首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Reactive oxygen species (ROS) have been implicated as one of the agents responsible for many neurodegenerative diseases. A critical target for ROS is DNA. Most oxidative stress-induced DNA damage in the nucleus and mitochondria is removed by the base excision repair pathway. Apn1 is a yeast enzyme in this pathway which possesses a wider substrate specificity and greater enzyme activity than its mammalian counterpart for removing DNA damage, making it a good therapeutic candidate. For this study we targeted Apn1 to mitochondria in a neuronal cell line derived from the substantia nigra by using a mitochondrial targeting signal (MTS) in an effort to hasten the removal of DNA damage and thereby protect these cells. We found that following oxidative stress, mitochondrial DNA (mtDNA) was repaired more efficiently in cells containing Apn1 with the MTS than controls. There was no difference in nuclear repair. However, cells that expressed Apn1 without the MTS showed enhanced repair of both nuclear and mtDNA. Both Apn1-expressing cells were more resistant to cell death following oxidative stress compared with controls. Therefore, these results reveal that the expression of Apn1 in neurons may be of potential therapeutic benefit for treating patients with specific neurodegenerative diseases.  相似文献   

3.
Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is multifunctional enzyme. APEI is involved in the DNA base excision repair process (BER). APE1 participates in BER by cleaving the DNA adjacent to the 5' side of an AP site to produce a hydroxyl group at the 3' terminus of an unmodified nucleotide upstream of the nick and a 5' deoxyribose phosphate moiety downstream. In addition to its AP-endonucleolytic function, APE1 possesses 3' phosphodiesterase, 3'-5' exonuclease and 3' phosphatase activities. Independently of being characterized as DNA repair protein, APE1 was identified as redox-factor (Ref-1). Our own and literature data on the role of APE1 additional functions in cell metabolism and on interactions of APE1 with DNA and other proteins that participate in BER are analyzed in this review.  相似文献   

4.
Apurinic/apyrimidinic (AP) endonucleases are important DNA repair enzymes involved in two overlapping pathways: DNA glycosylase-initiated base excision (BER) and AP endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, AP endonucleases cleave DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in NIR, the same AP endonucleases incise DNA 5' to a wide variety of oxidized bases. The flowering plant Arabidopsis thaliana contains three genes encoding homologues of major human AP endonuclease 1 (APE1): Arp, Ape1L and Ape2. It has been shown that all three proteins contain AP site cleavage and 3'-repair phosphodiesterase activities; however, it was not known whether the plant AP endonucleases contain the NIR activity. Here, we report that ARP proteins from Arabidopsis and common wheat (Triticum aestivum) contain NIR and 3'  5' exonuclease activities in addition to their AP endonuclease and 3'-repair phosphodiesterase functions. The steady-state kinetic parameters of reactions indicate that Arabidopsis ARP cleaves oligonucleotide duplexes containing α-anomeric 2'-deoxyadenosine (αdA) and 5,6-dihydrouridine (DHU) with efficiencies (kcat/KM = 134 and 7.3 μM−1·min−1, respectively) comparable to those of the human counterpart. However, the ARP-catalyzed 3'-repair phosphodiesterase and 3'  5' exonuclease activities (kcat/KM = 314 and 34 μM−1·min−1, respectively) were about 10-fold less efficient as compared to those of APE1. Interestingly, homozygous A. thaliana arp–/– mutant exhibited high sensitivity to methyl methanesulfonate and tert-butyl hydroperoxide, but not to H2O2, suggesting that ARP is a major plant AP endonuclease that removes abasic sites and specific types of oxidative DNA base damage. Taken together, these data establish the presence of the NIR pathway in plants and suggest its possible role in the repair of DNA damage generated by oxidative stress.  相似文献   

5.
Although chemotherapy-induced peripheral neuropathy (CIPN) affects approximately 5–60% of cancer patients, there are currently no treatments available in part due to the fact that the underlying causes of CIPN are not well understood. One contributing factor in CIPN may be persistence of DNA lesions resulting from treatment with platinum-based agents such as cisplatin. In support of this hypothesis, overexpression of the base excision repair (BER) enzyme, apurinic/apyrimidinic endonuclease 1 (APE1), reduces DNA damage and protects cultured sensory neurons treated with cisplatin. Here, we address stimulation of APE1’s endonuclease through a small molecule, nicorandil, as a means of mimicking the beneficial effects observed for overexpression of APE1. Nicorandil, was identified through high-throughput screening of small molecule libraries and found to stimulate APE1 endonuclease activity by increasing catalytic efficiency approximately 2-fold. This stimulation is primarily due to an increase in kcat. To prevent metabolism of nicorandil, an approved drug in Europe for the treatment of angina, cultured sensory neurons were pretreated with nicorandil and daidzin, an aldehyde dehydrogenase 2 inhibitor, resulting in decreased DNA damage but not altered transmitter release by cisplatin. This finding suggests that activation of APE1 by nicorandil in cisplatin-treated cultured sensory neurons does not imbalance the BER pathway in contrast to overexpression of the kinetically faster R177A APE1. Taken together, our results suggest that APE1 activators can be used to reduce DNA damage induced by cisplatin in cultured sensory neurons, although further studies will be required to fully assess their protective effects.  相似文献   

6.
7.
Abstract

Mutations in mismatch repair (MMR) genes are commonly associated with the development of colorectal cancer. Additionally, base excision repair, which involves apurinic/apyrimidinic endonuclease 1 (APE1), recognizes and eliminates oxidative DNA damage. Here, we investigated the possible roles of APE1 in dextran sulfate sodium (DSS)-induced acute colitis using the young rat model. Four-week-old Sprague–Dawley rats were administered 2% DSS in drinking water for 1 week. MMR and APE1 expression levels were assessed by western blotting and immunohistochemistry. Following DSS treatment, growth of young rats failed and the animals had loose stools. Together with the histological changes associated with acute colitis, APE1 and MSH2 levels increased significantly at 3 and 5 days after DSS treatment, respectively. The difference between APE1 and MSH2 expression was significant. DSS-induced DNA damage and subsequent repair activity were evaluated by staining for 8-hydroxy-deoxyguanosine (8-OHdG) and APE1, respectively; 8-OHdG immunoreactivity increased throughout the colonic mucosa, while APE1 levels in the surface epithelium increased at an earlier timepoint. Taken together, our data suggest that changes in APE1 expression after DSS treatment occurred earlier and were more widespread than changes in MMR expression, suggesting that APE1 is more sensitive for prediction of DNA deterioration in DSS-induced colitis.  相似文献   

8.
The mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is an essential DNA repair/gene regulatory protein. Decrease of APE1 in cells by inducible shRNA knockdown or by conditional gene knockout caused apoptosis. Here we succeeded in establishing a unique mouse embryonic fibroblast (MEF) line expressing APE1 at a level far lower than those achieved with shRNA knockdown. The cells, named MEFla (MEFlowAPE1), were hypersensitive to methyl methanesulfonate (MMS), and showed little activity for repairing AP-sites and MMS induced DNA damage. While these results were consistent with the essential role of APE1 in repair of AP sites, the MEFla cells grew normally and the basal activation of poly(ADP-ribose) polymerases in MEFla was lower than that in the wild-type MEF (MEFwt), indicating the low DNA damage stress in MEFla under the normal growth condition. Oxidative phosphorylation activity in MEFla was lower than in MEFwt, while the glycolysis rates in MEFla were higher than in MEFwt. In addition, we observed decreased intracellular oxidative stress in MEFla. These results suggest that cells with low APE1 reversibly suppress mitochondrial respiration and thereby reduce DNA damage stress and increases the cell viability.  相似文献   

9.
Trypanosoma cruzi is under the attack of reactive species produced by its mammalian and insect hosts. To survive, it must repair its damaged DNA. We have shown that a base excision DNA repair (BER)-specific parasite TcAP1 endonuclease is involved in the resistance to H2O2. However, a putative TcAP1 negative dominant form impairing TcAP1 activity in vitro did not show any in vivo effect. Here, we show that a negative dominant form of the human APE1 apurinic/apyrimidinic (AP) endonuclease (hAPE1DN) induces a decrease in epimastigote and metacyclic trypomastigote viability when parasites were exposed to H2O2. Those results confirm that TcAP1 AP endonuclease activity plays an important role in epimastigote and in infective metacyclic trypomastigote oxidative DNA damage resistance leading to parasite persistence in the insect and mammalian hosts. All along its biological cycle and in its different cellular forms, T. cruzi, the etiological parasite agent of Chagas’ disease, is under the attack of reactive species produced by its mammalian and insect hosts. To survive, T. cruzi must repair their oxidative damaged DNA. We have previously shown that a specific parasite TcAP1 AP endonuclease of the BER is involved in the T. cruzi resistance to oxidative DNA damage. We have also demonstrated that epimastigotes and cell-derived trypomastigotes parasite forms expressing a putative TcAP1 negative dominant form (that impairs the TcAP1 activity in vitro), did not show any in vivo effect in parasite viability when exposed to oxidative stress. In this work, we show the expression of a negative dominant form of the human APE1 AP endonuclease fused to a green fluorescent protein (GFP; hAPE1DN-GFP) in T. cruzi epimastigotes. The fusion protein is found both in the nucleus and cytoplasm of noninfective epimastigotes but only in the nucleus in metacyclic and cell-derived trypomastigote infective forms. Contrarily to the TcAP1 negative dominant form, the ectopic expression of hAPE1DN-GFP induces a decrease in epimastigote and metacyclic trypomastigote viability when parasites were exposed to increasing H2O2 concentrations. No such effect was evident in expressing hAPE1DN-GFP cell-derived trypomastigotes. Although the viability of both wild-type infective trypomastigote forms diminishes when parasites are submitted to acute oxidative stress, the metacyclic forms are more resistant to H2O2 exposure than cell-derived trypomastigotes.Those results confirm that the BER pathway and particularly the AP endonuclease activity play an important role in epimastigote and metacyclic trypomastigote oxidative DNA damage resistance leading to parasite survival and persistence inside the mammalian and insect host cells.  相似文献   

10.
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) catalyzes the hydrolysis of the phosphodiester linkage between the DNA 3' phosphate and a tyrosine residue as well as a variety of other DNA 3' damaged termini. Recently we have shown that Tdp1 can liberate the 3' DNA phosphate termini from apurinic/apyrimidinic (AP) sites. Here, we found that Tdp1 is more active in the cleavage of the AP sites inside bubble-DNA structure in comparison to ssDNA containing AP site. Furthermore, Tdp1 hydrolyzes AP sites opposite to bulky fluorescein adduct faster than AP sites located in dsDNA. Whilst the Tdp1 H493R (SCAN1) and H263A mutants retain the ability to bind an AP site-containing DNA, both mutants do not reveal endonuclease activity, further suggesting the specificity of the AP cleavage activity. We suggest that this Tdp1 activity can contribute to the repair of AP sites particularly in DNA structures containing ssDNA region or AP sites in the context of clustered DNA lesions.  相似文献   

11.
Two distinct endonucleases from Saccharomyces cerevisiae, specific for apurinic/apyrimidinic sites (AP-endonucleases A and B), have been extensively purified and characterized. Both are free from unspecific and ultraviolet-specific endonucleases and exonucleases. The two enzymes are monomeric proteins of around 24 000 daltons. Both are sensitive to ionic strength and most active in the presence of 150 and 100 mM NaCl for AP-endonucleases A and B, respectively. They are not absolutely dependent on divalent cations, since they are insensitive to EDTA, although AP-endonuclease A is activated by Ca2+ or Mg2+ and AP-endonuclease B by Mg2+ only. ATP inhibits the enzymes. AP-endonuclease A reacts optimally between pH 6 and 8, and AP-endonuclease B at pH 8. AP-endonuclease A is more stable at 60°C (half-life of 17 min) than B (half-life of 4 min). AP-endonucleuase A is insensitive to N-ethylmaleimide or ρ-chloromercuribenzoate. AP-endonuclease B is also insensitive to N-ethylmaleimide, but ρ-chloromercuribenzoate inhibits its activity.  相似文献   

12.
Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG, or G°), thus reducing G:C to T:A mutations. The resulting apurinic/apyrimidinic (AP) site is processed by an AP-endonuclease or a bifunctional glycosylase/lyase. We show here that the major Schizosaccharomyces pombe AP endonuclease, Apn2, binds to the inter-domain connector located between the N- and C-terminal domains of Myh1. This Myh1 inter-domain connector also interacts with the Hus1 subunit of the Rad9–Rad1–Hus1 checkpoint clamp. Mutagenesis studies indicate that Apn2 and Hus1 bind overlapping but different sequence motifs on Myh1. Mutation on I261 of Myh1 reduces its interaction with Hus1, but only slightly attenuates its interaction with Apn2. However, E262 of Myh1 is a key determinant for both Apn2 and Hus1 interactions. Like human APE1, Apn2 has 3′-phosphodiesterase activity. However, unlike hAPE1, Apn2 has a weak AP endonuclease activity which cleaves the AP sites generated by Myh1 glycosylase. Functionally, Apn2 stimulates Myh1 glycosylase activity and Apn2 phosphodiesterase activity is stimulated by Myh1. The cross stimulation of Myh1 and Apn2 enzymatic activities is dependent on their physical interaction. Thus, Myh1 and Apn2 constitute an initial BER complex.  相似文献   

13.
R S Lloyd  M L Augustine 《Proteins》1989,6(2):128-138
Previous structure/function analyses of the DNA repair enzyme, T4 endonuclease V, have suggested that the extreme carboxyl portion of the enzyme is associated with pyrimidine dimer-specific binding (Recinos and Lloyd, and Stump and Lloyd, Biochemistry 27:1832-1838 and 1839-1843, 1988, respectively). Within the final 11 amino acids there are 5 aromatic, 2 basic, and no acidic residues and it has been proposed that these residues stack with and electrostatically interact with the kinked DNA at the site of a pyrimidine dimer. The role of the tyrosine residue at position 129 has been investigated by oligonucleotide site-directed mutagenesis in which the codon for Tyr-129 has been altered to reflect conservative changes of Trp and Phe and more dramatic changes of Ser, a stop codon, deletion of the codon or introduction of a frameshift. Both changes to the aromatic amino acids resulted in proteins which accumulated well in E. coli and not only significantly enhanced the UV survival of repair-deficient cells but also complemented a defective denV gene within UV-irradiated T4 phage. Partially purified preparations of the Tyr-129----Trp and Tyr-129----Phe mutants were assayed for their ability to processively incise UV-irradiated plasmid DNA (a nicking reaction carried out at low 25 mM salt concentrations). The mutant enzymes Tyr-129----Phe and Tyr-129----Trp displayed a 1000% and 500% enhanced specific nicking activity, respectively. These reactions were also shown to be completely processive. Assays performed at higher (100 mM) salt concentrations reduced the specific activities of the mutant enzymes approximately to that of wild type for the Tyr-129----Phe mutant and to 20% that of wild type for the Tyr-129----Trp mutant.  相似文献   

14.
We have recently identified apurinic/apyrimidinic endonuclease 1 (APE1) as an endoribonuclease that cleaves c-myc mRNA in vitro and regulates c-myc mRNA levels and half-life in cells. This study was undertaken to further unravel the RNA-cleaving properties of APE1. Here, we show that APE1 cleaves RNA in the absence of divalent metal ions and, at 2 mM, Zn2+, Ni2+, Cu2+, or Co2+ inhibited the endoribonuclease activity of APE1. APE1 is able to cleave CD44 mRNA, microRNAs (miR-21, miR-10b), and three RNA components of SARS-corona virus (orf1b, orf3, spike) suggesting that, when challenged, it can cleave any RNAs in vitro. APE1 does not cleave strong doublestranded regions of RNA and it has a strong preference for 3’ of pyrimidine, especially towards UA, CA, and UG sites at single-stranded or weakly paired regions. It also cleaves RNA weakly at UC, CU, AC, and AU sites in single-stranded or weakly paired regions. Finally, we found that APE1 can reduce the ability of the Dicer enzyme to process premiRNAs in vitro. Overall, this study has revealed some previously unknown biochemical properties of APE1 which has implications for its role in vivo.  相似文献   

15.
Repetitive DNA sequences, such as those present in microsatellites and minisatellites, telomeres, and trinucleotide repeats (linked to fragile X syndrome, Huntington disease, etc.), account for nearly 30% of the human genome. These domains exhibit enhanced susceptibility to oxidative attack to yield base modifications, strand breaks, and abasic sites; have a propensity to adopt non-canonical DNA forms modulated by the positions of the lesions; and, when not properly processed, can contribute to genome instability that underlies aging and disease development. Knowledge on the repair efficiencies of DNA damage within such repetitive sequences is therefore crucial for understanding the impact of such domains on genomic integrity. In the present study, using strategically designed oligonucleotide substrates, we determined the ability of human apurinic/apyrimidinic endonuclease 1 (APE1) to cleave at apurinic/apyrimidinic (AP) sites in a collection of tandem DNA repeat landscapes involving telomeric and CAG/CTG repeat sequences. Our studies reveal the differential influence of domain sequence, conformation, and AP site location/relative positioning on the efficiency of APE1 binding and strand incision. Intriguingly, our data demonstrate that APE1 endonuclease efficiency correlates with the thermodynamic stability of the DNA substrate. We discuss how these results have both predictive and mechanistic consequences for understanding the success and failure of repair protein activity associated with such oxidatively sensitive, conformationally plastic/dynamic repetitive DNA domains.  相似文献   

16.

Background

DNA glycosylases remove the modified, damaged or mismatched bases from the DNA by hydrolyzing the N-glycosidic bonds. Some enzymes can further catalyze the incision of a resulting abasic (apurinic/apyrimidinic, AP) site through β- or β,δ-elimination mechanisms. In most cases, the incision reaction of the AP-site is catalyzed by special enzymes called AP-endonucleases.

Methods

Here, we report the kinetic analysis of the mechanisms of modified DNA transfer from some DNA glycosylases to the AP endonuclease, APE1. The modified DNA contained the tetrahydrofurane residue (F), the analogue of the AP-site. DNA glycosylases AAG, OGG1, NEIL1, MBD4cat and UNG from different structural superfamilies were used.

Results

We found that all DNA glycosylases may utilise direct protein–protein interactions in the transient ternary complex for the transfer of the AP-containing DNA strand to APE1.

Conclusions

We hypothesize a fast “flip-flop” exchange mechanism of damaged and undamaged DNA strands within this complex for monofunctional DNA glycosylases like MBD4cat, AAG and UNG. Bifunctional DNA glycosylase NEIL1 creates tightly specific complex with DNA containing F-site thereby efficiently competing with APE1. Whereas APE1 fast displaces other bifunctional DNA glycosylase OGG1 on F-site thereby induces its shifts to undamaged DNA regions.

General significance

Kinetic analysis of the transfer of DNA between human DNA glycosylases and APE1 allows us to elucidate the critical step in the base excision repair pathway.  相似文献   

17.
18.
DNA damage leads to activation of several mechanisms such as DNA repair and cell-cycle checkpoints. It is evident that these different cellular mechanisms have to be finely co-ordinated. Growing evidence suggests that the Rad9/Rad1/Hus1 cell-cycle checkpoint complex (9-1-1 complex), which is recruited to DNA lesion upon DNA damage, plays a major role in DNA repair. This complex has been shown to interact with and stimulate several proteins involved in long-patch base excision repair. On the other hand, the well-characterised DNA clamp-proliferating cell nuclear antigen (PCNA) also interacts with and stimulates several of these factors. In this work, we compared the effects of the 9-1-1 complex and PCNA on flap endonuclease 1 (Fen1). Our data suggest that PCNA and the 9-1-1 complex can independently bind to and activate Fen1. Finally, acetylation of Fen1 by p300-HAT abolished the stimulatory effect of the 9-1-1 complex but not that of PCNA, suggesting a possible mechanism of regulation of this important repair pathway.  相似文献   

19.
Human 3-methyladenine-DNA glycosylase (MPG protein) is involved in the base excision repair (BER) pathway responsible mainly for the repair of small DNA base modifications. It initiates BER by recognizing DNA adducts and cleaving the glycosylic bond leaving an abasic site. Here, we explore several of the factors that could influence excision of adducts recognized by MPG, including sequence context, effect of APE1, and interaction with other proteins. To investigate sequence context, we used 13 different 25 bp oligodeoxyribonucleotides containing a unique hypoxanthine residue (Hx) and show that the steady-state specificity of Hx excision by MPG varied by 17-fold. If APE1 protein is used in the reaction for Hx removal by MPG, the steady-state kinetic parameters increase by between fivefold and 27-fold, depending on the oligodeoxyribonucleotide. Since MPG has a role in removing adducts such as 3-methyladenine that block DNA synthesis and there is a potential sequence for proliferating cell nuclear antigen (PCNA) interaction, we hypothesized that MPG protein could interact with PCNA, a protein involved in repair and replication. We demonstrate that PCNA associates with MPG using immunoprecipitation with either purified proteins or whole cell extracts. Moreover, PCNA binds to both APE1 and MPG at different sites, and loading PCNA onto a nicked, closed circular substrate with a unique Hx residue enhances MPG catalyzed excision. These data are consistent with an interaction that facilitates repair by MPG or APE1 by association with PCNA. Thus, PCNA could have a role in short-patch BER as well as in long-patch BER. Overall, the data reported here show how multiple factors contribute to the activity of MPG in cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号