首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organization of eukaryotic cells into membrane-bound compartments must be faithfully sustained for survival of the cell. A subtle equilibrium exists between the degradation and the proliferation of organelles. Commonly, proliferation is initiated by a membrane remodeling process. Here, we dissect the function of proteins driving organelle proliferation in the particular case of peroxisomes. These organelles are formed either through a growth and division process from existing peroxisomes or de novo from the endoplasmic reticulum (ER). Among the proteins involved in the biogenesis of peroxisomes, peroxins, members of the Pex11 protein family participate in peroxisomal membrane alterations. In the yeast Saccharomyces cerevisiae, the Pex11 family consists of three proteins, Pex11p, Pex25p and Pex27p. Here we demonstrate that yeast mutants lacking peroxisomes require the presence of Pex25p to regenerate this organelle de novo. We also provide evidence showing that Pex27p inhibits peroxisomal function and illustrate that Pex25p initiates elongation of the peroxisomal membrane. Our data establish that although structurally conserved each of the three Pex11 protein family members plays a distinct role. While ScPex11p promotes the proliferation of peroxisomes already present in the cell, ScPex25p initiates remodeling at the peroxisomal membrane and ScPex27p acts to counter this activity. In addition, we reveal that ScPex25p acts in concert with Pex3p in the initiation of de novo peroxisome biogenesis from the ER.  相似文献   

2.
Peroxisomes are ubiquitous organelles involved in diverse metabolic processes, most notably the metabolism of lipids and the detoxification of reactive oxygen species. Peroxisomes are highly dynamic and change in size and number in response to both intra- and extracellular cues. In the yeast Saccharomyces cerevisiae, peroxisome growth and division are controlled by both the differential import of soluble matrix proteins and a specialized divisional machinery that includes peroxisome-specific factors, such as members of the Pex11 protein family, and general organelle divisional factors, such as the dynamin-related protein Vps1p. Global yeast two-hybrid analyses have demonstrated interactions between the product of the S. cerevisiae gene of unknown function, YCL056c, and Pex proteins involved in peroxisome biogenesis. Here we show that the protein encoded by YCL056c, renamed Pex34p, is a peroxisomal integral membrane protein that acts independently and also in concert with the Pex11 protein family members Pex11p, Pex25p, and Pex27p to control the peroxisome populations of cells under conditions of both peroxisome proliferation and constitutive peroxisome division. Yeast two-hybrid analysis showed that Pex34p interacts physically with itself and with Pex11p, Pex25p, and Pex27p but not with Vps1p. Pex34p can act as a positive effector of peroxisome division as its overexpression leads to increased numbers of peroxisomes in wild type and pex34Δ cells. Pex34p requires the Pex11 family proteins to promote peroxisome division. Our discovery of Pex34p as a protein involved in the already complex control of peroxisome populations emphasizes the necessity of cells to strictly regulate their peroxisome populations to be able to respond appropriately to changing environmental conditions.  相似文献   

3.
4.
The present review summarizes recent observations on binding of Arf and COPI coat to isolated rat liver peroxisomes. The general structural and functional features of both Arf and coatomer were considered along with the requirements and dependencies of peroxisomal Arf and coatomer recruitment. Studies on the expression of mammalian Pex11 proteins, mainly Pex11alpha and Pex11beta, intimately related to the process of peroxisome proliferation, revealed a sequence of individual steps including organelle elongation/tubulation, formation of membrane and matrix protein patches segregating distinct proteins from each other, development of membrane constrictions and final membrane fission. Based on the similarities of the processes leading to cargo selection and concentration on Golgi membranes on the one hand and to the formation of peroxisomal protein patches on the other hand, an implication of Arf and COPI in distinct processes of peroxisomal proliferation is hypothesized. Alternatively, peroxisomal Arf/COPI might facilitate the formation of COPI-coated peroxisomal vesicles functioning in cargo transport and retrieval from peroxisomes to the ER. Recent observations suggesting transport of Pex3 and Pex19 during early steps of peroxisome biogenesis from the ER to peroxisomes inevitably propose such a retrieval mechanism, provided the ER to peroxisome pathway is based on transporting vesicles.  相似文献   

5.
We have cloned PEX15 which is required for peroxisome biogenesis in Saccharomyces cerevisiae. pex15Delta cells are characterized by the cytosolic accumulation of peroxisomal matrix proteins containing a PTS1 or PTS2 import signal, whereas peroxisomal membrane proteins are present in peroxisomal remnants. PEX15 encodes a phosphorylated, integral peroxisomal membrane protein (Pex15p). Using multiple in vivo methods to determine the topology, Pex15p was found to be a tail-anchored type II (Ncyt-Clumen) peroxisomal membrane protein with a single transmembrane domain near its carboxy-terminus. Overexpression of Pex15p resulted in impaired peroxisome assembly, and caused profound proliferation of the endoplasmic reticulum (ER) membrane. The lumenal carboxy-terminal tail of Pex15p protrudes into the lumen of these ER membranes, as demonstrated by its O-glycosylation. Accumulation in the ER was also observed at an endogenous expression level when Pex15p was fused to the N-terminus of mature invertase. This resulted in core N-glycosylation of the hybrid protein. The lumenal C-terminal tail of Pex15p is essential for targeting to the peroxisomal membrane. Furthermore, the peroxisomal membrane targeting signal of Pex15p overlaps with an ER targeting signal on this protein. These results indicate that Pex15p may be targeted to peroxisomes via the ER, or to both organelles.  相似文献   

6.
Peroxisomes are independent organelles found in virtually all eukaryotic cells. Genetic studies have identified more than 20 PEX genes that are required for peroxisome biogenesis. The role of most PEX gene products, peroxins, remains to be determined, but a variety of studies have established that Pex5p binds the type 1 peroxisomal targeting signal and is the import receptor for most newly synthesized peroxisomal matrix proteins. The steady-state abundance of Pex5p is unaffected in most pex mutants of the yeast Pichia pastoris but is severely reduced in pex4 and pex22 mutants and moderately reduced in pex1 and pex6 mutants. We used these subphenotypes to determine the epistatic relationships among several groups of pex mutants. Our results demonstrate that Pex4p acts after the peroxisome membrane synthesis factor Pex3p, the Pex5p docking factors Pex13p and Pex14p, the matrix protein import factors Pex8p, Pex10p, and Pex12p, and two other peroxins, Pex2p and Pex17p. Pex22p and the interacting AAA ATPases Pex1p and Pex6p were also found to act after Pex10p. Furthermore, Pex1p and Pex6p were found to act upstream of Pex4p and Pex22p. These results suggest that Pex1p, Pex4p, Pex6p, and Pex22p act late in peroxisomal matrix protein import, after matrix protein translocation. This hypothesis is supported by the phenotypes of the corresponding mutant strains. As has been shown previously for P. pastoris pex1, pex6, and pex22 mutant cells, we show here that pex4Delta mutant cells contain peroxisomal membrane protein-containing peroxisomes that import residual amounts of peroxisomal matrix proteins.  相似文献   

7.
The Saccharomyces cerevisiae peroxisomal membrane protein Pex11p has previously been implicated in peroxisome proliferation based on morphological observations of PEX11 mutant cells. Pex11p-deficient cells fail to increase peroxisome number in response to growth on fatty acids and instead accumulate a few giant peroxisomes. We report that mutants deficient in genes required for medium-chain fatty acid (MCFA) beta-oxidation display the same phenotype as Pex11p-deficient cells. Upon closer inspection, we found that Pex11p is required for MCFA beta-oxidation. Disruption of the PEX11 gene results in impaired formation of MCFA-CoA esters as measured in intact cells, whereas their formation is normal in cell lysates. The sole S. cerevisiae MCFA-CoA synthetase (Faa2p) remains properly localized to the inner leaflet of the peroxisomal membrane in PEX11 mutant cells. Therefore, the in vivo latency of MCFA activation observed in Pex11p-deficient cells suggests that Pex11p provides Faa2p with substrate. When PEX11 mutant cells are shifted from glucose to oleate-containing medium, we observed an immediate deficiency in beta-oxidation of MCFAs whereas giant peroxisomes and a failure to increase peroxisome abundance only became apparent much later. Our observations suggest that the MCFA oxidation pathway regulates the level of a signaling molecule that modulates the number of peroxisomal structures in a cell.  相似文献   

8.
Membrane remodeling is an important aspect in organelle biogenesis. We show that different peroxisome membrane proteins that play a role in organelle biogenesis and proliferation (Pex8, Pex10, Pex14, Pex25 and Pex11) are subject to spatiotemporal behavior during organelle development. Using fluorescence microscopy analysis of Hansenula polymorpha dnm1 cells that are blocked in the normal fission process, we show that green fluorescent protein (GFP) fusions of Pex8, Pex10, Pex14 and Pex25 show enhanced fluorescence at the organelle extensions that are formed in budding cells. In contrast, Pex11 fluorescence is enriched at the base of this extension on the mother organelle. A fusion protein of GFP with the transporter Pmp47, used as a control, did not show enhanced fluorescence at any specific region of the organelle. The concentration of specific peroxins at the peroxisome surface was lost upon deletion of PEX11 or the N-terminal domain of Pex11 that is involved in membrane remodeling. Comparable distribution patterns as in dnm1 cells were observed in wild-type cells where Pex8, Pex10, Pex14 and Pex25, but not Pex11, were especially present at newly formed organelles that migrated to the bud. We speculate that peroxin reorganization events result in enhanced levels of peroxins involved in peroxisome biogenesis in nascent organelles.  相似文献   

9.
We describe the isolation and characterization of a homologous pair of proteins, Pex25p (YPL112c) and Pex27p (YOR193w), whose C-termini are similar to the entire Pex11p. All three proteins localize to the peroxisomal membrane and are likely to form homo-oligomers. Deletion of any of the three genes resulted in enlarged peroxisomes as revealed by fluorescence and electron microscopy. The partial growth defect on fatty acids of a pex25Δ mutant was not exacerbated by the additional deletion of PEX27; however, when PEX11 was deleted on top of that, growth was abolished on all fatty acids. Moreover, a severe peroxisomal protein import defect was observed in the pex11Δpex25Δpex27Δ triple mutant strain. This import defect was also observed when cells were grown on ethanol-containing medium, where peroxisomes are not required, suggesting that the function of the proteins in peroxisome biogenesis exceeds their role in proliferation. When Pex25p was overexpressed in the triple mutant strain, growth on oleic acid was completely restored and a massive proliferation of laminar membranes and peroxisomes was observed. Our data demonstrate that Pex11p, Pex25p, and Pex27p build a family of proteins whose members are required for peroxisome biogenesis and play a role in the regulation of peroxisome size and number.  相似文献   

10.
Pex11 proteins are involved in membrane remodelling processes of peroxisomes, and are key components of peroxisomal division and proliferation. In mammals, three Pex11 isoforms, Pex11α, Pex11β, and Pex11γ exist. Here we demonstrate that Pex11β, but not Pex11α or Pex11γ, is almost exclusively extracted from peroxisomal membranes of paraformaldehyde-fixed cells by permeabilisation with the non-ionic detergent Triton X-100. This results in diminished detection of Myc-Pex11β in immunofluorescence preparations and appearance of the protein in the Triton X-100 extract. To our knowledge, Pex11β is the first peroxisomal membrane protein showing such a peculiar behaviour. Loss of Pex11β can be avoided by permeabilisation with digitonin, the addition of glutaraldehyde to the fixative, or the expression of a Pex11 fusion protein with a larger protein tag (e.g. YFP). Our observations further point to different functions and biochemical properties of the Pex11 isoforms within the peroxisomal membrane and during peroxisome proliferation.  相似文献   

11.
12.
Pex1 and Pex6 are two AAA-ATPases that play a crucial role in peroxisome biogenesis. We have characterized the ultrastructure of the Saccharomyces cerevisiae peroxisome-deficient mutants pex1 and pex6 by various high-resolution electron microscopy techniques. We observed that the cells contained peroxisomal membrane remnants, which in ultrathin cross sections generally appeared as double membrane rings. Electron tomography revealed that these structures consisted of one continuous membrane, representing an empty, flattened vesicle, which folds into a cup shape. Immunocytochemistry revealed that these structures lack peroxisomal matrix proteins but are the sole sites of the major peroxisomal membrane proteins Pex2, Pex10, Pex11, Pex13, and Pex14. Upon reintroduction of Pex1 in Pex1-deficient cells, these peroxisomal membrane remnants (ghosts) rapidly incorporated peroxisomal matrix proteins and developed into peroxisomes. Our data support earlier views that Pex1 and Pex6 play a role in peroxisomal matrix protein import.  相似文献   

13.
The molecular machinery underlying peroxisomal membrane biogenesis is not well understood. The observation that cells deficient in the peroxins Pex3p, Pex16p, and Pex19p lack peroxisomal membrane structures suggests that these molecules are involved in the initial stages of peroxisomal membrane formation. Pex19p, a predominantly cytosolic protein that can be farnesylated, binds multiple peroxisomal integral membrane proteins, and it has been suggested that it functions as a soluble receptor for the targeting of peroxisomal membrane proteins (PMPs) to the peroxisome. An alternative view proposes that Pex19p functions as a chaperone at the peroxisomal membrane. Here, we show that the peroxisomal sorting determinants and the Pex19p-binding domains of a number of PMPs are distinct entities. In addition, we extend the list of peroxins with which human Pex19p interacts to include the PMP Pex16p and show that Pex19p's CaaX prenylation motif is an important determinant in the affinity of Pex19p for Pex10p, Pex11pbeta, Pex12p, and Pex13p.  相似文献   

14.
The assembly of proteins in the peroxisomal membrane is a multistep process requiring their recognition in the cytosol, targeting to and insertion into the peroxisomal membrane, and stabilization within the lipid bilayer. The peroxin Pex19p has been proposed to be either the receptor that recognizes and targets newly synthesized peroxisomal membrane proteins (PMP) to the peroxisome or a chaperone required for stabilization of PMPs at the peroxisomal membrane. Differentiating between these two roles for Pex19p could be achieved by determining whether the peroxisomal targeting signal (PTS) and the region of Pex19p binding of a PMP are the same or different. We addressed the role for Pex19p in the assembly of two PMPs, Pex30p and Pex32p, of the yeast Saccharomyces cerevisiae. Pex30p and Pex32p control peroxisome size and number but are dispensable for peroxisome formation. Systematic truncations from the carboxyl terminus, together with in-frame deletions of specific regions, have identified PTSs essential for targeting Pex30p and Pex32p to peroxisomes. Both Pex30p and Pex32p interact with Pex19p in regions that do not overlap with their PTSs. However, Pex19p is required for localizing Pex30p and Pex32p to peroxisomes, because mutations that disrupt the interaction of Pex19p with Pex30p and Pex32p lead to their mislocalization to a compartment other than peroxisomes. Mutants of Pex30p and Pex32p that localize to peroxisomes but produce cells exhibiting the peroxisomal phenotypes of cells lacking these proteins demonstrate that the regions in these proteins that control peroxisomal targeting and cell biological activity are separable. Together, our data show that the interaction of Pex19p with Pex30p and Pex32p is required for their roles in peroxisome biogenesis and are consistent with a chaperone role for Pex19p in stabilizing or maintaining membrane proteins in peroxisomes.  相似文献   

15.
The peroxin Pex23p of the yeast Yarrowia lipolytica exhibits high sequence similarity to the hypothetical proteins Ylr324p, Ygr004p, and Ybr168p encoded by the Saccharomyces cerevisiae genome. Ylr324p, Ygr004p, and Ybr168p are integral to the peroxisomal membrane and act to control peroxisome number and size. Synthesis of Ylr324p and Ybr168p, but not of Ygr004p, is induced during incubation of cells in oleic acid-containing medium, the metabolism of which requires intact peroxisomes. Cells deleted for YLR324w exhibit increased numbers of peroxisomes, whereas cells deleted for YGR004w or YBR168w exhibit enlarged peroxisomes. Ylr324p and Ybr168p cannot functionally substitute for one another or for Ygr004p, whereas Ygr004p shows partial functional redundancy with Ylr324p and Ybr168p. Ylr324p, Ygr004p, and Ybr168p interact within themselves and with Pex28p and Pex29p, which have been shown also to regulate peroxisome size and number. Systematic deletion of genes demonstrated that PEX28 and PEX29 function upstream of YLR324w, YGR004w, and YBR168w in the regulation of peroxisome proliferation. Our data suggest a role for Ylr324p, Ygr004p, and Ybr168p--now designated Pex30p, Pex31p, and Pex32p, respectively--together with Pex28p and Pex29p in controlling peroxisome size and proliferation in Saccharomyces cerevisiae.  相似文献   

16.
In Saccharomyces cerevisiae, peroxisomal inheritance from mother cell to bud is conducted by the class V myosin motor, Myo2p. However, homologues of S. cerevisiae Myo2p peroxisomal receptor, Inp2p, are not readily identifiable outside the Saccharomycetaceae family. Here, we demonstrate an unexpected role for Pex3 proteins in peroxisome inheritance. Both Pex3p and Pex3Bp are peroxisomal integral membrane proteins that function as peroxisomal receptors for class V myosin through direct interaction with the myosin globular tail. In cells lacking Pex3Bp, peroxisomes are preferentially retained by the mother cell, whereas most peroxisomes gather and are transferred en masse to the bud in cells overexpressing Pex3Bp or Pex3p. Our results reveal an unprecedented role for members of the Pex3 protein family in peroxisome motility and inheritance in addition to their well-established role in peroxisome biogenesis at the endoplasmic reticulum. Our results point to a temporal link between peroxisome formation and inheritance and delineate a general mechanism of peroxisome inheritance in eukaryotic cells.  相似文献   

17.
We previously found that peroxisomal biogenesis factor 11a (Pex11a) deficiency is associated with a reduction in peroxisome abundance and impaired fatty acid metabolism in hepatocytes, and results in steatosis. In the present study, we investigated whether butyrate induces Pex11a expression and peroxisome proliferation, and studied its effect on lipid metabolism. C57BL/6 mice fed standard chow or a high-fat diet (HFD) were treated with tributyrin, 4-phelybutyrate acid (4-PBA), or the butyrate-producing probiotics (Clostridium butyricum MIYAIRI 588 [CBM]) plus inulin (dietary fiber), and the body weight, white adipose tissue, serum triglycerides, mRNA expression, and peroxisome abundance were evaluated. Tributyrin or 4-PBA treatment significantly decreased body weight and increased hepatic mRNA expression of peroxisome proliferator-activated receptor-α (PPARα) and Pex11a. In addition, 4-PBA treatment increased peroxisome abundance and the expression of genes involved in peroxisomal fatty acid β-oxidation (acyl-coenzyme A oxidase 1 and hydroxysteroid [17-beta] dehydrogenase 4). CBM and inulin administration reduced adipose tissue mass and serum triglycerides, induced Pex11a, acyl-coenzyme A oxidase 1, and hydroxysteroid (17-beta) dehydrogenase 4 genes, and increased peroxisome abundance in mice fed standard chow or an HFD. In conclusion, elevation of butyrate availability (directly through administration of butyrate or indirectly via administration of butyrate-producing probiotics plus fiber) induces PPARα and Pex11a and the genes involved in peroxisomal fatty acid β-oxidation, increases peroxisome abundance, and improves lipid metabolism. These results may provide a new therapeutic strategy against hyperlipidemia and obesity.  相似文献   

18.
In contrast to the molecular mechanisms underlying import of peroxisomal matrix proteins, those involving the transport of membrane proteins remain rather elusive. At present, two targeting routes for peroxisomal membrane proteins (PMPs) have been depicted: class I PMPs are targeted from the cytoplasm directly to the peroxisome membrane, and class II PMPs are sorted indirectly to peroxisomes via the endoplasmic reticulum (ER). In addition, three peroxins--Pex3p, Pex16p, and Pex19p - have been identified as essential factors for PMP assembly in several species including humans: Pex19p is a predominantly cytoplasmic protein that shows a broad PMP-binding specificity; Pex3p serves as the membrane-anchoring site for Pex19p; and Pex16p - a protein absent in most yeasts--is thought to provide the initial scaffold for recruiting the protein import machinery required for peroxisome membrane biogenesis. Remarkably, the function of Pex16p does not appear to be conserved between different species. In addition, significant disagreement exists about whether Pex19p has a chaperone-like role in the cytosol or at the peroxisome membrane and/or functions as a cycling import receptor for newly synthesized PMPs. Here we review the recent progress made in our understanding of the role of two key players in PMP biogenesis, Pex3p and Pex19p.  相似文献   

19.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders such as Zellweger syndrome. Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for PBDs of complementation groups 1 and 4, respectively. PEX26 responsible for peroxisome biogenesis disorders of complementation group 8 codes for C-tail-anchored type-II membrane peroxin Pex26p, the recruiter of Pex1p-Pex6p complexes to peroxisomes. Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by ATPase cycle. Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome targeting signal type-1 and shuttles between the cytosol and peroxisomes. AAA peroxins are involved in the export from peroxisomes of Pex5p. Pex5p is ubiquitinated at the conserved cysteine11 in a form associated with peroxisomes. Pex5p with a mutation of the cysteine11 to alanine, termed Pex5p-C11A, abrogates peroxisomal import of proteins harboring peroxisome targeting signals 1 and 2 in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, hence suggesting an essential role of the cysteine residue in the export of Pex5p.  相似文献   

20.
过氧化物酶体是存在于真核细胞中的一类单层膜细胞器,参与多种生理生化代谢过程,而Pex13和Pex14是过氧化物酶体膜上的对接复合体蛋白,参与基质蛋白-受体复合体的跨膜运输。目前,Pex13和Pex14在大多数植物病原真菌中的生物学功能尚不清楚。本研究鉴定了柑橘褐斑病菌链格孢柑橘致病型(the tangerine pathotype of Alternaria alternata)的对接复合体蛋白Pex13和Pex14,并构建基因敲除突变体与回补菌株,探究其生物学功能。结果表明,与野生型和回补菌株相比,ΔAaPex13和ΔAaPex14营养生长、分生孢子形成显著下降,分生孢子的萌发率显著降低,抗氧化能力和抗细胞壁胁迫能力也显著减弱,病菌的ACT毒素产量分别降低30%和33%,在离体叶片上丧失致病力。此外,AaPex13和AaPex14的缺失导致基质蛋白无法定位到过氧化物酶体,过氧化物酶体生物发生存在缺陷。本研究明确了AaPex13和AaPex14在病菌生长发育、过氧化物酶体形成、ACT毒素产生以及维持致病力方面都具有重要的调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号