首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inositol 1,4,5-trisphosphate (IP3) has long been recognized as a second messenger for intracellular Ca2+ mobilization. Recently, sphingosine 1-phosphate (S1P) has been shown to be involved in Ca2+ release from the endoplasmic reticulum (ER). Here, we investigated the role of S1P and IP3 in antigen (Ag)-induced intracellular Ca2+ mobilization in RBL-2H3 mast cells. Antigen-induced intracellular Ca2+ mobilization was only partially inhibited by the sphingosine kinase inhibitor dl-threo-dihydrosphingosine (DHS) or the IP3 receptor inhibitor 2-aminoethoxydiphenyl borate (2-APB), whereas preincubation with both inhibitors led to complete inhibition. In contrast, stimulation of A3 adenosine receptors with N5-ethylcarboxamidoadenosine (NECA) caused intracellular Ca2+ mobilization that was completely abolished by 2-APB but not by DHS, suggesting that NECA required only the IP3 pathway, while antigen used both the IP3 and S1P pathways. Interestingly, however, inhibition of IP3 production with the phospholipase C inhibitor U73122 completely abolished Ca2+ release from the ER induced by either stimulant. This suggested that S1P alone, without concomitant production of IP3, would not cause intracellular Ca2+ mobilization. This was further demonstrated in some clones of RBL-2H3 cells excessively overexpressing a beta isoform of Class II phosphatidylinositol 3-kinase (PI3KC2beta). In such clones including clone 5A4C, PI3KC2beta was overexpressed throughout the cell, although endogenous PI3KC2beta was normally expressed only in the ER. Overexpression of PI3KC2beta in the cytosol and the PM led to depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), resulting in a marked reduction in IP3 production. This could explain the abolishment of intracellular Ca2+ mobilization in clone 5A4C. Supporting this hypothesis, the Ca2+ mobilization was reconstituted by the addition of exogenous PI(4,5)P2 in these cells. Our results suggest that both IP3 and S1P contribute to FcvarepsilonRI-induced Ca2+ release from the ER and production of IP3 is necessary for S1P to cause Ca2+ mobilization from the ER.  相似文献   

2.
The role of intracellular Ca2+ signaling in starvation-induced autophagy remains unclear. Here, we examined Ca2+ dynamics during starvation-induced autophagy and the underlying molecular mechanisms. Tightly correlating with autophagy stimulation, we observed a remodeling of the Ca2+ signalosome. First, short periods of starvation (1 to 3 h) caused a prominent increase of the ER Ca2+-store content and enhanced agonist-induced Ca2+ release. The mechanism involved the upregulation of intralumenal ER Ca2+-binding proteins, calreticulin and Grp78/BiP, which increased the ER Ca2+-buffering capacity and reduced the ER Ca2+ leak. Second, starvation led to Ins(1,4,5)P3R sensitization. Immunoprecipitation experiments showed that during starvation Beclin 1, released from Bcl-2, first bound with increasing efficiency to Ins(1,4,5)P3Rs; after reaching a maximal binding after 3 h, binding, however, decreased again. The interaction site of Beclin 1 was determined to be present in the N-terminal Ins(1,4,5)P3-binding domain of the Ins(1,4,5)P3R. The starvation-induced Ins(1,4,5)P3R sensitization was abolished in cells treated with BECN1 siRNA, but not with ATG5 siRNA, pointing toward an essential role of Beclin 1 in this process. Moreover, recombinant Beclin 1 sensitized Ins(1,4,5)P3Rs in 45Ca2+-flux assays, indicating a direct regulation of Ins(1,4,5)P3R activity by Beclin 1. Finally, we found that Ins(1,4,5)P3R-mediated Ca2+ signaling was critical for starvation-induced autophagy stimulation, since the Ca2+ chelator BAPTA-AM as well as the Ins(1,4,5)P3R inhibitor xestospongin B abolished the increase in LC3 lipidation and GFP-LC3-puncta formation. Hence, our results indicate a tight and essential interrelation between intracellular Ca2+ signaling and autophagy stimulation as a proximal event in response to starvation.  相似文献   

3.
We have investigated Ca(2+) release and receptor- and store-operated Ca(2+) influxes in Chinese hamster ovary-K1 (CHO) cells, SH-SY5Y human neuroblastoma cells and RBL-1 rat basophilic leukemia cells using Fura-2 and patch-clamp measurements. Ca(2+) release and subsequent Ni(2+)-sensitive, store-operated influx were induced by thapsigargin and stimulation of G protein-coupled receptors. The alleged noncompetitive IP3 receptor inhibitor,2-aminoethoxydiphenyl borate (2-APB) rapidly blocked a major part of the secondary influx response in CHO cells in a reversible manner. It also reduced Mn(2+) influx in response to thapsigargin. Inhibition of Ca(2+) release was also seen but this was less complete, slower in onset, less reversible, and required higher concentration of 2-APB. In RBL-1 cells, I(CRAC) activity was rapidly blocked by extracellular 2-APB whereas intracellular 2-APB was less effective. Store-operated Ca(2+) influxes were only partially blocked by 2-APB. In SH-SY5Y cells, Ca(2+) influxes were insensitive to 2-APB. Ca(2+) release in RBL-1 cells was partially sensitive but in SH-SY5Y cells the release was totally resistant to 2-APB. The results suggest, that 2-APB (1) may inhibit distinct subtypes of IP3 receptors with different sensitivity, and (2) that independently of this, it also inhibits some store-operated Ca(2+) channels via a direct, extracellular action.  相似文献   

4.
The mechanisms of H2O2-induced Ca2+ release from intracellular stores were investigated in human umbilical vein endothelial cells. It was found that U73122, the selective inhibitor of phospholipase C, could not inhibit the H2O2-induced cytosolic Ca2+ mobilization. No elevation of inositol 1,4,5-trisphosphate (IP3) was detected in cells exposed to H2O2. By loading mag-Fura-2, a Ca2+ indicator, into intracellular store, the H2O2-induced Ca2+ release from intracellular calcium store was directly observed in the permeabilized cells in a dose-dependent manner. This release can be completely blocked by heparin, a well-known antagonist of IP3 receptor, indicating a direct activation of IP3 receptor on endoplasmic reticulum (ER) membrane by H2O2. It was also found that H2O2 could still induce a relatively small Ca2+ release from internal stores after the Ca2+-ATPase on ER membrane and the Ca2+ uptake to mitochondria were simultaneously inhibited by thapsigargin and carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. The later observation suggests that a thapsigargin-insensitive non-mitochondrial intracellular Ca2+ store might be also involved in H2O2-induced Ca2+ mobilization.  相似文献   

5.
The role of Ins(1,4,5)P3 in receptor-induced Ca2+ mobilization in pituitary cells was studied at the single-cell level. Experimental strategies were developed which allowed a comparative analysis of the effects of Ins(1,4,5)P3 with those of receptor activation under identical conditions. These include microfluorimetry as well as a novel technique which permits the controlled and rapid application of intracellular messenger molecules to individual cells. This latter approach is based on the tight-seal whole-cell recording (WCR) technique, and utilizes two patch-clamp micropipettes, one for electrical recording and the second for the controlled pressure injection. Ins(1,4,5)P3, when applied with this dual-WCR (DWCR) technique, leads rapidly to a marked rise in cytosolic free Ca2+ [( Ca2+]i) and a concomitant stimulation of Ca2(+)-activated K+ current; Ins(1,4,5)P3 can thus mimic the effects of thyrotropin-releasing hormone (TRH) in the same cells under identical conditions. In cells dialysed intracellularly with heparin, a potent antagonist of Ins(1,4,5)P3 action, the rapid response to extracellular stimulation with TRH was abolished, as were the effects of intracellular application of Ins(1,4,5)P3. Heparin, which abolished Ins(1,4,5)P3 action completely, blocked responses to TRH in some cells only partially, revealing that Ca2+ mobilization response to TRH is in part slower in onset than the response to Ins(1,4,5)P3. It is concluded (1) that Ins(1,4,5)P3 is an essential element for the action of TRH, providing a rapid mechanism for Ca2+ mobilization induced by the releasing hormone and (2) that TRH action in mobilizing intracellular Ca2+ is sustained by a slower mechanism which is independent of Ins(1,4,5)P3.  相似文献   

6.
Inositol triphosphate (IP3) formation and increase in intracytoplasmic calcium are mediators of signal transduction in lymphocytes. It has been proposed that IP3 induces Ca2+ release from intracellular stores. It is in order to study the relationship between these two events that we have analyzed the effect of IP3 addition on Ca2+ mobilization in permeabilized resting T and B lymphocytes, EBV-B lymphocytes, and HTLV1-T lymphocytes. IP3 induces a rapid and significant release of Ca2+ from the endoplasmic reticulum in a dose-dependent manner. Ca2+ release is more sensitive to IP3 addition in cycling cells (EBV-B lymphocytes and HTLV1-T lymphocytes) than in resting T and B lymphocytes. Arachidonic acid (AA) induces Ca2+ release from the endoplasmic reticulum (ER) in a manner similar to that of IP3. Neither component has an effect on Ca2+ accumulated in mitochondria, and they have no additive effects suggesting that they act on a similar Ca2+ pool. These results directly demonstrate that in T and B human lymphocytes IP3 mobilizes Ca2+ from ER as in other cellular systems and that other potential second messengers, namely AA, could play a significant role in the internal mobilization of calcium during T and B lymphocyte activation.  相似文献   

7.
Fc(epsilon)RI-induced Ca2+ signaling in mast cells is initiated by activation of cytosolic tyrosine kinases. Here, in vitro phospholipase assays establish that the phosphatidylinositol 3-kinase (PI 3-kinase) lipid product, phosphatidylinositol 3,4,5-triphosphate, further stimulates phospholipase Cgamma2 that has been activated by conformational changes associated with tyrosine phosphorylation or low pH. A microinjection approach is used to directly assess the consequences of inhibiting class IA PI 3-kinases on Ca2+ responses after Fc(epsilon)RI cross-linking in RBL-2H3 cells. Injection of antibodies to the p110beta or p110delta catalytic isoforms of PI 3-kinase, but not antibodies to p110alpha, lengthens the lag time to release of Ca2+ stores and blunts the sustained phase of the calcium response. Ca2+ responses are also inhibited in cells microinjected with recombinant inositol polyphosphate 5-phosphatase I, which degrades inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), or heparin, a competitive inhibitor of the Ins(1,4,5)P3 receptor. This indicates a requirement for Ins(1,4,5)P3 to initiate and sustain Ca2+ responses even when PI 3-kinase is fully active. Antigen-induced cell ruffling, a calcium-independent event, is blocked by injection of p110beta and p110delta antibodies, but not by injection of 5-phosphatase I, heparin, or anti-p110alpha antibodies. These results suggest that the p110beta and p110delta isoforms of PI 3-kinase support Fc(epsilon)RI-induced calcium signaling by modulating Ins(1,4,5)P3 production, not by directly regulating the Ca2+ influx channel.  相似文献   

8.
Previous studies have demonstrated that myo-inositol 1,4,5-trisphosphate (IP3) mobilizes Ca2+ from the endoplasmic reticulum (ER) of digitonin-permeabilized islets and that an increase in intracellular free Ca2+ stimulates insulin release. Furthermore, glucose stimulates arachidonic acid metabolism in islets. In digitonin-permeabilized islets, exogenous arachidonic acid at concentrations between 1.25 to 10 microM elicited significant Ca2+ release from the ER at a free Ca2+ concentration of 0.1 microM. Arachidonic acid-induced Ca2+ release was not due to the metabolites of arachidonic acid. Arachidonic acid induced a rapid release of Ca2+ within 2 min. Comparison of arachidonic acid-induced Ca2+ release with IP3-induced Ca2+ release revealed a similar molar potency of arachidonic acid and IP3. The combination of both arachidonic acid and IP3 resulted in a greater effect on Ca2+ mobilization from the ER than either compound alone. The mass of endogenous arachidonic acid released by islets incubated with 28 mM glucose was measured by mass spectrometric methods and was found to be sufficient to achieve arachidonic acid concentrations equal to or exceeding those required to induce release of Ca2+ sequestered in the ER. These observations indicate that glucose-induced arachidonic acid release could participate in glucose-induced Ca2+ mobilization and insulin secretion by pancreatic islets, possibly in cooperation with IP3.  相似文献   

9.
Calcium (Ca2+) release from the endoplasmic reticulum (ER) controls numerous cellular functions including proliferation, and is regulated in part by inositol 1,4,5-trisphosphate receptors (IP3Rs). IP3Rs are ubiquitously expressed intracellular Ca2+-release channels found in many cell types. Although IP3R-mediated Ca2+ release has been implicated in cellular proliferation, the biochemical pathways that modulate intracellular Ca2+ release during cell cycle progression are not known. Sequence analysis of IP3R1 reveals the presence of two putative phosphorylation sites for cyclin-dependent kinases (cdks). In the present study, we show that cdc2/CyB, a critical regulator of eukaryotic cell cycle progression, phosphorylates IP3R1 in vitro and in vivo at both Ser(421) and Thr(799) and that this phosphorylation increases IP3 binding. Taken together, these results indicate that IP3R1 may be a specific target for cdc2/CyB during cell cycle progression.  相似文献   

10.
The aim of the present study was the characterization of the subtypes of inositol 1,4,5-trisphosphate receptors (IP3R) in rat colonic epithelium. A monoclonal antibody against IP3R1 did not stain the colonic epithelial cells. In contrast, IP3R2 and IP3R3 were found within the epithelium; however, with a distinct intracellular localization and differences in their distribution along the crypt axis. IP3R2 immunoreactivity was found within the nuclei of the epithelial cells. The signal was distributed all over the nucleus and not restricted to the nuclear envelope as demonstrated by counterstaining with lamin B1 and electron microscopical examination after immunogold labelling. In contrast, an antibody against IP3R3 stained the epithelial cells mostly in their apical half in accordance with the typical localization of IP3R in organelles such as the endoplasmic reticulum. In addition, there was a gradient from the surface region towards the crypt fundus, where the IP3R3 signal could not be detected. Despite the strong IP3R3-gradient, in saponin-permeabilized colonic crypts exogenously administered IP3 or adenophostin A evoked a similar depletion of mag-fura-2-loaded intracellular Ca2+ stores in crypt and surface cells suggesting a contribution of the nuclear IP3R2 to the Ca2+ release. This conclusion was confirmed by experiments with isolated nuclei from colonic epithelium, at which IP3 was able to induce changes in the Ca2+ concentration, which were inhibited by 2-aminoethoxy-diphenylborate (2-APB), a blocker of IP3 receptors. These results demonstrate that the colonic epithelial cells undergo changes in IP3R subtype expression during differentiation.  相似文献   

11.
12.
5'-(N-Ethyl)carboxamidoadenosine (NECA), an analog of adenosine, transiently stimulated a rat tumor mast cell (RBL-2H3 cells) to cause a release of inositol phosphates and an increase in levels of Ca2+ in the cytosol. It failed, however, to stimulate a sustained uptake of 45Ca2+ or secretion. The effects of other agents that act on P1- or P2-purinergic receptors suggested that NECA and other adenosine agonists acted via a novel subtype of adenosine membrane receptor. Although the order of potency of agonists was characteristic of A2-adenosine receptors, there was no indication of the involvement of adenylate cyclase, and antagonists such as isobutylmethylxanthine, 8-phenyltheophylline, and 8-p-sulfophenyltheophylline inhibited the responses to either NECA or antigen. The fact that stimulation of inositol phospholipid hydrolysis by NECA in washed, permeabilized RBL-2H3 cells was blocked by pertussis toxin as well as by cholera toxin suggested instead that the NECA-sensitive receptor activated phospholipase C via a G-protein. In contrast to NECA, antigen stimulation resulted in a pertussis toxin-resistant, sustained hydrolysis of inositol phospholipids, increases in free intracellular Ca2+, accelerated influx of 45Ca2+, and secretion from RBL-2H3 cells. In combination with NECA, all responses to antigen were markedly enhanced, and the enhancement was selectively blocked by pertussis toxin. The ability of antigen, but not NECA, to provoke secretion may be dependent primarily on the sustained activation of a cholera toxin-sensitive Ca2+ influx pathway that serves to amplify stimulatory signals for secretion. These studies also suggested that phospholipase C could be activated through different G-proteins via different receptors within the same cell.  相似文献   

13.
Effects of ATP on accumulation of inositol phosphates and Ca2+ mobilization were investigated in cultured bovine adrenal chromaffin cells. When the cells were stimulated with 30 microM ATP, a rapid and transient rise in intracellular Ca2+ concentration was observed. At the same time, ATP rapidly increased accumulation of inositol phosphates. The concentration-response curve for the ATP-induced Ca2+ mobilization was similar to that for inositol trisphosphate (IP3) accumulation. ATP exerted its maximal effects at 30 microM for either IP3 accumulation or Ca2+ mobilization. The order of the efficacy of the agonists for IP3 accumulation and Ca2+ mobilization at 100 microM was ATP greater than ADP greater than AMP approximately adenosine, AMP (100 microM) and adenosine (300 microM) failed to induce IP3 accumulation and Ca2+ mobilization. Although 100 microM GTP and 100 microM UTP also induced IP3 accumulation and Ca2+ mobilization, their efficacy was less than that of ATP. CTP (100 microM) induced a slight IP3 accumulation, but it did not induce Ca2+ mobilization. Nifedipine (10 microM), a Ca2+ channel antagonist, and theophylline (100 microM), a P1-purinergic receptor antagonist, failed to inhibit the ATP-induced IP3 accumulation and Ca2+ mobilization. The above two cellular responses induced by ATP were also observed in the Ca2+-depleted medium. ATP induced a rapid and transient accumulation of 1,4,5-IP3 (5s), followed by a slower accumulation of 1,3,4-IP3. These results suggest that ATP induces the formation of 1,4,5-IP3 through the P2-purinergic receptor and consequently promotes Ca2+ mobilization from intracellular storage sites in cultured adrenal chromaffin cells.  相似文献   

14.
By incubating platelets at low temperature (10 degrees C), the relationship between Ca2+ mobilization and formation of inositol 1,4,5-trisphosphate (IP3) in thrombin stimulated platelets could be precisely investigated. In the presence of 1 mM EGTA, time dependent changes in the intracellular free calcium concentration [( Ca2+]i) were closely related to those in IP3 formation. Time course of the influx of external Ca2+, estimated by delta [Ca2+]i obtained by subtracting [Ca2+]i in the presence of 1 mM EGTA from that in the presence of 1 mM CaCl2 was also very similar to that of IP3 formed. Furthermore, the increase in delta [Ca2+]i was extremely well correlated with the amount of IP3 formed (Y = 49X - 34, r = 0.99). Thus, these data indicate that IP3 might be involved not only in intracellular Ca2+ mobilization but in Ca2+ influx of human platelets stimulated by thrombin.  相似文献   

15.
Ca2+ signals are known to mediate an array of cellular functions including secretion, contraction, and conductivity changes. In spite of the obvious role of Ca2+ in signalling, the control of Ca2+ within cells is known to be a complex phenomenon involving a number of distinct active and passive transport systems functioning within different organelles. Inositol 1,4,5-trisphosphate (IP3) is now established as a central mediator of Ca2+ mobilization, and the endoplasmic reticulum (ER) has been considered to be the site of action of IP3. However, this role has been ascribed almost by default to the ER, based on the knowledge that IP3 functions to release Ca2+ from an intracellular, nonmitochondrial, Ca2+-pumping organelle. Our interest has been to ascertain by what mechanism IP3 activates Ca2+ movements, at what intracellular locations it functions, and how the size and replenishment of the IP3-sensitive Ca2+ pool occurs. During the course of such studies, another mechanism inducing profound movements of Ca2+ within cells was identified. This process is activated by a highly sensitive and specific guanine nucleotide regulatory mechanism, which, while inducing fluxes of Ca2+ that resemble the action of IP3 under certain conditions, has now been determined to involve a quite distinct mechanism. The characteristics of this mechanism are described below. Although involving a very different Ca2+ translocation process to that activated by IP3, several important conclusions have been drawn on the relationship between IP3- and GTP-activated Ca2+ movements leading us to believe that the latter may have a regulatory role in controlling the size and/or entry of Ca2+ into the IP3-sensitive Ca2+ pool.  相似文献   

16.
IP3-induced Ca2+ release from the endoplasmic reticulum (ER) of islets is believed to be a key intracellular event in glucose-induced insulin secretion. Calmodulin was shown to increase ATP-dependent Ca2+ steady-state and inhibit by 57.2% IP3-induced Ca2+ mobilization from the ER. Conversely, the calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide (W-7), induced Ca2+ release from the ER. The combination of W-7 (100 microM) and IP3 (10 microM), resulted in a greater release of Ca2+ from the ER than either W-7 or IP3 alone. W-7 was shown not to affect the structural integrity of the ER. Our results suggest that IP3-induced Ca2+ release from the ER is regulated by a calmodulin-dependent process.  相似文献   

17.
Huh YH  Jeon SH  Yoo JA  Park SY  Yoo SH 《Biochemistry》2005,44(16):6122-6132
We show here that expression of chromogranins in non-neuroendocrine NIH3T3 cells significantly increased the amount of IP(3)-mediated intracellular Ca(2+) mobilization in these cells, whereas suppression of them in neuroendocrine PC12 cells decreased the amount of mobilized Ca(2+). We have therefore investigated the relationship between the IP(3)-induced intracellular Ca(2+) mobilization and secretory granules. The level of IP(3)-mediated Ca(2+) release in CGA-expressing NIH3T3 cells was 40% higher than in the control cells, while that of CGB-expressing cells was 134% higher, reflecting the number of secretory granules formed. Suppression of CGA and CGB expression in PC12 cells resulted in 41 and 78% reductions in the number of secretory granules, respectively, while the extents of IP(3)-induced Ca(2+) release in these cells were reduced 40 and 69%, respectively. The newly formed secretory granules of NIH3T3 cells contained all three isoforms of the IP(3)Rs. Comparison of the concentrations of the IP(3)R isoforms expressed in the ER and nucleus of chromogranin-expressing and nonexpressing NIH3T3 cells did not show significant differences, indicating that chromogranin expression did not affect the expression of endogenous IP(3)Rs. Nonetheless, the IP(3)R concentrations in secretory granules of chromogranin-expressing NIH3T3 cells were 3.5-4.7-fold higher than those of the ER, similar to the levels found in secretory granules of neuroendocrine chromaffin cells, thus suggesting that the IP(3)Rs targeted to the newly formed secretory granules are newly induced by chromogranins without affecting the expression of intrinsic IP(3)Rs. These results strongly suggest that the extent of IP(3)-induced intracellular Ca(2+) mobilization in secretory cells is closely related to the number of secretory granules.  相似文献   

18.
The release of Ca2+ from intracellular stores is triggered by the second messenger inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3). The regulation of this process is critically important for cellular homeostasis. Ins(1,4,5)P3 is rapidly metabolised, either to inositol (1,4)-bisphosphate (Ins(1,4)P2) by inositol polyphosphate 5-phosphatases or to inositol (1,3,4,5)-tetrakisphosphate (Ins(1,3,4,5)P4) by one of a family of inositol (1,4,5)P3 3-kinases (IP3-3Ks). Three isoforms of IP3-3K have now been identified in mammals; they have a conserved C-terminal catalytic domain, but divergent N-termini. This review discusses the metabolism of Ins(1,4,5)P3, compares the IP3-3K isoforms and addresses potential mechanisms by which their activity might be regulated.  相似文献   

19.
We examined the activation and regulation of calcium release-activated calcium current (I(crac)) in RBL-1 cells in response to various Ca(2+) store-depleting agents. With [Ca(2+)](i) strongly buffered to 100 nM, I(crac) was activated by ionomycin, thapsigargin, inositol 1,4,5-trisphosphate (IP(3)), and two metabolically stable IP(3) receptor agonists, adenophostin A and L-alpha-glycerophospho-D-myoinositol-4,5-bisphosphate (GPIP(2)). With minimal [Ca(2+)](i) buffering, with [Ca(2+)](i) free to fluctuate I(crac) was activated by ionomycin, thapsigargin, and by the potent IP(3) receptor agonist, adenophostin A, but not by GPIP(2) or IP(3) itself. Likewise, when [Ca(2+)](i) was strongly buffered to 500 nM, ionomycin, thapsigargin, and adenophostin A did and GPIP(2) and IP(3) did not activate detectable I(crac). However, with minimal [Ca(2+)](i) buffering, or with [Ca(2+)](i) buffered to 500 nM, GPIP(2) was able to fully activate detectable I(crac) if uptake of Ca(2+) intracellular stores was first inhibited. Our findings suggest that when IP(3) activates the IP(3) receptor, the resulting influx of Ca(2+) quickly inactivates the receptor, and Ca(2+) is re-accumulated at sites that regulate I(crac). Adenophostin A, by virtue of its high receptor affinity, is resistant to this inactivation. Comparison of thapsigargin-releasable Ca(2+) pools following activation by different IP(3) receptor agonists indicates that the critical regulatory pool of Ca(2+) may be very small in comparison to the total IP(3)-sensitive component of the endoplasmic reticulum. These findings reveal new and important roles for IP(3) receptors located on discrete IP(3)-sensitive Ca(2+) pools in calcium feedback regulation of I(crac) and capacitative calcium entry.  相似文献   

20.
The effects of extracellular ATP on phosphoinositide metabolism and intracellular Ca2+ homeostasis were studied in Ehrlich ascites tumor cells. Cytosolic [Ca2+] was measured using either quin 2 or the recently described indicator fura 2. Addition of 0.5-25 microM extracellular ATP to intact cells results in a rapid mobilization of Ca2+ from a nonmitochondrial, intracellular Ca2+ store. Likewise, direct addition of 0.2-2 microM myo-1,4,5-inositol trisphosphate (IP3) to digitonin-permeabilized Ehrlich cells induces a rapid and reversible release of Ca2+ from a nonmitochondrial pool. Under the same conditions which facilitate intracellular Ca2+ mobilization, extracellular ATP also triggers a rapid breakdown of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and accumulation of IP3. A maximal 18% decrease of the polyphosphoinositide is observed 40-60 s after the addition of 25 microM ATP; within 5 min PtdIns(4,5)P2 returns to or exceeds the original, prestimulus level. These conditions also trigger a rapid accumulation of phosphatidic acid (1.7-fold increase within 5 min). Paralleling these ATP-induced changes in phospholipid levels is a substantial accumulation of the mono-, bis-, and trisphosphate derivatives of inositol; most significantly, a 2-fold increase in the IP3 level is observed within 30 s after ATP addition. These results suggest that in these tumor cells, extracellular ATP elicits changes in phosphoinositide metabolism similar to those produced by a wide variety of Ca2+-mobilizing hormones and growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号