首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
萧氏松茎象线粒体基因组全序列测定与分析   总被引:1,自引:0,他引:1  
李国宏  尚娜  魏建荣 《昆虫学报》2012,55(11):1306-1314
象甲是鞘翅目中物种最丰富的类群, 目前关于其线粒体基因组全序列的研究还未见报道。本研究利用长距PCR和引物步移法对萧氏松茎象Hylobitelus xiaoi Zhang线粒体基因组全序列进行了测定。结果显示: 萧氏松茎象线粒体基因组序列全长16 123 bp(GenBank登录号为JX847496), 共编码37个基因和1个非编码的控制区, 基因次序与典型的六足动物线粒体基因排列一致, 未发现基因重排现象。在基因组中两个值得注意的发现分别是: 1)N链上存在1个额外的trnV-like序列, 反密码子为GAC, 长度为69 bp, 其中65 bp与J链上的trnD重叠; 2)trnSUCN和nad1之间存在1个长度为232 bp的基因间隔区。全部13个蛋白质编码基因的起始密码子均为ATN, 9个蛋白质编码基因的终止密码子为TAA, 其余4个蛋白质编码基因中, nad1和cox2的终止密码子为TAG, nad4和nad5则以不完整的终止密码子T作为终止信号。除trnSAGN外, 其余的tRNAs均可形成典型的三叶草结构。而trnSAGN的反密码子由TCT替代GCT, 反密码子臂延长形成9 bp(中间含1个碱基突起), TΨC臂由正常的5 bp变为6 bp, DHU臂缩短仅1 bp, 各个臂之间没有连接碱基。线粒体控制区中包括10处长度不少于5 bp的poly-T(最长poly-T长度为14 bp)和2处微卫星样重复序列 (TA)6和(TA)9。本研究结果为探讨象甲总科在鞘翅目中的系统学地位及其与其他总科间的系统发生关系等问题提供了重要的分子生物学数据。  相似文献   

2.
Liu QN  Zhu BJ  Dai LS  Wei GQ  Liu CL 《Gene》2012,505(2):291-299
The complete mitochondrial genome (mitogenome) of Actias selene (Lepidoptera: Saturniidae) was determined to be 15,236 bp, including 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a control region. The arrangement of 13 PCGs was similar to that of other sequenced lepidopterans. The AT skew of the mitogenome of A. selene was slightly negative, indicating a higher number of T compared to A nucleotides. The nucleotide composition of the mitogenome of A. selene was also biased toward A+T nucleotides (78.91%). All PCGs were initiated by ATN codons, except for the gene encoding cytochrome c oxidase subunit 1 (cox1), which may be initiated by the TTAG, as observed in other lepidopterans. Three genes, including cox1, cox2, and nad5, had incomplete stop codons consisting of just a T. With an exception for trnS1(AGN), all the other tRNA genes displayed a typical clover-leaf structure of mitochondrial tRNA. The A+T-rich region of the mitogenome of A. selene was 339 bp in length, and contains several features common to the Lepidopteras, including non-repetitive sequences, a conserved structure combining the motif ATAGA and an 18-bp poly-T stretch and a poly-A element upstream of trnM gene. Phylogenetic analysis showed that A. selene was close to Saturniidae.  相似文献   

3.
The complete mitochondrial genome (mitogenome) of Bombyx mori strain H9 (Lepidoptera: Bombycidae) is 15,670 base pairs (bp) in length, encoding 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a control region. The nucleotide composition of the genome is highly A + T biased, accounting for 81.31%, with a slightly positive AT skewness (0.059). The arrangement of 13 PCGs is similar to that of other sequenced lepidopterans. All the PCGs are initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which is proposed by the TTAG sequence as observed in other lepidopterans. Unlike the other PCGs, the cox1 and cytochrome c oxidase subunit 2 (cox2) genes have incomplete stop codons consisting of just a T. All tRNAs have typical structures of insect mitochondrial tRNAs, which is different from other sequenced lepidopterans. The structure of A + T-rich region is similar to that of other sequenced lepidopterans, including non-repetitive sequences, the ATAGA binding domain, a 18 bp poly-T stretch and a poly-A element upstream of transfer RNA M (trnM) gene. Phylogenetic analysis shows that the domesticated silkmoth B. mori originated from the Chinese Bombyx mandarina.  相似文献   

4.
Tian LL  Sun XY  Chen M  Gai YH  Hao JS  Yang Q 《动物学研究》2012,33(2):133-143
对残锷线蛱蝶(Parathymasulpitia)(鳞翅目:蛱蝶科)线粒体基因组全序列进行了测定。结果表明:残锷线蛱蝶线粒体基因组全序列全长为15268bp,除了在trnS1(AGN)和trnE基因之间有一段121bp长的基因间隔外,其基因的排列顺序及排列方向与大多数已测鳞翅目物种基本一致。在蛋白质编码基因中,除cox1以CGA作为其起始密码子之外,其余12个蛋白质编码基因都以标准的ATN作为起始密码子。此外,除nad4基因以单独的T为终止密码子,其余12个蛋白质编码基因都以TAA结尾。除trnS1(AGN)缺少DHU臂之外,22个tRNA基因都显示典型的三叶草形二级结构。除A+T富集区外的非编码序列中,线粒体基因组共含有11个基因间隔区。其中,最长的一个121bp的基因间隔区位于trnS1(AGN)和trnE之间,其A+T含量高达100%。另外,和其他鳞翅目物种一样,在其A+T富集区的3’端有一段长达18bp的poly-T结构。A+T富集区内部没有明显的小卫星样多拷贝重复序列,而含有一些微卫星样的重复结构。本研究基于13种蛋白编码基因序列的组合数据,用最大似然法和贝叶斯法对蛱蝶科几个主要亚科间共9个代表物种间的系统发生关系进行了分析。结果表明,本研究的结果与前人的分子系统学研究结论基本吻合(其中,线蛱蝶亚科和釉蛱蝶亚科互为姐妹群),而与形态学的研究结论不一致。  相似文献   

5.
张锋  洪波  王远征  李英梅  陈志杰 《昆虫学报》2019,62(11):1305-1314
【目的】从线粒体基因组水平上探讨枣食芽象甲Scythropus yasumatsui与近缘种的系统发育关系。【方法】利用Illumina MiSeq测序平台对枣食芽象甲线粒体基因组进行测序,对基因组序列进行拼装、注释和特征分析;利用贝叶斯法和最大似然法构建基于象甲科13个物种的线粒体基因组13个蛋白质编码基因核苷酸序列的系统发育树。【结果】结果表明,枣食芽象甲线粒体基因组全长为16 472 bp (GenBank登录号: MF807224),包含13个蛋白质编码基因、22个tRNA基因、2个rRNA基因和2个非编码控制区,37个基因的排列顺序与祖先昆虫的线粒体基因排列顺序一致。13个蛋白质编码基因的起始密码子为ATN,其中除了cob和nad1基因的完全终止密码子为TAG外,其余11个基因的完全终止密码子为TA(A)。22个tRNA基因中除了trnS1缺少DHU臂,反密码子由GCT变为TCT外,其余均能形成典型的三叶草结构。基于13个蛋白质编码基因序列构建的系统发育树结果显示,象甲科8个亚科系统发育关系为:(((隐喙象亚科(Cryptorhynchinae)+(象虫亚科(Curculioninae)+魔喙象亚科(Molytinae)))+长小蠹亚科(Platypodinae))+(粗喙象亚科(Entiminae)+Cyclominae亚科))+隐颏象亚科(Dryophthorinae)+小蠹亚科(Scolytinae))。【结论】在13种象甲科昆虫物种中,同属于粗喙象亚科的枣食芽象甲与南美果树象甲Naupactus xanthographus在系统发育树中聚为同一分支,表明基于线粒体基因组全序列的分子系统发育结果与传统的形态分类结果是一致的。  相似文献   

6.
The complete mitochondrial genome (mitogenome) of Eriogyna pyretorum (Lepidoptera: Saturniidae) was determined as being composed of 15,327 base pairs (bp), including 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The arrangement of the PCGs is the same as that found in the other sequenced lepidopteran. The AT skewness for the E. pyretorum mitogenome is slightly negative (-0.031), indicating the occurrence of more Ts than As. The nucleotide composition of the E. pyretorum mitogenome is also biased toward A + T nucleotides (80.82%). All PCGs are initiated by ATN codons, except for cytochrome c oxidase subunit 1 and 2 (cox1 and cox2). Two of the 13 PCGs harbor the incomplete termination codon by T. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN) and trnS2(UCN). Phylogenetic analysis among the available lepidopteran species supports the current morphology-based hypothesis that Bombycoidea, Geometroidea, Notodontidea, Papilionoidea and Pyraloidea are monophyletic. As has been previously suggested, Bombycidae (Bombyx mori and Bombyx mandarina), Sphingoidae (Manduca sexta) and Saturniidae (Antheraea pernyi, Antheraea yamamai, E. pyretorum and Caligula boisduvalii) formed a group.  相似文献   

7.
为了解小长蝽Nysius ericae(Schilling)线粒体基因组结构及长蝽总科的分子系统发育关系。本试验采用Illumina MiSeq测序平台对小长蝽线粒体基因进行测序,对基因组序列进行拼装、注释和特征分析,利用最大似然法和贝叶斯法构建基于12种长蝽总科昆虫线粒体全基因组核苷酸序列的系统发育树。小长蝽线粒体基因组全长为16 330 bp(GenBank登录号:MW465654),基因组包括13个蛋白编码基因(PCGs),22个tRNA基因,2个rRNA基因和1段非编码控制区。11个蛋白质编码基因的起始密码子为典型的ATN;cox1,nad4l的起始密码子为TTG。cob的终止密码子为TAG,其余蛋白编码基因的终止密码子为TAA。只有trnS1缺少DHU臂,其余tRNA基因均能形成典型的三叶草结构。12种长蝽总科昆虫线粒体全基因组序列构建的昆虫系统发育树结果显示,小长蝽与Nysius plebeius具有更近的亲缘关系,且与传统形态学分类基本一致。小长蝽线粒体基因组符合长蝽总科线粒体基因组的一般特征。结果表明小长蝽与N.plebeius的亲缘关系更近。  相似文献   

8.
We sequenced and annotated the complete mitochondrial (mt) genome of the priapulid Priapulus caudatus in order to provide a source of phylogenetic characters including an assessment of gene order arrangement. The genome was 14,919 bp in its entirety with few, short non-coding regions. A number of protein-coding and tRNA genes overlapped, making the genome relatively compact. The gene order was: cox1, cox2, trnK, trnD, atp8, atp6, cox3, trnG, nad3, trnA, trnR, trnN, rrnS, trnV, rrnL, trnL(yaa), trnL(nag), nad1, -trnS(nga), -cob, -nad6, trnP, -trnT, nad4L, nad4, trnH, nad5, trnF, -trnE, -trnS(nct), trnI, -trnQ, trnM, nad2, trnW, -trnC, -trnY; where '-' indicates genes transcribed on the opposite strand. The gene order, although unique amongst Metazoa, shared the greatest number of gene boundaries and the longest contiguous fragments with the chelicerate Limulus polyphemus. The mt genomes of these taxa differed only by a single inversion of 18 contiguous genes bounded by rrnS and trnS(nct). Other arthropods and nematodes shared fewer gene boundaries but considerably more than the most similar non-ecdysozoan.  相似文献   

9.
The complete nucleotide sequence (14,472 bp) of the mitochondrial genome of the nudibranch Roboastra europaea (Gastropoda: Opisthobranchia) was determined. This highly compact mitochondrial genome is nearly identical in gene organization to that found in opisthobranchs and pulmonates (Euthyneura) but not to that in prosobranchs (a paraphyletic group including the most basal lineages of gastropods). The newly determined mitochondrial genome differs only in the relative position of the trnC gene when compared with the mitochondrial genome of Pupa strigosa, the only opisthobranch mitochondrial genome sequenced so far. Pupa and Roboastra represent the most basal and derived lineages of opisthobranchs, respectively, and their mitochondrial genomes are more similar in sequence when compared with those of pulmonates. All phylogenetic analyses (maximum parsimony, minimum evolution, maximum likelihood, and Bayesian) based on the deduced amino acid sequences of all mitochondrial protein-coding genes supported the monophyly of opisthobranchs. These results are in agreement with the classical view that recognizes Opisthobranchia as a natural group and contradict recent phylogenetic studies of the group based on shorter sequence data sets. The monophyly of opisthobranchs was further confirmed when a fragment of 2,500 nucleotides including the mitochondrial cox1, rrnL, nad6, and nad5 genes was analyzed in several species representing five different orders of opisthobranchs with all common methods of phylogenetic inference. Within opisthobranchs, the polyphyly of cephalaspideans and the monophyly of nudibranchs were recovered. The evolution of mitochondrial tRNA rearrangements was analyzed using the cox1+rrnL+nad6+nad5 gene phylogeny. The relative position of the trnP gene between the trnA and nad6 genes was found to be a synapomorphy of opisthobranchs that supports their monophyly.  相似文献   

10.
The complete 15,223-bp mitochondrial genome (mitogenome) of Tryporyza incertulas (Walker) (Lepidoptera: Pyraloidea: Crambidae) was determined, characterized and compared with seven other species of superfamily Pyraloidea. The order of 37 genes was typical of insect mitochondrial DNA sequences described to date. Compared with other moths of Pyraloidea, the A + T biased (77.0%) of T. incertulas was the lowest. Eleven protein-coding genes (PCGs) utilized the standard ATN, but cox1 used CGA and nad4 used AAT as the initiation codons. Ten protein-coding genes had the common stop codon TAA, except nad3 having TAG as the stop codon, and cox2, nad4 using T, TA as the incomplete stop codons, respectively. All of the tRNA genes had typical cloverleaf secondary structures except trnS1(AGN), in which the dihydrouridine (DHU) arm did not form a stable stem-loop structure. There was a spacer between trnQ and nad2, which was common in Lepidoptera moths. A 6-bp motif ‘ATACTA’ between trnS2(UCN) and nad1, a 7-bp motif “AGC(T)CTTA” between trnW and trnC and a 6-bp motif “ATGATA” of overlapping region between atp8 and atp6 were found in Pyraloidea moths. The A + T-rich region contained an ‘ATAGT(A)’-like motif followed by a poly-T stretch. In addition, two potential stem-loop structures, a duplicated 19-bp repeat element, and two microsatellites ‘(TA)12’ and ‘(TA)9’ were observed in the A + T-rich region of T. incertulas mitogenome. Finally, the phylogenetic relationships of Pyraloidea species were constructed based on amino acid sequences of 13 PCGs of mitogenomes using Bayesian inference (BI) and maximum likelihood (ML) methods. These molecular-based phylogenies supported the morphological classification on relationships within Pyraloidea species.  相似文献   

11.
The complete mitochondrial genome of Cryptotermes domesticus (Haviland) was sequenced and annotated to study its characteristics and the phylogenetic relationship of C. domesticus to other termite species. The mitogenome of C. domesticus is a circular, close, and double-stranded molecule with a length of 15,655 bp. The sequenced mitogenome contains 37 typical genes, which are highly conserved in gene size, organization, and codon usage. Transfer RNA genes (tRNAs) also have typical secondary structures. All of the 13 protein-coding genes (PCGs) start with an ATN codon, except for nad4, which starts with GTG and terminates with the terminal codon TAA and TAG or the incomplete form T-- (cox2 and nad5). Most tRNAs have a typical cloverleaf structure, except for trnS1, in which this form is replaced by a simple loop and lacks the dihydrouridine (DHU) arm. The nucleotide diversity (Pi) and nonsynonymous (Ka)/synonymous (Ks) mutation rate ratios indicate that nad1, cox1, and cox3 are the most conserved genes, and that cox1 has the lowest rate of evolution. In addition, an 89 bp repeated sequence was found in the A + T-rich region. Phylogenetic analysis was performed using Bayesian inference (BI) and maximum likelihood (ML) methods based on 13 PCGs, and the monophyly of Kalotermitidae was supported.  相似文献   

12.
Loxostege turbidalis, Loxostege aeruginalis, Pyrausta despicata, and Crambus perlellus belong to Crambidae, Pyraloidea. Their mitochondrial genomes (mitogenomes) were successfully sequenced. The mitogenomes of L. turbidalis, L. aeruginalis, P. despicata, and C. perlellus are 15 240 bp, 15 339 bp, 15 389 bp, and 15 440 bp. The four mitogenomes all have a typical insect mitochondrial gene order, including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and one A + T rich region (control region). The PCGs are initiated by the typical ATN codons, except CGA for the cox1 gene. Most PCGs terminate with common codon TAA or TAG, the incomplete codon T is found as the stop codon for cox2, nad4, and nad5. Most tRNA genes exhibit typical cloverleaf structure, except trnS1 (AGN) lacking the dihydrouridine (DHU) arm. The secondary structure of rRNA of four mitogenomes were predicted. Poly-T structure and micro-satellite regions are conserved in control regions. The phylogenetic analyses based on 13 PCGs showed the relationships of subfamilies in Pyraloidea. Pyralidae, and Crambidae are monophyletic, respectively. Pyralidae comprises four subfamilies, which form the following topology with high support values: (Galleriinae + ((Pyralinae + Epipaschiinae)+ Phycitinae)). Crambidae includes seven subfamilies and is divided into two lineages. Pyraustinae and Spilomelinae are sister groups of each other, and form the “PS clade.” Other five subfamilies (Crambinae, Acentropinae, Scopariinae, Schoenobiinae, and Glaphyriinae) form the “non-PS clade” in the Bayesian inference tree. However, Schoenobiinae is not grouped with the other four subfamilies and located at the base of Crambidae in two maximum likelihood trees.  相似文献   

13.
姚余江  陈斌  李廷景 《昆虫学报》2023,66(1):99-107
【目的】本研究旨在通过针尾部(Aculeata)昆虫线粒体基因组系统发育分析认知土蜂科(Scoliidae)的单系性及系统发育位置。【方法】利用Illumina Hiseq2500二代测序技术测序土蜂科3属5种的线粒体基因组,并进行注释和分析;基于针尾部昆虫36个线粒体基因组13个蛋白质编码基因(protein-coding genes, PCGs)和2个rRNA基因序列采用最大似然法(maximum likelihood, ML)和贝叶斯法(Bayesian inference, BI)法构建系统发育树。【结果】新测序的土蜂科5个线粒体基因组为五带波壁土蜂Colpa quinquecincta线粒体基因组(GenBank登录号:OM103696),齿石波壁土蜂Colpa tartara线粒体基因组(GenBank登录号:OM103697),厚大长腹土蜂Megacampsomeris grossa线粒体基因组(GenBank登录号:OM103796),台湾大长腹土蜂Megacampsomeris formosensis线粒体基因组(GenBank登录号:OM142776)和斯式土蜂Sc...  相似文献   

14.
Phylogenetic relationship within Neuroptera is controversial, particularly for the various hypotheses based on both morphological and molecular evidence. In the present study, we determined the complete mitochondrial genome (mitogenome) of Gatzara jezoensis, which is the second representative of the tribe Dendroleontini. The G. jezoensis mitogenome contained the conserved set of 37 mitochondrial genes and a putative control region, with a conserved gene arrangement which was similar to that of most sequenced neuropteran mitogenomes. All transfer RNAs exhibited the canonical cloverleaf secondary structure, except for trnS(AGN). The control region contained two conserved elements (ploy-T stretch and ATGGTTCAAYAAAATAAYYCYCTC motif) and abundant microsatellite-like elements. The phylogenetic analysis of sequenced neuropteran mitogenomes using the concatenated protein-coding genes (PCGs) and ribosomal genes recovered the monophyly of Myrmeleontidae, which revealed this dataset could generate the more robust phylogeny of Neuroptera than that of 13 PCGs dataset.  相似文献   

15.
Black corals comprise a globally distributed shallow- and deep-water taxon whose phylogenetic position within the Anthozoa has been debated. We sequenced the complete mitochondrial genome of the antipatharian Chrysopathes formosa to further evaluate its phylogenetic relationships. The circular mitochondrial genome (18,398 bp) consists of 13 energy pathway protein-coding genes and two ribosomal RNAs, but only two transfer RNA genes (trnM and trnW), as well as a group I intron within the nad5 gene that contains the only copies of nad1 and nad3. No novel genes were found in the antipatharian mitochondrial genome. Gene order and genome content are most similar to those of the sea anemone Metridium senile (subclass Hexacorallia), with differences being the relative location of three contiguous genes (cox2-nad4-nad6) and absence (from the antipatharian) of a group I intron within the cox1 gene. Phylogenetic analyses of multiple protein-coding genes support classifying the Antipatharia within the subclass Hexacorallia and not the subclass Ceriantipatharia; however, the sister-taxon relationships of black corals within Hexacorallia remain inconclusive.  相似文献   

16.
The complete mitochondrial genome (mitogenome) of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae) was determined. The genome is a circular molecule 15 481 bp long. It presents a typical gene organization and order for completely sequenced lepidopteran mitogenomes, but differs from the insect ancestral type for the placement of tRNAMet. The nucleotide composition of the genome is also highly A + T biased, accounting for 80.38%, with a slightly positive AT skewness (0.010), indicating the occurrence of more As than Ts, as found in the Noctuoidea species. All protein-coding genes (PCGs) are initiated by ATN codons, except for COI, which is tentatively designated by the CGA codon as observed in other lepidopterans. Four of 13 PCGs harbor the incomplete termination codon, T or TA. All tRNAs have a typical clover-leaf structure of mitochondrial tRNAs, except for tRNASer(AGN), the DHU arm of which could not form a stable stem-loop structure. The intergenic spacer sequence between tRNASer(AGN) and ND1 also contains the ATACTAA motif, which is conserved across the Lepidoptera order. The H. cunea A+T-rich region of 357 bp is comprised of non-repetitive sequences, but harbors several features common to the Lepidoptera insects, including the motif ATAGA followed by an 18 bp poly-T stretch, a microsatellite-like (AT)8 element preceded by the ATTTA motif, an 11 bp poly-A present immediately upstream tRNAMet. The phylogenetic analyses support the view that the H. cunea is closerly related to the Lymantria dispar than Ochrogaster lunifer, and support the hypothesis that Noctuoidea (H. cunea, L. dispar, and O. lunifer) and Geometroidea (Phthonandria atrilineata) are monophyletic. However, in the phylogenetic trees based on mitogenome sequences among the lepidopteran superfamilies, Papillonoidea (Artogeia melete, Acraea issoria, and Coreana raphaelis) joined basally within the monophyly of Lepidoptera, which is different to the traditional classification.  相似文献   

17.
赵亚男  李朝品 《昆虫学报》2020,63(3):354-364
【目的】测定和分析甜果螨Carpoglyphus lactis线粒体基因组全序列,并在线粒体基因组水平探讨其在真螨总目(Acariformes)中的系统发育地位,为真螨总目分类及果螨科线粒体基因组研究提供科学依据。【方法】挑取实验室饲养的甜果螨成螨,用传统的酚氯仿抽提法和试剂盒提取法提取甜果螨基因组DNA。然后采用节肢动物或螨类线粒体基因的通用引物PCR扩增出甜果螨线粒体基因cox1,cob,rrnS和nad4-nad5的部分序列;再设计种特异性引物进行Long-PCR扩增和步移法测序,测出甜果螨线粒体基因组全序列。应用SeqMan, SEQUIN 9.0和tRNAscan等生物信息学软件,对甜果螨线粒体基因组的基因结构等进行生物信息学分析。最后基于17种真螨总目螨类的蛋白质编码基因,采用最大似然法构建系统发育树。【结果】甜果螨线粒体全基因组总长为14 060 bp(GenBank登录号:MN073839),为典型的闭合双链DNA分子,共由37个基因组成,包括13个蛋白质编码基因(PCGs)、22个tRNA基因和2个rRNA基因;甜果螨线粒体基因组还包括1个大的非编码区(large non-coding region, LNR)。系统发育分析结果显示,甜果螨Carpoglyphus lactis属于无气门亚目粉螨总科(Acaroidae),与椭圆食粉螨Aleuroglyphus ovatus构成一支。粉螨总科(Acaroidae)和薄口螨总科(Histiostomatoidae)聚成一簇,与痒螨股(Psoroptidia)构成姐妹群。【结论】本研究首次获得并分析了甜果螨线粒体基因组全序列。甜果螨与椭圆食粉螨的亲缘关系较近。  相似文献   

18.
The complete arrangement of genes in the mitochondrial (mt) genome is known for 12 species of insects, and part of the gene arrangement in the mt genome is known for over 300 other species of insects. The arrangement of genes in the mt genome is very conserved in insects studied, since all of the protein-coding and rRNA genes and most of the tRNA genes are arranged in the same way. We sequenced the entire mt genome of the wallaby louse, Heterodoxus macropus, which is 14,670 bp long and has the 37 genes typical of animals and some noncoding regions. The largest noncoding region is 73 bp long (93% A+T), and the second largest is 47 bp long (92% A+T). Both of these noncoding regions seem to be able to form stem-loop structures. The arrangement of genes in the mt genome of this louse is unlike that of any other animal studied. All tRNA genes have moved and/or inverted relative to the ancestral gene arrangement of insects, which is present in the fruit fly Drosophila yakuba. At least nine protein-coding genes (atp6, atp8, cox2, cob, nad1-nad3, nad5, and nad6) have moved; moreover, four of these genes (atp6, atp8, nad1, and nad3) have inverted. The large number of gene rearrangements in the mt genome of H. macropus is unprecedented for an arthropod.  相似文献   

19.
We report the complete mitochondrial DNA sequence of the spotted asparagus beetle, Crioceris duodecimpunctata. The genome complement, gene order, and nucleotide composition of this beetle's mitochondrial genome were found to be typical of those reported for other insects. Unusual features of this genome include the substitution of UCU for GCU as the anticodon for tRNA(Ser), an unusual TpsiC loop for the tRNA(Ile) gene, and the identification of a putative ATT start codon for cox1. The utility of complete mitochondrial genome data for phylogenetic inference of the insect orders was tested, and compared to that of cox1 and combined mitochondrial ribosomal DNA sequences. Even though the number of insect orders represented by complete mitochondrial genomes is still limited, several well-established relationships are evident in the phylogenetic analysis of the complete sequences. Monophyly of the orders Diptera, Lepidoptera, and Coleoptera were consistently recovered. Monophyly of the Holometabola was also observed in some (though not all) analyses. The accumulation of complete mitochondrial sequences from a broader array of insect orders holds the promise of clarifying the early diversification of insects.  相似文献   

20.
Cao YQ  Ma C  Chen JY  Yang DR 《BMC genomics》2012,13(1):276
ABSTRACT: BACKGROUND: Lepidoptera encompasses more than 160,000 described species that have been classified into 45-48 superfamilies. The previously determined Lepidoptera mitochondrial genomes (mitogenomes) are limited to six superfamilies of the most derived lepidopteran lineage Ditrysia. Compared with the ancestral insect gene order, these mitogenomes all contain a tRNA rearrangement. To gain new insights into Lepidoptera mitogenome evolution, we sequenced the mitogenomes of two ghost moths that belong to primitive lepidopteran lineages and conducted a comparative mitogenomic analysis across Lepidoptera. RESULTS: The mitogenomes of Thitarodes renzhiensis and T. yunnanensis are 16,173 bp and 15,814 bp long with an A+T content of 81.28% and 82.33%, respectively. Different tandem repeats in the A+T-rich region mainly account for the size difference between the two mitogenomes. Both mitogenomes include 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. The 1,584-bp sequence from rrnS to nad2 was also determined for Thitarodes sp.QL, which has no repetitive sequence in the A+T-rich region. All three Thitarodes species possess the ancestral gene order with trnI-trnQ-trnM located between the A+T-rich region and nad2, which is different from the gene order trnM-trnI-trnQ in all previously sequenced Lepidoptera species. The formerly identified conserved elements of Lepidoptera mitogenomes (i.e. the motif 'ATAGA' and poly-T stretch in the A+T-rich region and the long intergenic spacer upstream of nad2) are absent in the Thitarodes mitogenomes. The phylogenetic analysis supports that Hepialoidea, represented by T. renzhiensis and T. yunnanensis, occupies a basal position in the currently sampled seven superfamilies. The relationships of the other six superfamilies are (((((Bombycoidea + Geometroidea) + Noctuoidea) + Pyraloidea) + Papilionoidea) + Tortricoidea). CONCLUSION: The mitogenomes of T. renzhiensis and T. yunnanensis exhibit unusual features compared with the previously determined Lepidoptera mitogenomes. Their ancestral gene order indicates that the tRNA rearrangement event occurred after Lepidoptera diverged from other holometabolous insect orders. Phylogenetic analysis based on mitogenome sequences is a power tool for addressing phylogenetic relationships among major Lepidoptera superfamilies. Characterization of the two ghost moth mitogenomes has enriched our knowledge of Lepidoptera mitogenomes and contributed to our understanding of the mechanisms underlying mitogenome evolution, especially gene rearrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号