N74E74K, indicate that amino acid residues 73 and 74 are an important part of the substrate-binding site of Oshsp16.9. Non-denaturing gel analysis of purified Oshsp16.9 revealed that oligomerization of Oshsp16.9 was necessary but not sufficient for its chaperone activity.  相似文献   

4.
The murine small heat shock protein Hsp25 carries a single cysteine residue in position 141 of its amino acid sequence. Interestingly, Hsp25 can exist within the cell as covalently bound dimer which is linked by an intermolecular disulfide bond between two monomers. Oxidative stress caused by treatment of the cells with diamide, arsenite, or hydrogen peroxide leads to an increase in Hsp25-dimerisation which can be blocked by simultaneous treatment with reducing agents. Recombinant Hsp25 was prepared in an oxidized dimeric (oxHsp25) and reduced monomeric (redHsp25) form. The two species were compared with regard to secondary structure, stability, oligomerization properties and their chaperone activity. It is demonstrated by CD measurements in the far UV region that there are no significant differences in the secondary structure and temperature- or pH-stability of oxHsp25 and redHsp25. However, according to CD measurements in the near UV region an increase in the asymmetry of the microenvironment of aromatic residues in oxHsp25 is observed. Furthermore, an increase in stability of the hydrophobic environment of the tryptophan residues mainly located in the N-terminal domain of the protein against urea denaturation is detected in oxHsp25. Both reduced and oxidized Hsp25 form oligomeric complexes of similar size and stability against detergents and both species prevent thermal aggregation of citrate synthase and assist significantly in oxaloacetic acid-induced refolding of the enzyme. Hence, the overall secondary structure, the degree of oligomerization and the chaperone activity of Hsp25 seem independent of the formation of the intermolecular disulfide bond and only the stability of the hydrophobic N-terminal part of the molecule is influenced by formation of this bound. The obtained data do not exclude the possible involvement of dimerization of this protein in other cellular functions, e.g. in intracellular sulfhydryl-buffering or in the protection of actin filaments from fragmentation upon oxidative stress.  相似文献   

5.
sHsps are ubiquitous ATP-independent molecular chaperones, which efficiently prevent the unspecific aggregation of non-native proteins. Here, we described the purification of the small heat shock protein Hsp26 from a Saccharomyces cerevisiae strain harboring a multicopy plasmid carrying HSP26 gene under the control of its native promoter. A 26 kDa protein was purified to apparent homogeneity with a recovery of 74% by a very reproducible three steps procedure consisting of ethanol precipitation, sucrose gradient ultracentrifugation, and heat inactivation of residual contaminants. The purified polypeptide was unequivocally identified as Hsp26 using a specific Hsp26 polyclonal antibody as a probe. The analysis of the purified protein by electron microscopy revealed near spherical particles with a diameter of 12.0 nm (n=57, standard deviation +/-1.6 nm), displaying a dispersion in size ranging from 9.2 to 16.1 nm, identical to Methanococcus jannaschii Hsp16.5 and in the range of the size estimated for yeast Hsp26, in a previous report. Purified yeast Hsp26 was able to suppress 72% of the heat-induced aggregation of citrate synthase at a ratio of 1:1 (Hsp26 24-mer complex to citrate synthase dimer), and 86% of the heat-induced aggregation of lysozyme at a molar ratio of 1:16 (Hsp26 24-mer complex to lysozyme monomer). In conclusion, the Hsp26 protein purified as described here has structure and activity similar to the previously described preparations. As advantages, this new protocol is very reproducible and requires simple apparatuses which are found in all standard biochemistry laboratories.  相似文献   

6.
HSV-2 R1, the R1 subunit of herpes simplex virus (HSV) ribonucleotide reductase, protects cells against apoptosis. Here, we report the presence in HSV-2 R1 of a stretch exhibiting similarity to the alpha-crystallin domain of the small heat shock proteins, a domain known to be important for oligomerization and cytoprotective activities of these proteins. Also, the HSV-2 R1 protein, which forms multimeric structures in the absence of nucleotide, displayed chaperone ability as good as Hsp27 in a thermal denaturation assay using citrate synthase. In contrast, mammalian R1, which does not contain an alpha-crystallin domain, has neither chaperone nor anti-apoptotic activity. Thus, we propose that the chaperone activity of HSV-2 R1 could play an important role in viral pathogenesis.  相似文献   

7.
The Drosophila melanogaster family of small heat shock proteins (sHsps) is composed of 4 main members (Hsp22, Hsp23, Hsp26, and Hsp27) that display distinct intracellular localization and specific developmental patterns of expression in the absence of stress. In an attempt to determine their function, we have examined whether these 4 proteins have chaperone-like activity using various chaperone assays. Heat-induced aggregation of citrate synthase was decreased from 100 to 17 arbitrary units in the presence of Hsp22 and Hsp27 at a 1:1 molar ratio of sHsp to citrate synthase. A 5 M excess of Hsp23 and Hsp26 was required to obtain the same efficiency with either citrate synthase or luciferase as substrate. In an in vitro refolding assay with reticulocyte lysate, more than 50% of luciferase activity was recovered when heat denaturation was performed in the presence of Hsp22, 40% with Hsp27, and 30% with Hsp23 or Hsp26. These differences in luciferase reactivation efficiency seemed related to the ability of sHsps to bind their substrate at 42 degrees C, as revealed by sedimentation analysis of sHsp and luciferase on sucrose gradients. Therefore, the 4 main sHsps of Drosophila share the ability to prevent heat-induced protein aggregation and are able to maintain proteins in a refoldable state, although with different efficiencies. The functional reasons for their distinctive cell-specific pattern of expression could reflect the existence of defined substrates for each sHsp within the different intracellular compartments.  相似文献   

8.
Checkpoint kinase 1 (Chk1), a serine/threonine kinase that regulates DNA damage checkpoints, is destabilized when heat shock protein 90 (Hsp90) is inhibited, suggesting that Chk1 is an Hsp90 client. In the present work we examined the interplay between Chk1 and Hsp90 in intact cells, identified a source of unchaperoned Chk1, and report the in vitro chaperoning of Chk1 in reticulocyte lysates and with purified chaperones and co-chaperones. We find that bacterially expressed Chk1 is post-translationally chaperoned to an active kinase. This reaction minimally requires Hsp90, Hsp70, Hsp40, Cdc37, and the protein kinase CK2. The co-chaperone Hop, although not essential for the activation of Chk1 in vitro, enhanced the chaperoning process, whereas the co-chaperone p23 did not stimulate the chaperoning reaction. Additionally, we found that the C-terminal regulatory domain of Chk1 affects the association of Chk1 with Hsp90. Collectively these results provide new insights into Hsp90-dependent chaperoning of a client kinase and identify a novel, biochemically tractable model system that will be useful to further dissect the Hsp90-dependent chaperoning of this important and ubiquitous class of Hsp90 clients.  相似文献   

9.
Small heat shock proteins (sHSPs) are a ubiquitous class of molecular chaperones that interacts with substrates to prevent their irreversible insolubilization during denaturation. How sHSPs interact with substrates remains poorly defined. To investigate the role of the conserved C-terminal alpha-crystallin domain versus the variable N-terminal arm in substrate interactions, we compared two closely related dodecameric plant sHSPs, Hsp18.1 and Hsp16.9, and four chimeras of these two sHSPs, in which all or part of the N-terminal arm was switched. The efficiency of substrate protection and formation of sHSP-substrate complexes by these sHSPs with three different model substrates, firefly luciferase, citrate synthase, and malate dehydrogenase (MDH) provide new insights into sHSP/substrate interactions. Results indicate that different substrates have varying affinities for different domains of the sHSP. For luciferase and citrate synthase, the efficiency of substrate protection was determined by the identity of the N-terminal arm in the chimeric proteins. In contrast, for MDH, efficient protection clearly required interactions with the alpha-crystallin domain in addition to the N-terminal arm. Furthermore, we show that sHSP-substrate complexes with varying stability and composition can protect substrate equally, and substrate protection is not correlated with sHSP oligomeric stability for all substrates. Protection of MDH by the dimeric chimera composed of the Hsp16.9 N-terminal arm and Hsp18.1 alpha-crystallin domain supports the model that a dimeric form of the sHSP can bind and protect substrate. In total, results demonstrate that sHSP-substrate interactions are complex, likely involve multiple sites on the sHSP, and vary depending on substrate.  相似文献   

10.
11.
Although calmodulin is known to be a component of the Hsp70/Hsp90 multichaperone complex, the functional role of the protein remains uncertain. In this study, we have identified S100A1, but not calmodulin or other S100 proteins, as a potent molecular chaperone and a new member of the multichaperone complex. Glutathione S-transferase pull-down assays and co-immunoprecipitation experiments indicated the formation of stable complexes between S100A1 and Hsp90, Hsp70, FKBP52, and CyP40 both in vitro and in mammalian cells. S100A1 potently protected citrate synthase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, and rhodanese from heat-induced aggregation and suppressed the aggregation of chemically denatured rhodanese and citrate synthase during the refolding pathway. In addition, S100A1 suppressed the heat-induced inactivation of citrate synthase activity, similar to that for Hsp90 and p23. The chaperone activity of S100A1 was antagonized by calmodulin antagonists, such as fluphenazine and prenylamine, that is, indeed an intrinsic function of the protein. The overexpression of S100A1 in COS-7 cells protected transiently expressed firefly luciferase and Escherichia coli beta-galactosidase from inactivation during heat shock. The results demonstrate a novel physiological function for S100A1 and bring us closer to a comprehensive understanding of the molecular mechanisms of the Hsp70/Hsp90 multichaperone complex.  相似文献   

12.
Molecular chaperones perform vital cellular functions under normal growth conditions and protect cells against stress-induced damage. The stress proteins Hsp70 and Hsp80 of Neurospora crassa were extracted from heat-shocked mycelium, purified to near homogeneity, and examined with respect to their oligomeric state, complex formation, and chaperoning properties. Their oligomeric state was assessed by dynamic light-scattering measurements, and both Hsp70 and Hsp80 were observed to form a range of soluble, high-molecular-mass protein aggregates. Direct interaction between Hsp70 and Hsp80 was studied by partial tryptic digestion and surface plasmon resonance (SPR). Hsp70 was immobilized on the sensor chip surface, and the binding of Hsp80 in solution was followed in real time. Proteolytic digestion revealed that Hsp70-Hsp80 complex formation results in conformational changes in both proteins. The data from SPR studies yielded an equilibrium dissociation constant, KD, of 8.5 x 10(-9) M. The chaperoning ability of Hsp70, Hsp80, and Hsp70-Hsp80 was monitored in vitro by the protection of citrate synthase from thermal aggregation. The binding of nucleotides modulates the oligomeric state, chaperoning function, and hetero-oligomeric complex formation of Hsp70 and Hsp80.  相似文献   

13.
Prokaryotic DnaJ and DnaK, homologous to the eukaryotic 40 and 70kDa heat shock proteins (Hsp40 and Hsp70) respectively, play an important role as molecular chaperones in assisted protein folding under both normal and stressed conditions. DnaJ-like proteins are defined by the presence of a 70 amino acid domain termed the J domain, similar to the initial 73 amino acids of the Escherichia coli protein DnaJ. The J domain comprises four alpha-helices and a loop region containing the invariant tripeptide of histidine, proline and aspartic acid (HPD motif). This motif and Helix II have been shown previously to be important for the interaction with partner Hsp70s. Conserved amino acid residues present in the J domain were identified, and substitutions of these residues were performed to examine their effect on the in vivo functioning of the J domain of Agrobacterium tumefaciens DnaJ. Three conserved, charged residues, and three conserved, hydrophobic residues, in addition to the HPD motif, were shown to be important for the correct functioning of A. tumefaciens DnaJ. These included Arg26 located on Helix II, Arg63 and Asp59 located on Helix IV, Tyr7 and Leu10 located on Helix I, and Leu57 located on Helix III. This study has identified charged and hydrophobic residues on all the structural elements of the J domain that were critical to the structure and function of DnaJ, and in particular shown that Helix IV may have an important role in the structure and function of DnaJs in general.  相似文献   

14.
The ubiquitous small heat shock proteins (sHsps) are efficient molecular chaperones that interact with nonnative proteins, prevent their aggregation, and support subsequent refolding. No obvious substrate specificity has been detected so far. A striking feature of sHsps is that they form large complexes with nonnative proteins. Here, we used several well established model chaperone substrates, including citrate synthase, alpha-glucosidase, rhodanese, and insulin, and analyzed their interaction with murine Hsp25 and yeast Hsp26 upon thermal unfolding. The two sHsps differ in their modes of activation. In contrast to Hsp25, Hsp26 undergoes a temperature-dependent dissociation that is required for efficient substrate binding. Our analysis shows that Hsp25 and Hsp26 reacted in a similar manner with the nonnative proteins. For all substrates investigated, complexes of defined size and shape were formed. Interestingly, several different nonnative proteins could be incorporated into defined sHsp-substrate complexes. The first substrate protein bound seems to determine the complex morphology. Thus, despite the differences in quaternary structure and mode of activation, the formation of large uniform sHsp-substrate complexes seems to be a general feature of sHsps, and this unique chaperone mechanism is conserved from yeast to mammals.  相似文献   

15.
The small heat shock proteins (sHsps) from human (Hsp27) and mouse (Hsp25) form large oligomers which can act as molecular chaperones in vitro and protect cells from heat shock and oxidative stress when overexpressed. In addition, mammalian sHsps are rapidly phosphorylated by MAPKAP kinase 2/3 at two or three serine residues in response to various extracellular stresses. Here we analyze the effect of sHsp phosphorylation on its quaternary structure, chaperone function, and protection against oxidative stress. We show that in vitro phosphorylation of recombinant sHsp as well as molecular mimicry of Hsp27 phosphorylation lead to a significant decrease of the oligomeric size. We demonstrate that both phosphorylated sHsps and the triple mutant Hsp27-S15D,S78D,S82D show significantly decreased abilities to act as molecular chaperones suppressing thermal denaturation and facilitating refolding of citrate synthase in vitro. In parallel, Hsp27 and its mutants were analyzed for their ability to confer resistance against oxidative stress when overexpressed in L929 and 13.S.1.24 cells. While wild type Hsp27 confers resistance, the triple mutant S15D,S78D,S82D cannot protect against oxidative stress effectively. These data indicate that large oligomers of sHsps are necessary for chaperone action and resistance against oxidative stress whereas phosphorylation down-regulates these activities by dissociation of sHsp complexes to tetramers.  相似文献   

16.
Small heat shock proteins (sHsps) show a very rapid stress- and mitogen-dependent phosphorylation by MAPKAP kinase 2. Based on this observation, phosphorylation of sHsps was thought to play a key role in mediating thermoresistance immediately after heat shock, before the increased synthesis of heat shock proteins becomes relevant. We have analysed the phosphorylation dependence of the chaperone and thermoresistance-mediating properties of the small heat shock protein Hsp25. Surprisingly, overexpression of Hsp25 mutants, which are not phosphorylated in the transfected cells, confers the same thermoresistant phenotype as overexpression of wild type Hsp25, which is either mono- or bis-phosphorylated at serine residues 15 and 86 within the cells. Furthermore, in vitro phosphorylated Hsp25 shows the same oligomerization properties and the same chaperone activity as the nonphosphorylated protein. No differences between phosphorylated and nonphosphorylated Hsp25 are detected in preventing thermal aggregation of unfolding proteins and assisting refolding of denatured proteins. The results suggest that chaperone properties of the small heat shock proteins contribute to the increased cellular thermoresistance in a phosphorylation-independent manner.  相似文献   

17.
Small heat shock proteins form large cytosolic assemblies from an “α-crystallin domain” (ACD) flanked by sequence extensions. Mutation of a conserved arginine in the ACD of several human small heat shock protein family members causes many common inherited diseases of the lens and neuromuscular system. The mutation R120G in αB-crystallin causes myopathy, cardiomyopathy and cataract. We have solved the X-ray structure of the excised ACD dimer of human αB R120G close to physiological pH and compared it with several recently determined wild-type vertebrate ACD dimer structures. Wild-type excised ACD dimers have a deep groove at the interface floored by a flat extended “bottom sheet.” Solid-state NMR studies of large assemblies of full-length αB-crystallin have shown that the groove is blocked in the ACD dimer by curvature of the bottom sheet. The crystal structure of R120G ACD dimer also reveals a closed groove, but here the bottom sheet is flat. Loss of Arg120 results in rearrangement of an extensive array of charged interactions across this interface. His83 and Asp80 on movable arches on either side of the interface close the groove by forming two new salt bridges. The residues involved in this extended set of ionic interactions are conserved in Hsp27, Hsp20, αA- and αB-crystallin sequences. They are not conserved in Hsp22, where mutation of the equivalent of Arg120 causes neuropathy. We speculate that the αB R120G mutation disturbs oligomer dynamics, causing the growth of large soluble oligomers that are toxic to cells by blocking essential processes.  相似文献   

18.
During aging, human lens proteins undergo several post-translational modifications, one of which is glycation. This process leads to the formation of advanced glycation end products (AGEs) which accumulate with time possibly leading to the formation of cataract. alphaB-Crystallin, a predominant protein in the lens, is a member of the small heat shock proteins (sHSPs) which are a ubiquitous class of molecular chaperones that interact with partially denatured proteins to prevent aggregation. This chaperone function is considered to be vital for the maintenance of lens transparency and in the prevention of cataract. In the present study, we introduced an analog of the advanced glycation end product, OP-lysine, at the 90th position of a mutated human alphaB-crystallin (K90C) by covalent modification of the cysteine residue with N-(2-bromoethyl)-3-oxidopyridinium hydrobromide. The AGE-modified K90C-alphaB-crystallin is termed as K90C-OP. We compared the structural and functional properties of K90C-OP with the original K90C mutant, with K90C chemically modified back to a lysine analog (K90C-AE), and with wild-type human alphaB-crystallin. Modified K90C-OP showed decreased intrinsic tryptophan fluorescence and bis-ANS binding without significant alterations in either the secondary, tertiary, or quaternary structure. K90C-OP, however, exhibited a reduced efficiency in the chaperoning ability with alcohol dehydrogenase, insulin, and citrate synthase as substrates compared to the other alpha-crystallin proteins. Therefore, introduction of a single AGE near the chaperone site of human alphaB-crystallin can alter the chaperoning ability of the protein with only minor changes in the local environment of the protein.  相似文献   

19.
A number of heat shock proteins in Myxococcus xanthus were previously identified by two-dimensional (2D) gel electrophoresis. One of these protein was termed Mx Hsp16.6, and the gene encoding Mx Hsp16.6 was isolated. Mx Hsp16.6 consists of 147 amino acid residues and has an estimated molecular weight of 16,642, in accordance with the apparent molecular mass in the 2D gel. An alpha-crystallin domain, typically conserved in small heat shock proteins, was found in Mx Hsp16.6. Mx Hsp16.6 was not detected during normal vegetative growth but was immediately induced after heat shock. Expression of the hsp16.6 gene was not induced by other stresses, such as starvation, oxidation, and high osmolarity. Mx Hsp16.6 was mostly localized in particles formed after heat shock and precipitated by low-speed centrifugation. Furthermore, Mx Hsp16.6 was detected in highly electron-dense particles in heat-shocked cells by immunoelectron microscopy, suggesting that it forms large complexes with heat-denatured proteins. An insertion mutation in the hsp16.6 gene resulted in lower viability during heat shock and lower acquired thermotolerance. Therefore, it is likely that Mx Hsp16.6 plays critical roles in the heat shock response in M. xanthus.  相似文献   

20.
Aged organisms exhibit a greatly decreased ability to induce the major heat shock protein, Hsp72, in response to stresses, a phenomenon that can also be observed in cell cultures (Heydari AR, Takahashi R, Gutsmann A, You S and Richardson A (1994) Hsp70 and aging. Experientia 50: 1092–1098). Hsp72 was shown to protect cells from a variety of stresses. The protective function of Hsp72 has been commonly ascribed to its chaperoning ability. However, recently we showed that Hsp72 protects cells from heat shock by suppression of a stress-kinase JNK, an essential component of the heat-induced apoptotic pathway (Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI and Sherman MY (1997) Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem 272: 18033–18037). Here we demonstrate that because of the diminished inducibility of Hsp72 in aged cells, Hsp72-mediated control of JNK signaling pathway is compromised. This results in increased rate of apoptotic cell death following heat shock. We show that forced expression of Hsp72 in aged cells from an adenovirus-based vector completely suppresses activation of JNK by heat shock and consequently protects from heat-induced apoptosis. We also demonstrate for the first time that it is possible to restore endogenous expression of Hsp72 in aged cells. This can be achieved by treatment with the proteasome inhibitor MG132. Induction of Hsp72 in aged cells under these conditions leads to suppression of JNK activation by a heat shock and restoration of thermotolerance manifested in a lower rate of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号