首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA sequence recognition by bispyrazinonaphthalimides antitumor agents   总被引:4,自引:0,他引:4  
Bifunctional DNA intercalating agents have long attracted considerable attention as anticancer agents. One of the lead compounds in this category is the dimeric antitumor drug elinafide, composed of two tricyclic naphthalimide chromophores separated by an aminoalkyl linker chain optimally designed to permit bisintercalation of the drug into DNA. In an effort to optimize the DNA recognition capacity, different series of elinafide analogues have been prepared by extending the surface of the planar drug chromophore which is important for DNA sequence recognition. We report here a detailed investigation of the DNA sequence preference of three tetracyclic monomeric or dimeric pyrazinonaphthalimide derivatives. Melting temperature measurements and surface plasmon resonance (SPR) studies indicate that the dimerization of the tetracyclic planar chromophore considerably augments the affinity of the drug for DNA, polynucleotides, or hairpin oligonucleotides and promotes selective interaction with G.C sites. The (CH(2))(2)NH(CH(2))(3)NH(CH(2))(2) connector stabilizes the drug-DNA complexes. The methylation of the two nitrogen atoms of this linker chain reduces the binding affinity and increases the dissociation rates of the drug-DNA complexes by a factor of 10. DNase I footprinting experiments were used to investigate the sequence selectivity of the drugs, demonstrating highly preferential binding to G.C-rich sequences. It also served to select a high-affinity site encompassing the sequence 5'-GACGGCCAG which was then introduced into a biotin-labeled hairpin oligonucleotide to accurately measure the binding parameters by SPR. The affinity constant of the unmethylated dimer for this sequence is 500 times higher than that of the monomer compound and approximately 10 times higher than that of the methylated dimer. The DNA groove accessibility was also probed with three related oligonucleotides carrying G --> c(7)G, G --> I, and C --> M substitutions. The level of drug binding to the two hairpin oligonucleotides containing 7-deazaguanine (c(7)G) or 5-methylcytosine (M) residues is unchanged or only slightly reduced compared to that of the unmodified target. In contrast, incorporation of inosine (I) residues considerably decreases the extent of drug binding or even abolishes the interaction as is the case with the monomer. The pyrazinonaphthalimide derivatives are thus much more sensitive to the deletion of the exocyclic guanine 2-amino group exposed in the minor groove of the duplex than to the modification of the major groove elements. The complementary SPR footprinting methodology combining site selection and quantitative DNA affinity analysis constitutes a reliable method for dissecting the DNA sequence selectivity profile of reversible DNA binding small molecules.  相似文献   

2.
A series of bis(11-oxo-11H-indeno[1,2-b]quinoline-6-carboxamides) linked through the 6-carboxamides were prepared by coupling the requisite acid imidazolides with various diamines. Compounds with mono-cationic linker chains were more potent cytotoxins than the corresponding monomer in a panel of rodent and human cell lines, while those with the dicationic linker chains (CH2)2NR(CH2)2NR(CH2)2 and (CH2)2NR(CH2)3NR(CH2)2 showed extraordinarily high potencies (for example, IC50s of 0.18-1.4 nM against human Jurkat leukemia; up to 1000-fold more potent than the parent monomer). As seen previously in the monomeric series, small, lipophilic 4-substituents significantly increased potency in cell culture. The dimeric compounds were all slightly to significantly more potent in the mutant JL(A) and JL(D) cell lines that under-express topo II, suggesting that this enzyme is not their primary target. An 11-imino-linked dimer was much less active, and an asymmetric indeno[1,2-b]quinoline-6-carboxamide/naphthalimide dimer was less active than the comparable symmetric bis(indeno[1,2-b]quinoline-6-carboxamide). Selected analogues were active against sub-cutaneously implanted colon 38 tumors in mice, giving growth delays comparable to that of the clinical topo I inhibitor irinotecan at up to 10-fold lower doses. These compounds form an interesting new class of putative topo I inhibitors.  相似文献   

3.
Escherichia coli UvrD protein is a 3' to 5' SF1 helicase required for DNA repair as well as DNA replication of certain plasmids. We have shown previously that UvrD can self-associate to form dimers and tetramers in the absence of DNA, but that a UvrD dimer is required to form an active helicase-DNA complex in vitro. Here we have used pre-steady state, chemical quenched flow methods to examine the kinetic mechanism for formation of the active, dimeric helicase-DNA complex. Experiments were designed to examine the steps leading to formation of the active complex, separate from the subsequent DNA unwinding steps. The results show that the active dimeric complex can form via two pathways. The first, faster path involves direct binding to the DNA substrate of a pre-assembled UvrD dimer (dimer path), whereas the second, slower path proceeds via sequential binding to the DNA substrate of two UvrD monomers (monomer path), which then assemble on the DNA to form the dimeric helicase. The rate-limiting step within the monomer pathway involves dimer assembly on the DNA. These results show that UvrD dimers that pre-assemble in the absence of DNA are intermediates along the pathway to formation of the functional dimeric UvrD helicase.  相似文献   

4.
The beta sliding clamp encircles the primer-template and tethers DNA polymerase III holoenzyme to DNA for processive replication of the Escherichia coli genome. The clamp is formed via hydrophobic and ionic interactions between two semicircular beta monomers. This report demonstrates that the beta dimer is a stable closed ring and is not monomerized when the gamma complex clamp loader (gamma(3)delta(1)delta(1)chi(1)psi(1)) assembles the beta ring around DNA. delta is the subunit of the gamma complex that binds beta and opens the ring; it also does not appear to monomerize beta. Point mutations were introduced at the beta dimer interface to test its structural integrity and gain insight into its interaction with delta. Mutation of two residues at the dimer interface of beta, I272A/L273A, yields a stable beta monomer. We find that delta binds the beta monomer mutant at least 50-fold tighter than the beta dimer. These findings suggest that when delta interacts with the beta clamp, it binds one beta subunit with high affinity and utilizes some of that binding energy to perform work on the dimeric clamp, probably cracking one dimer interface open.  相似文献   

5.
6.
The bisnaphthalimide cytotoxic agent elinafide exhibits a mixed DNA binding mode including groove‐association and intercalation. We have compared the interaction of elinafide and two bisnaphthalimide analogues with various natural and modified DNA sequences using solution NMR and UV‐melting methods and surface plasmon resonance (SPR) experiments at different pH conditions. The combined data obtained with these techniques established a high‐affinity binding mode comprising intercalation and strong electrostatic contacts with guanine bases in the major groove, and a weaker interaction with A·T pairs likely involving groove association. However, the SPR binding constants and the NMR and UV‐melting binding parameters responded differently to variations in DNA bases and ligand intercalating moieties. The rates and equilibrium constants determined by SPR clearly responded to changes in pH and DNA groove composition, but were rather insensitive to alterations in drug rings and DNA bases affecting the intercalation process. Conversely, the intermolecular stacking interactions detected by NMR and the ligand‐induced thermal stabilizations measured by UV depended on both sets of factors and were controlled by the sequence‐dependent properties of the DNA helices, indicating that these data were modulated by naphthalimide stacking in addition to groove association. A two‐step binding process where a groove‐bound state is required prior to intercalation is proposed as an explanation for these observations. These findings may be useful for studying other classes of DNA‐ and RNA‐binding drugs, which frequently combine groove‐binding and stacking moieties. © 2012 Wiley Periodicals, Inc. Biopolymers 97:974–987, 2012.  相似文献   

7.
Fur is a bacterial regulator using iron as a cofactor to bind to specific DNA sequences. This protein exists in solution as several oligomeric states, of which the dimer is generally assumed to be the biologically relevant one. We describe the equilibria that exist between dimeric Escherichia coli Fur and higher oligomers. The dissociation constant for the dimer-tetramer equilibrium is estimated to be in the millimolar range. Oligomerization is enhanced at low ionic strength and pH. The as-isolated monomeric form of Fur is not in equilibrium with the dimer and contains two disulfide bridges (C92-C95 and C132-C137). Binding of the monomer to DNA is metal-dependent and sequence specific with an apparent affinity 5.5 times lower than that of the dimer. Size exclusion chromatography, EDC cross-linking, and CD spectroscopy show that reconstitution of the dimer from the monomer requires reduction of the disulfide bridges and coordination of Zn2+. Reduction of the disulfide bridges or Zn2+ alone does not promote dimerization. EDC and DMA cross-links reveal that the N-terminal NH2 group of one subunit is in an ionic interaction with acidic residues of the C-terminal tail and close to Lys76 and Lys97 of the other. Furthermore, the yields of cross-link drastically decrease upon binding of metal in the activation site, suggesting that the N-terminus is involved in the conformational change. Conversely, oxidizing reagents, H2O2 or diamide, disrupt the dimeric structure leading to monomer formation. These results establish that coordination of the zinc ion and the redox state of the cysteines are essential for holding E. coli Fur in a dimeric state.  相似文献   

8.
Dimeric restriction endonucleases and monomeric modification methyltransferases were long accepted as the structural paradigm for Type II restriction systems. Recent studies, however, have revealed an increasing number of apparently dimeric DNA methyltransferases. Our initial characterization of RsrI methyltransferase (M.RsrI) was consistent with the enzyme functioning as a monomer, but, subsequently, the enzyme crystallized as a dimer with 1500 A2 of buried surface area. This result led us to re-examine the biochemical properties of M.RsrI. Gel-shift studies of M.RsrI binding to DNA suggested that binding cooperativity targets hemimethylated DNA preferentially over unmethylated DNA. Size-exclusion chromatography indicated that the M.RsrI-DNA complex had a size and stoichiometry consistent with a dimeric enzyme binding to the DNA. Kinetic measurements revealed a quadratic relationship between enzyme velocity and concentration. Site-directed mutagenesis at the dimer interface affected the kinetics and DNA-binding of the enzyme, providing support for a model proposing an active enzyme dimer. We also identified a conserved motif in the dimer interfaces of the beta-class methyltransferases M.RsrI, M.MboIIA and M2.DpnII. Taken together, these data suggest that M.RsrI may be part of a sub-class of MTases that function as dimers.  相似文献   

9.
A novel series of '4-1' pentacyclic naphthalimides, where the chromophore consists of a naphthalimide moiety, fused to an imidazole ring containing an unfused aryl or heteroaryl ring, were synthesized and evaluated for in vitro antitumor activity. In general, the new derivatives showed an improved cytotoxic activity over amonafide. DNA binding experiments supported that this class of compounds behaves as effective DNA-intercalating agents.  相似文献   

10.
Antizyme inhibitor (AzI) regulates cellular polyamine homeostasis by binding to the polyamine-induced protein, Antizyme (Az), with greater affinity than ornithine decarboxylase (ODC). AzI is highly homologous to ODC but is not enzymatically active. In order to understand these specific characteristics of AzI and its differences from ODC, we determined the 3D structure of mouse AzI to 2.05 A resolution. Both AzI and ODC crystallize as a dimer. However, fewer interactions at the dimer interface, a smaller buried surface area, and lack of symmetry of the interactions between residues from the two monomers in the AzI structure suggest that this dimeric structure is nonphysiological. In addition, the absence of residues and interactions required for pyridoxal 5'-phosphate (PLP) binding suggests that AzI does not bind PLP. Biochemical studies confirmed the lack of PLP binding and revealed that AzI exists as a monomer in solution while ODC is dimeric. Our findings that AzI exists as a monomer and is unable to bind PLP provide two independent explanations for its lack of enzymatic activity and suggest the basis for its enhanced affinity toward Az.  相似文献   

11.
The DNA polymerase processivity factor of the Epstein-Barr virus, BMRF1, associates with the polymerase catalytic subunit, BALF5, to enhance the polymerase processivity and exonuclease activities of the holoenzyme. In this study, the crystal structure of C-terminally truncated BMRF1 (BMRF1-ΔC) was solved in an oligomeric state. The molecular structure of BMRF1-ΔC shares structural similarity with other processivity factors, such as herpes simplex virus UL42, cytomegalovirus UL44, and human proliferating cell nuclear antigen. However, the oligomerization architectures of these proteins range from a monomer to a trimer. PAGE and mutational analyses indicated that BMRF1-ΔC, like UL44, forms a C-shaped head-to-head dimer. DNA binding assays suggested that basic amino acid residues on the concave surface of the C-shaped dimer play an important role in interactions with DNA. The C95E mutant, which disrupts dimer formation, lacked DNA binding activity, indicating that dimer formation is required for DNA binding. These characteristics are similar to those of another dimeric viral processivity factor, UL44. Although the R87E and H141F mutants of BMRF1-ΔC exhibited dramatically reduced polymerase processivity, they were still able to bind DNA and to dimerize. These amino acid residues are located near the dimer interface, suggesting that BMRF1-ΔC associates with the catalytic subunit BALF5 around the dimer interface. Consequently, the monomeric form of BMRF1-ΔC probably binds to BALF5, because the steric consequences would prevent the maintenance of the dimeric form. A distinctive feature of BMRF1-ΔC is that the dimeric and monomeric forms might be utilized for the DNA binding and replication processes, respectively.  相似文献   

12.
The new antitumor trinuclear platinum compound [(trans-PtCl(NH(3))(2))(2)mu-trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)NH(2))(2)](4+) (designated as BBR3464) is currently in phase II clinical trials. DNA is generally considered the major pharmacological target of platinum drugs. As such it is of considerable interest to understand the patterns of DNA damage. The bifunctional DNA binding of BBR3464 is characterized by the rapid formation of long range intra- and interstrand cross-links. We examined how the structures of the various types of the intrastrand cross-links of BBR3464 affect conformational properties of DNA, and how these adducts are recognized by high mobility group 1 protein and removed from DNA during in vitro nucleotide excision repair reactions. The results have revealed that intrastrand cross-links of BBR3464 create a local conformational distortion, but none of these cross-links results in a stable curvature. In addition, we have observed no recognition of these cross-links by high mobility group 1 proteins, but we have observed effective removal of these adducts from DNA by nucleotide excision repair. These results suggest that the processing of the intrastrand cross-links of BBR3464 in tumor cells sensitive to this drug may not be relevant to its antitumor effects. Hence, polynuclear platinum compounds apparently represent a novel class of platinum anticancer drugs acting by a different mechanism than cisplatin and its analogues.  相似文献   

13.
The equilibrium unfolding transitions of Cro repressor variants, dimeric variant Cro F58W and monomer Cro K56[DGEVK]F58W, have been studied by urea and guanidine hydrochloride to probe the folding mechanism. The unfolding transitions of a dimeric variant are well described by a two state process involving native dimer and unfolded monomer with a free energy of unfolding, DeltaG(0,un)(0), of approximately 10-11 kcal/mol. The midpoint of transition curves is dependent on total protein concentration and DeltaG(0,un)(0) is independent of protein concentration, as expected for this model. Unfolding of Cro monomer is well described by the standard two state model. The stability of both forms of protein increases in the presence of salt but decreases with the decrease in pH. Because of the suggested importance of a N2<-->2F dimerization process in DNA binding, we have also studied the effect of sodium perchlorate, containing the chaotropic perchlorate anion, on the conformational transition of Cro dimer by CD, fluorescence and NMR (in addition to urea and guanidine hydrochloride) in an attempt both to characterize the thermodynamics of the process and to identify conditions that lead to an increase in the population of the folded monomers. Data suggest that sodium perchlorate stabilizes the protein at low concentration (<1.5 M) and destabilizes the protein at higher perchlorate concentration with the formation of a "significantly folded" monomer. The tryptophan residue in the "significantly folded" monomer induced by perchlorate is more exposed to the solvent than in native dimer.  相似文献   

14.
Fluorescence polarization studies of porcine mitochondrial malate dehydrogenase labeled with fluorescein isothiocyanate or fluorescamine indicated a concentration-dependent dissociation of the dimeric molecule with a KD OF 2 X 10(7) N at pH 8.0. These results were confirmed by the concentration dependence of the stability of the enzyme at elevated temperatures and the creation of hybrid molecules with fluorescein and Rhodamine B labeled subunits, in which energy transfer was observed. The binding of NADH resulted in a small shift of the subunit dissociation curve toward monomer, demonstrating that monomer has twice the affinity for reduced coenzyme. NAD+ binding prevented dissociation of the dimer, even at concentrations below 10(-8) N. These results indicate that binding of reduced or oxidized coenzymes results in different conformation changes, which are transferred to the subunit interface.  相似文献   

15.
16.
We used molecular modeling to study the optimal conformation of the complex between two p53 DNA-binding domain monomers and a 12 base-pair target DNA sequence. The complex was constructed using experimental data on the monomer binding conformation and a new approach to deform the target DNA sequence. Combined with an internal/helicoidal coordinate model of DNA, this approach enables us to bend the target sequence in a controlled way while respecting the contacts formed with each p53 monomer. The results show that the dimeric complex favors DNA bending towards the major groove at the dimer junction by a value close to experimental findings. In contrast to inferences from earlier models, the calculation of key contributions to the free energy of the complexes indicates a determinant role for DNA in the formation of the complex with the dimer of the p53 DNA-binding domains.  相似文献   

17.
BBR3464, a charged trinuclear platinum compound, is the first representative of a new class of anticancer drugs to enter phase I clinical trials. The structure of BBR3464 is characterized by two [trans-PtCl(NH(3))(2)] units linked by a tetraamine [trans-Pt(NH(3))(2)?H(2)N(CH(2))(6)NH(2)?(2)] unit. The +4 charge of BBR3464 and the separation of the platinating units indicate that the mode of DNA binding will be distinctly different from those of classical mononuclear drugs such as cisplatin, cis-[PtCl(2)(NH(3))(2)]. The reaction of BBR3464 with three different nucleic acid conformations was assessed by gel electrophoresis. Comparison of single-stranded DNA, RNA, and double-stranded DNA indicated that the reaction of BBR3464 with single-stranded DNA and RNA was faster than that with duplex DNA, and produced more drug-DNA and drug-RNA adducts. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry was used to further characterize the binding modes of BBR3464 with the DNA substrates. BBR3464 binding to different nucleic acid conformations raises the possibility that the adducts of single-stranded DNA and RNA may play a role in the different antitumor efficacies of this novel drug as compared with cisplatin.  相似文献   

18.
19.
To determine whether accessory proteins mediate the ligand- and DNA sequence-dependent specificity of estrogen receptor (ER) interaction with DNA, the binding of partly purified vs highly purified bovine ER to various estrogen response elements (EREs) was measured in the presence of different ER ligands. Partly purified estradiol-liganded ER (E2-ER) binds cooperatively to stereoaligned tandem EREs flanked by naturally occurring AT-rich sequences, with a stoichiometry of one E2-ER dimer per ERE. In contrast, highly purified E2-ER binds with a 10-fold lower affinity and non-cooperatively to EREs flanked by the AT-rich region. Moreover, the binding stoichiometry of highly purified E2-ER was 0.5 E2-ER dimer, or one monomer per ERE, independent of the ERE flanking sequence. Interestingly, the binding of ER liganded with the antiestrogen 4-hydroxytamoxifen (4-OHT-ER) was non-cooperative with an apparent stoichiometry of 0.5 4-OHT-ER dimer per ERE, regardless of ER purity or ERE flanking sequence. We recently showed that when 4-OHT-ER binds DNA, one molecule of 4-OHT dissociates from the dimeric 4-OHT-ER-ERE complex, accounting for the reduced apparent binding stoichiometry. In contrast, ER covalently bound by tamoxifen aziridine (TAz) gave an ERE binding stoichiometry of one TAz-ER dimer per ERE, and TAz-ER binds cooperatively to multiple AT-rich EREs, regardless of the purity of the receptor. We have obtained evidence that purification of ER removes an accessory protein(s) that interacts with ER in a sequence- and/or DNA conformational-dependent manner, resulting in stabilization of E2, but not 4-OHT, in the ligand binding domain when the receptor binds to DNA. We postulate that retention of ligand by ER maintains the receptor in a conformation necessary to achieve high-affinity, cooperative ERE binding.  相似文献   

20.
The TREX enzymes process DNA as the major 3′→5′ exonuclease activity in mammalian cells. TREX2 and TREX1 are members of the DnaQ family of exonucleases and utilize a two metal ion catalytic mechanism of hydrolysis. The structure of the dimeric TREX2 enzyme in complex with single-stranded DNA has revealed binding properties that are distinct from the TREX1 protein. The TREX2 protein undergoes a conformational change in the active site upon DNA binding including ordering of active site residues and a shift of an active site helix. Surprisingly, even when a single monomer binds DNA, both monomers in the dimer undergo the structural rearrangement. From this we have proposed a model for DNA binding and 3′ hydrolysis for the TREX2 dimer. The structure also shows how TREX proteins potentially interact with double-stranded DNA and suggest features that might be involved in strand denaturation to provide a single-stranded substrate for the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号