首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of recombinant human hemopoietic growth factors on early and late human erythroid progenitors (BFU-e and CFU-e) were investigated in serum-free cultures. Recombinant human erythropoietin (rhEpo) induced the formation of not only human CFU-e-derived colonies but also human BFU-e-derived bursts. Recombinant human interleukin 3 (rhIL-3) alone did not induce the formation of human BFU-e-derived bursts and human CFU-e-derived colonies. In the presence of rhEpo, rhIL-3 dose dependently increased the number of bursts stimulated by rhEpo, although rhIL-3 did not have the augmentative effect on human CFU-e growth. On the other hand, rhIL-3 did not stimulate the formation of murine BFU-e-derived bursts, and murine IL-3 did not stimulate the formation of human BFU-e-derived bursts. The results indicated that the burst-promoting activity of IL-3 was species-specific between human and murine cells. Recombinant human GM-CSF (rhGM-CSF) or recombinant human G-CSF (rhG-CSF) failed to induce human burst formation and did not augment the effect of rhEpo on human burst formation. The results of the present study suggest that in vitro, IL-3 can stimulate BFU-e in collaboration with Epo, but GM-CSF and G-CSF do not stimulate BFU-e growth in the presence or absence of Epo.  相似文献   

2.
We have studied the effect of recombinant human Stem Cell Factor (SCF) on the growth of human peripheral blood, bone marrow, and cord blood progenitor cells in semisolid medium. While SCF alone had little colony-stimulating activity under fetal bovine serum (FBS)-deprived culture conditions, SCF synergized with erythropoietin (Epo), granulocyte/macrophage colony-stimulating factor (GM-CSF), and interleukin 3 (IL-3) to stimulate colony growth. Colony morphology was determined by the late-acting growth factor added along with SCF. Of all the combinations of growth factors, SCF plus IL-3 and Epo resulted in the largest number of mixed-cell colonies--a larger number than observed with IL-3 and Epo alone even in FBS-supplemented cultures. These results suggest that SCF is a growth factor that more specifically targets early progenitor cells (mixed-cell colony-forming cells) and has the capacity to synergize with a wide variety of other hematopoietic growth factors to cause the proliferation and differentiation of committed progenitor cells. Our studies indicate that SCF may be the earliest acting growth factor described to date.  相似文献   

3.
We examined the effects of IL-9 on human mast cell development from CD34(+) cord blood (CB) and peripheral blood cells in serum-deprived cultures. IL-9 apparently enhanced cell production under stimulation with stem cell factor (SCF) from CD34(+) CB cells. A great majority of the cultured cells grown with SCF + IL-9 became positive for tryptase at 4 wk. In methylcellulose cultures of CD34(+) CB cells, IL-9 increased both the number and size of mast cell colonies grown with SCF. Furthermore, SCF + IL-9 caused an exclusive expansion of mast cell colony-forming cells in a 2-wk liquid culture of CD34(+) CB cells, at a level markedly greater than for SCF alone. Clonal cell cultures and RT-PCR analysis showed that the targets of SCF + IL-9 were the CD34(+)CD38(+) CB cells rather than the CD34(+)CD38(-) CB cells. IL-9 neither augmented the SCF-dependent generation of progeny nor supported the survival of 6-wk-cultured mast cells. Moreover, there was no difference in the appearance of tryptase(+) cells and histamine content in the cultured cells between SCF and SCF + IL-9. The addition of IL-9 increased numbers of mast cell colonies grown with SCF from CD34(+) peripheral blood cells in children with or without asthma. It is of interest that mast cell progenitors of asthmatic patients responded to SCF + IL-9 to a greater extent than those of normal controls. Taken together, IL-9 appears to act as a potent enhancer for the SCF-dependent growth of mast cell progenitors in humans, particularly asthmatic patients.  相似文献   

4.
The purpose of this study was to analyze the effects of recombinant human interleukin 4 (IL-4) on the differentiation and proliferation in vitro of human granulocyte/macrophage (GM) and erythroid progenitors. IL-4 was added to either fetal bovine serum (FBS)-supplemented or to FBS-deprived cultures of unfractionated human marrow cells or marrow cells depleted of adherent and/or T cells. Paradoxical effects similar to those reported in the murine system were detected in these experiments. In FBS-supplemented cultures, IL-4, which had no effect on the growth or erythroid bursts (from burst-forming cells; BFU-E) detected in the presence of Epo alone, decreased by 46% the number of erythroid bursts detected in the presence of Epo and phytohemagglutinin-stimulated leukocyte-conditioned medium (PHA-LCM). In contrast, in FBS-deprived cultures, IL-4 increased by 30-700% the number of erythroid bursts in cultures containing Epo alone or containing Epo, IL-3, and GM-CSF. The stimulatory effect of IL-4 on erythroid burst growth under FBS-deprived conditions was particularly evident when adherent cells were removed. Under the conditions investigated, IL-4 had little effect on the growth of GM colonies. In FBS-deprived suspension cultures of nonadherent, T-cell-depleted marrow cells, IL-4 maintained both the number of BFU-E and CFU-GM for at least 8 days. In these cultures, IL-4 antagonized the capacity of IL-3 to increase the number of BFU-E but IL-4 and IL-3 acted together to maintain the number of CFU-GM. To determine if IL-4 acted directly or indirectly, its effects on the growth of factor-dependent subclones of the murine progenitor cell line 32D were analyzed. Three subclones were studied: the original IL-3-dependent clone 32D cl.3, the Epo-dependent erythroid clone 32D Epo-1, and the G-CSF-dependent myeloid clone 32D G-1. IL-4 alone failed to induce colony growth from these cell lines. However, IL-4 inhibited by 25% the number of colonies formed by 32D cl.3 in the presence of IL-3 while increasing by 25% and 25-50% the number of colonies formed by 32D Epo-1 and 32D G-1 in the presence of Epo or G-CSF, respectively. These results indicate that human IL-4, as its murine counterpart, is a multilineage growth factor with paradoxical effects which are mediated by the direct action of IL-4 on progenitor cells.  相似文献   

5.
Erythroid progenitors from normal human marrow were purified by a two-step immune panning method permitting both the enrichment of erythroid progenitors (plating efficiency up to 10%) and the separation of CFU-E from BFU-E. The purified erythroid progenitors were grown in serum-replaced conditions; in some experiments at an average of one cell per well. Human recombinant granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin 3 (IL3), erythroid potentiating activity (EPA), and human erythropoietin (Epo) either recombinant or homogenous native were tested for their effect on CFU-E growth. Epo was an absolute requirement for CFU-E growth and was sufficient to obtain colony formation at the unicellular level whereas GM-CSF and IL3 did not further increase the plating efficiency. EPA potentiated the effect of Epo on this progenitor only in experiments performed at unicellular level. Human recombinant GM-CSF, IL3, Interleukin 1 alpha (IL1 alpha), and Epo were subsequently tested for their ability to promote BFU-E growth. GM-CSF and IL3 supported the growth of erythroid bursts in the presence of Epo, even at the unicellular level. However, IL3 promoted a higher number of bursts than GM-CSF under all conditions tested. These two growth factors have no or very small additive effects when tested in combination. IL1 alpha added to Epo alone had no effect on the growth of BFU-E whereas it potentiated the combined action of IL3 and GM-CSF on the primitive BFU-E. In conclusion, this study confirms at the unicellular level and under serum-free conditions that erythroid progenitors are regulated by multipotential growth factors in early phases of erythropoiesis and become sensitive only to Epo in later phases of differentiation.  相似文献   

6.
7.
We have analyzed the effect of stem cell factor (SCF), alone or in combination with other growth factors, on the generation of colony-forming cells (CFC) and on the expansion of hematopoiesisin vitro from light density, soybean agglutinin, CD34+ cord blood cells under serum-deprived conditions. The growth factors were either added only once at the onset of the culture or added every few days when the cultures were demidepopulated and refed with fresh medium. No growth factor, alone, generated CFC or expanded hematopoiesis under these conditions. However, SCF, in combination with interleukin 3 (IL-3) or with late-acting factors (granulocyte colony-stimulating factor (G-CSF) or erythropoietin (Epo)), generated large numbers of mature cells as well as CFC. The number of CFC generated depended on the refeeding procedure adopted. In cultures never refed, the CFC numbers increased from > 160 CFC/culture at day 0 to > 3000 CFC at day 10. The CFC numbers stayed above the input levels for 25 days before declining. Almost no CFC were detectable after one month. In contrast, in cultures regularly refed, CFC were detectable for at least 40 days. The lineages of the mature cells and the types of CFC generated varied with the different growth factors. In the presence of SCF plus IL-3, erythroid burst-forming cells (BFU-E) and granulocyte/macrophage colony-forming cells (GM-CFC) were generated and erythroid as well as myelomonocytic precursors were present among the differentiated cells. In contrast, in the presence of SCF and G-CSF or Epo, the progenitor cells as well as the differentiated cells were dictated by the late-acting growth factor (i.e. mostly G-CFC and myeloid cells in the presence of SCF and G-CSF vs. BFU-E, erythroid colony-forming cells (CFU-E) and erythroblasts in the presence of SCF and Epo). Thus, marked expansion of erythropoiesis and granulopoiesis can be achievedin vitro by as few as two factors — SCF acting as the early factor along with the appropriate late-acting factor.Paper presented in part at the World Congress on Cell Cultures, Washington D.C., 21–24 June 1992.  相似文献   

8.
Erythropoiesis requires the stepwise action on immature progenitors of several growth factors, including stem cell factor (SCF), interleukin 3 (IL-3), and erythropoietin (Epo). Epo is required to sustain proliferation and survival of committed progenitors and might further modulate the level of expression of several erythroid genes, including globin genes. Here we report a new SCF-dependent immortalized mouse progenitor cell line (GATA-1 ts SCF) that can also grow in either Epo or IL-3 as the sole growth factor. When grown in SCF, these cells show an "open" chromatin structure of the beta-globin LCR, but do not significantly express globin. However, Epo or IL-3 induce globin expression and are required for its maintainance. This effect of IL-3 is unexpected as IL-3 was previously reported either to be unable to induce hemoglobinization, or even to antagonize it. This suggests that GATA-1 ts SCF cells may have progressed to a stage in which globin genes are already poised for expression and only require signal(s) that can be elicited by either Epo or IL-3. Through the use of inhibitors, we suggest that p38 may be one of the molecules modulating induction and maintenance of globin expression.  相似文献   

9.
10.
The molecular mechanism of erythroid differentiation has been still ill-defined. In this study, we introduced a human interleukin-2 receptor (IL-2R) beta chain cDNA into ELM-I-1 cells which differentiated into hemoglobin-positive cells in the presence of erythropoietin (Epo), and established the transformant which expressed IL-2R beta chain. In this transformant, we revealed that IL-2 induced erythroid differentiation and the same pattern of tyrosine phosphorylation as Epo. These data suggest that tyrosine phosphorylation is involved in signal transduction pathway of erythroid differentiation. It is also implicated that the Epo and IL-2 receptor system share a common signal transduction pathway.  相似文献   

11.
The role of immunocompetent cells in hemopoiesis remains controversial. We used an autologous system in which activated peripheral blood mononuclear cells (LAK) and interleukin-2 (IL-2) are administered to patients with cancer. We found little change in the numbers of circulating erythroid progenitors. Cocultures of these progenitors with LAK or supernatants lead to a decrease in the numbers of detectable burst forming units-erythroid (BFU-E) in culture. However, using an assay for burst promoting activity (BPA) we noted production of this hemopoietin by these LAK cells. We could not detect circulating levels of gamma interferon (IF). Variable levels were found in the LAK supernatants. We could not detect circulating eosinophil progenitors (CFU-Eo), but we did find evidence of production of a colony stimulating factor (CSF), which gave rise to a high number of eosinophil colonies in cultures of bone marrow. These results suggest that administration of LAK/IL-2 has potent effects on hemopoiesis and that these effects may emphasize the anemia and eosinophilia seen in patients receiving this therapy.  相似文献   

12.
13.
A diploid fibroblastoid cell strain, termed "ST-1," has been established from a long-term liquid culture of human fetal liver cells. ST-1 cells are nonphagocytic, nonspecific esterase negative and do not possess factor VIII-related antigen but stain with antibodies specific for fibronectin and type I collagen. The ST-1 cells produce nondialyzable hemopoietic growth factors capable of stimulating the development of erythroid bursts, mixed granulocyte-macrophage colonies, pure granulocyte colonies, and pure macrophage colonies. These factors are active on both human fetal liver and human adult bone marrow progenitors. When liquid cultures of human fetal liver hemopoietic progenitors are established with a preformed monolayer of ST-1 cells, the yields of nonadherent cells, erythroid progenitors, and myeloid progenitors are greatly increased. These studies demonstrate that the fibroblastoid ST-1 cells support hemopoiesis in vitro and may be a critical element in the stromal microenviroment in vivo.  相似文献   

14.
Background aimsExpansion of hematopoietic progenitors ex vivo is currently investigated as a means of reducing cytopenia following stem cell transplantation. The principal objective of this study was to develop a new cytokine cocktail that would maximize the expansion of megakaryocyte (Mk) progenitors that could be used to reduce periods of thrombocytopenia.MethodsWe measured the individual and synergistic effects of six cytokines [stem cell factor (SCF), FLT-3 ligand (FL), interleukin (IL)-3, IL-6, IL-9 and IL-11] commonly used to expand cord blood (CB) CD34+ cells on the expansion of CB Mk progenitors and major myeloid populations by factorial design.ResultsThese results revealed an elaborate array of cytokine individual effects complemented by a large number of synergistic and antagonistic interaction effects. Notably, strong interactions with SCF were observed with most cytokines and its concentration level was the most influential factor for the expansion and differentiation kinetics of CB CD34+ cells. A response surface methodology was then applied to optimize the concentrations of the selected cytokines. The newly developed cocktail composed of SCF, thrombopoietin (TPO) and FL increased the expansion of Mk progenitors and maintained efficient expansion of clonogenic progenitors and CD34+ cells. CB cells expanded with the new cocktail were shown to provide good short- and long-term human platelet recovery and lymphomyeloid reconstitution in NOD/SCID mice.ConclusionsCollectively, these results define a complex cytokine network that regulates the growth and differentiation of immature and committed hematopoietic cells in culture, and confirm that cytokine interactions have major influences on the fate of hematopoietic cells.  相似文献   

15.
The growth factor combination containing early acting cytokines FLT-3 ligand (FL), Stem Cell Factor (SCF) and thrombopoietin (TPO) is able to maintain, for an extended culture period, early stem cells, defined as long-term repopulating NOD/SCID mice (Scid Repopulating Cell-SRC) contained in cord blood (CB). In this culture system, the role of IL-6 and IL-3 has not been clearly established. Using a combination of FL+TPO+SCF with or without IL-6, we were able to form CB CD34+ cells for 30 weeks. The CB CD34+ cells cultured in this system engrafted NOD/SCID mice after 6 weeks of culture; the cells from primary recipients were also able to engraft secondary NOD/SCID mice. When CB CD34+ cells were cultured in the presence of IL-3 in the place of IL-6 we observed an even better expansion of cells and a similar clonogenic progenitor output in the first 8 weeks of culture. However, more primitive LTC-IC output increased up to week 6 with the growth factor combination containing IL-3 and then decreased and disappeared, while with the growth factor combination with or without IL-6 increased up to week 23. Cells cultured for 4 weeks with the 4-factor combination containing IL-3 engrafted NOD/SCID mice less efficiently. Repopulation of NOD/SCID mice was no longer observed when ex vivo expansion was performed for 6 weeks. This study provides some evidence that no differences could be detected in long-term maintenance and even expansion of human primitive cord blood cells cultured with FL+TPO+SCF in the presence or absence of IL-6. Under the culture conditions employed in this study, the presence of IL-3 reduced the repopulating potential of expanded CB CD34+ cells.  相似文献   

16.
Human pluripotential stem cells (PSC) are currently the target for transplantation attempts and genetic manipulation. We have therefore investigated the frequency and the expansion potential of PSC’s in different types of blood samples. CD 34+ cells were thus obtained from human bone marrow (BM), as well as from peripheral blood (PB) and cord blood (CB) samples. After immuno-magnetic separation the highest yields of CD 34+ cells were from BM (1.08–2.25%) and CB (0.42–1.32%) while PB samples gave much lower values. Suspension cultures of PSC’s from the three sources were then set up, in the presence of combinations of haemopoietic growth factors. A remarkable amplification of the nucleated cell pool was observed reaching a maximum between 10 and 15 days of culture; earliest and maximum expansion (up to 220-fold) was achieved when Erythropoietin (Epo) was added to the culture medium, but this resulted in reduction of colony-forming cells and differentiation into erythroid progenitors. Clonogenic tests for BFU-E’s derived colonies showed a peak value at 5 days of liquid culture. Further studies are advisable to establish the best cytokine combination for a valuableex vivo expansion, coupled with preservation of stem cell properties.  相似文献   

17.
The signal transduction system of erythropoietin (Epo) and the accompanying molecular control mechanism of proliferation and differentiation of erythroid progenitors remains largely unknown. In this study, the effect of Epo on the expression of nuclear oncogenes was investigated in two murine cell lines which respond to the hormone in different ways: ELM-I-1 cells proliferate independently of Epo, but differentiate in response to the hormone, while the growth of DA-1ER cells is absolutely dependent on Epo or interleukin (IL) 3. The cell lines were stimulated with Epo or IL-3, and total RNA was extracted. Then expression of nuclear proto-oncogenes (c-myc, c-fos and c-myb) was analyzed by northern blotting. The change in c-fos expression observed during the first two h following stimulation with either stimulant were common to both cell lines; a rapid and temporary increment. Before stimulation, c-myc and c-myb were strongly expressed in both lines. No apparent change in c-myc expression was observed during the first two h of stimulation, while c-myb expression in ELM-I-1 cells was slightly reduced 1 h after stimulation with Epo but not with IL-3. Three days after stimulation with Epo, but not with IL-3, only ELM-I-1 produced hemoglobin and expressed a lower amount of c-myb mRNA. These data suggest the importance of c-fos in the early signaling system of Epo, and the involvement of c-myb in erythroid differentiation but not in proliferation.  相似文献   

18.
We generated transgenic mice expressing chimeric receptors, which comprise extracellular domains of the human granulocyte-macrophage colony-stimulating factor (hGM-CSF) receptor and transmembrane and cytoplasmic domains of the mouse leukemia inhibitory factor receptor. In suspension cultures of lineage-negative (Lin(-)), 5-fluorouracil-resistant bone marrow cells of the transgenic mice, a combination of hGM-CSF and stem cell factor (SCF) induced exponential expansions of mixed colony-forming unit. The combination of hGM-CSF and SCF was effective on enriched, Lin(-)Sca-1(+)c-kit(+) progenitors and increased either mixed colony-forming unit or cobblestone area-forming cells. In case of stimulation with hGM-CSF and SCF, interleukin-6 (IL-6) and SCF, or IL-11 and SCF, the most efficient expansion was achieved with hGM-CSF and SCF. When Lin(-)Sca-1(+)c-kit(+)CD34(-) further enriched progenitors were clone sorted and individually incubated in the presence of SCF, hGM-CSF stimulated a larger number of cells than did IL-6, IL-6 and soluble IL-6 receptor (IL-6R), or IL-11. These data suggest the presence of IL-6Ralpha-, IL-11Ralpha-, and gp130-low to -negative primitive hematopoietic progenitors. Such primitive progenitors are equipped with signal transduction molecules and can expand when these chimeric receptors are genetically introduced into the cells and stimulated with hGM-CSF in the presence of SCF.  相似文献   

19.
20.
The availability of Erythropoietin (Epo) is essential for the survival of erythroid progenitors. Here we study the effects of Epo removal on primary human erythroblasts grown from peripheral blood CD34(+) cells. The erythroblasts died rapidly from apoptosis, even in the presence of SCF, and within 24 hours of Epo withdrawal 60% of the cells were Annexin V positive. Other classical hallmarks of apoptosis were also observed, including cytochrome c release into the cytosol, loss of mitochondrial membrane potential, Bax translocation to the mitochondria and caspase activation. We adopted a 2D DIGE approach to compare the proteomes of erythroblasts maintained for 12 hours in the presence or absence of Epo. Proteomic comparisons demonstrated significant and reproducible alterations in the abundance of proteins between the two growth conditions, with 18 and 31 proteins exhibiting altered abundance in presence or absence of Epo, respectively. We observed that Epo withdrawal induced the proteolysis of the multi-functional proteins Hsp90 alpha, Hsp90 beta, SET, 14-3-3 beta, 14-3-3 gamma, 14-3-3 epsilon, and RPSA, thereby targeting multiple signaling pathways and cellular processes simultaneously. We also observed that 14 proteins were differentially phosphorylated and confirmed the phosphorylation of the Hsp90 alpha and Hsp90 beta proteolytic fragments in apoptotic cells using Nano LC mass spectrometry. Our analysis of the global changes occurring in the proteome of primary human erythroblasts in response to Epo removal has increased the repertoire of proteins affected by Epo withdrawal and identified proteins whose aberrant regulation may contribute to ineffective erythropoiesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号