首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inactivation of pgsA, which is responsible for biosynthesis of anionic phospholipid phosphatidyl-glycerol (PG), was shown to affect biosynthesis and secretion of alkaline phosphatase (PhoA) in Escherichia coli. A decrease in PG, but not in total anionic phospholipids, correlated with reduction of PhoA secretion, suggesting the role of PG in this process. A dramatic decrease in PG (from 18 to 3, but not 8, percent of the total phospholipids) inhibited not only secretion, but also synthesis of PhoA. In addition, pgsA inactivation expedited repression of PhoA synthesis by exogenous orthophosphate.  相似文献   

2.
The secretion of alkaline phosphatase (PhoA) and peculiarities of biogenesis of the cell envelope were studied in Escherichia coli strains HD30/pHD 102 and HDL11 with controlled synthesis of anionic phospholipids, phosphatidylglycerol, and cardiolipin. Inactivation of the pgsA gene encoding the synthesis of anionic phospholipids or changes in the regulation of its expression by an environmental factor caused changes in the metabolism and composition of membrane phospholipids, which resulted in a decrease in the secretion of alkaline phosphatase through the cytoplasmic membrane and an increase in PhoA secretion from the periplasm into the culture medium. A conforming increase was observed in exopolysaccharide secretion, as well as a decrease in the contents of lipopolysaccharide and lipopolyprotein of the outer membrane that determine the membrane barrier properties. The results obtained testify that anionic phospholipids play a significant role in protein secretion and are probably involved in the interrelation between the protein secretion and biogenesis of cell envelope components.  相似文献   

3.
Phosphatidylglycerol (PG) is considered to play an important role in the ordered assembly and structural maintenance of the photosynthetic apparatus in thylakoid membranes. However, its function in photosynthesis remains poorly understood. In this study we have identified a pgsA gene of Synechocystis sp. PCC6803 that encodes a PG phosphate synthase involved in the biosynthesis of PG. A disruption of the pgsA gene allowed us to manipulate the content of PG in thylakoid membranes and to investigate the function of PG in photosynthesis. The obtained pgsA mutant could grow only in the medium containing PG, and the photosynthetic activity of the pgsA mutant dramatically decreased with a concomitant decrease of PG content in thylakoid membranes when the cells grown in the presence of PG were transferred to the medium without PG. This decrease of photosynthetic activity was attributed to the decrease of photosystem (PS)II activity, but not to the decrease in PSI activity. These findings demonstrate that PG is essential for growth of Synechocystis sp. PCC6803 and provide the first direct evidence that PG plays an important role in PSII.  相似文献   

4.
The secretion of alkaline phosphatase (PhoA) and peculiarities of biogenesis of the cell envelope were studied in Escherichia coli strains HD30/pHD102 and HDL11 with controlled synthesis of the anionic phospholipids, phosphatidylglycerol and cardiolipin. Inactivation of the pgsA gene responsible for the synthesis of anionic phospholipids or changes in the regulation of its expression by an environmental factor caused changes in the metabolism and composition of membrane phospholipids, which resulted in a decrease in the secretion of alkaline phosphatase through the cytoplasmic membrane and an increase in PhoA secretion from the periplasm into the culture medium. An increase was observed in exopolysaccharide secretion, as well as a decrease in the contents of the outer membrane lipopolysaccharides and lipopolyproteins, which determine its barrier properties. The results obtained show that anionic phospholipids play a significant role in protein secretion and are probably involved in the interrelation between protein secretion and biogenesis of cell envelope components.__________Translated from Mikrobiologiya, Vol. 74, No. 2, 2005, pp. 179–184.Original Russian Text Copyright © 2005 by Anisimova, Badyakina, Vasileva, Nesmeyanova.  相似文献   

5.
The major anionic phospholipids of Escherichia coli, phosphatidylglycerol (PG) and cardiolipin (CL), have been considered to be indispensable for essential cellular functions, such as the initiation of DNA replication and translocation of proteins across the cytoplasmic membrane. However, we successfully constructed a null pgsA mutant of E. coli that had undetectable levels of PG and CL if the major outer membrane lipoprotein was deficient, clearly indicating that these anionic phospholipids are not indispensable. In the null mutant, we observed the accumulation of phosphatidic acid, an acidic biosynthetic precursor. This suggests a functionally substitutable nature of these anionic phospholipids and allows us to formulate a dual role model for the physiological roles of the anionic phospholipids in E. coli. The anionic phospholipids may play dual roles in E. coli as (i) substrates for head group-specific enzyme reactions, albeit the viability of null PG mutants indicates that the products of head group-specific reactions are not essential; and (ii) those that are replaceable, partly or entirely, by other phospholipids bearing net negative charges, because of their rather loose head group specificity. These two aspects of the physiological roles of anionic phospholipids are discussed with special reference to the phospholipids of other bacteria and eukaryotic organelles.  相似文献   

6.
Secretion of alkaline phosphatase (PhoA) encoded by a gene constituent of plasmids has been studied in Escherichia coli strains with controlled synthesis of anionic phospholipids (phosphatidylglycerol and cardiolipin, strain HDL11) and zwitterionic phospholipid (phosphatidylethanolamine, strain AD93). Changing the phospholipid composition of the membrane of these strains leads to an increase in secretion of PhoA, which is usually localized in the periplasm, into the culture medium. This correlates with a higher secretion of exopolysaccharides and lower content of lipopolysaccharide in the outer membrane. The results show the possibility of coupling protein secretion into the medium with biogenesis of cell envelope components in which phospholipids are involved.  相似文献   

7.
Trimethylamine N-oxide reductase (TorA) is an anaerobically synthesized molybdoenzyme. It is translocated across the cytoplasmic membrane in a folded conformation via the Tat pathway of Escherichia coli. The requirement for phospholipids for the export of this enzyme was analyzed in the pgsA and pss mutants lacking anionic phospholipids and phosphatidylethanolamine, respectively. Anaerobic growth did not influence phospholipid composition of the pgsA and pss mutants. Interestingly, both pgsA and pss mutations severely retarded the translocation of TorA into the periplasm. Therefore, translocation of proteins through the Tat pathway is dependent on the anionic phospholipids and on lipid polymorphism.  相似文献   

8.
Our previous studies with the pgsA mutant of the cyanobacterium Synechocystis sp. PCC6803 (hereafter termed pgsA mutant), which is defective for the biosynthesis of phosphatidylglycerol (PG), revealed an important role for PG in the electron acceptor side of photosystem II (PSII), especially in the electron transport between plastoquinones Q(A) and Q(B). This study now shows that PG also plays an important role in the electron donor side of PSII, namely, the oxygen-evolving system. Analyses of purified PSII complexes indicated that PSII from PG-depleted pgsA mutant cells sustained only approximately 50% of the oxygen-evolving activity compared to wild-type cells. Dissociation of the extrinsic proteins PsbO, PsbV, and PsbU, which are required for stabilization of the manganese (Mn) cluster, followed by the release of a Mn atom, was observed in PSII of the PG-depleted mutant cells. The released PsbO rebound to PSII when PG was added back to the PG-depleted mutant cells, even when de novo protein synthesis was inhibited. Changes in photosynthetic activity of the PG-depleted pgsA mutant cells induced by heat treatment or dark incubation resembled those of DeltapsbO, DeltapsbV, and DeltapsbU mutant cells. These results suggest that PG plays an important role in binding extrinsic proteins required for sustaining a functional Mn cluster on the donor side of PSII.  相似文献   

9.
Our earlier studies with the pgsA mutant of Synechocystis PCC6803 demonstrated the important role of phosphatidylglycerol (PG) in PSII dimer formation and in electron transport between the primary and secondary electron-accepting plastoquinones of PSII. Using a long-term depletion of PG from pgsA mutant cells, we could induce a decrease not only in PSII but also in PSI activity. Simultaneously with the decrease in PSI activity, dramatic structural changes of the PSI complex were detected. A 21-d PG depletion resulted in the degradation of PSI trimers and concomitant accumulation of monomer PSI. The analyses of PSI particles isolated by MonoQ chromatography showed that, following the 21-d depletion, PSI trimers were no longer detectable in the thylakoid membranes. Immunoblot analyses revealed that the PSI monomers accumulating in the PG-depleted mutant cells do not contain PsaL, the protein subunit thought to be responsible for the trimer formation. Nevertheless, the trimeric structure of PSI reaction center could be restored by readdition of PG, even in the presence of the protein synthesis inhibitor lincomycin, indicating that free PsaL was present in thylakoid membranes following the 21-d PG depletion. Our data suggest an indispensable role for PG in the PsaL-mediated assembly of the PSI reaction center.  相似文献   

10.
In order to determine if the major acidic phospholipids of Escherichia coli are essential to the organism, we constructed a null allele (pgsA30) of the pgsA gene thus rendering the organism incapable of synthesizing phosphatidylglycerol or cardiolipin. In strains carrying the pgsA30 allele cell viability, synthesis of gene product and the ability to synthesize the two major acidic phospholipids were dependent on the presence of a functional copy of the pgsA gene carried on a plasmid which was temperature-sensitive for replication. Growth ceased at the temperature restrictive for plasmid replication when the acidic phospholipid content dropped to about 10% of wild type levels which is slightly higher than the level reported in cells carrying the pgsA3 allele in a genetic background derived from strain SD12; the latter cells, which are capable of synthesizing low levels of acidic phospholipids, were previously shown to have no abnormal growth phenotype (Miyazaki, C., Kuroda, M., Ohta, A., and Shibuya, I. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 7530-7534). The pgsA30 allele, unlike the pgsA3 allele, could not support growth in strain SD12. Neither allele could support growth in two other independently derived strains of E. coli. Therefore, there is a direct dependence of cell viability on a functional pgsA gene product. Strain SD12 appears to contain a suppressor which allows cells with a reduced capability to synthesize acidic phospholipid (pgsA3 allele) to grow, but cannot support growth in cells with a complete lack of synthetic capability (pgsA30 allele).  相似文献   

11.
Secretion of periplasmic alkaline phosphatase (PhoA) encoded by the gene constituent of plasmids and the peculiar properties of cell envelope biogenesis in Escherichia coli strains with controlled synthesis of individual membrane phospholipids have been studied. Alkaline phosphatase secretion across the cytoplasmic membrane declines, while secretion into the culture medium intensifies under changed metabolism. The composition of anionic membrane phospholipids changes due to inactivation of the pgsA gene or regulation of its expression by environmental factor, as well as in the absence of the pssA gene which is responsible for the synthesis of the precursor for zwitter-ionic phospholipid — phosphatidylethanolamine. This correlates with intensified secretion of exopolysaccharides and lower content of lipopolysaccharide and lipoprotein which are responsible for barrier properties of the outer membrane. The results suggest a possible coupling of protein secretion with biogenesis of cell envelope components at a level of phospholipid metabolism.  相似文献   

12.
Phosphatidylglycerol (PG) is a ubiquitous component of thylakoid membranes. Experiments with the pgsA mutant of the cyanobacterium Synechocystis sp. PCC6803 defective in biosynthesis of PG have demonstrated an indispensable role of PG in photosynthesis. In the present study, we have investigated the light susceptibility of the pgsA mutant with regard to the maintenance of the photosynthetic machinery. Growth of the mutant cells without PG increased the light susceptibility of the cells and resulted in severe photoinhibition of photosynthesis upon a high-light treatment, whereas the growth in the presence of PG was protected against photoinhibition. Photoinhibition induced by PG deprivation was mainly caused by an impairment of the restoration process. The primary target of the light-induced damage in thylakoid membranes, the D1 protein of photosystem (PS) II was, however, synthesized and degraded with similar rates irrespective of whether the mutant cells were incubated with PG or not. Intriguingly, it was found that instead of the synthesis of the D1 protein, the dimerization of the PSII core monomers was impaired in the PG-deprived mutant cells. Addition of PG to photoinhibited cells restored the dimerization capacity of PSII core monomers. These results suggest that PG plays an important role in the maintenance of the photosynthetic machinery through the dimerization and reactivation of the PSII core complex.  相似文献   

13.
The membrane phospholipids of bacteriophage PR4 grown on wild-type Escherichia coli are markedly enriched in phosphatidylglycerol (PG) relative to host phospholipids. To investigate the role of PG in phage assembly and infectivity, we propagated PR4 on an E. coli mutant defective in PG synthesis. The PG content of PR4 grown on the mutant host accounted for 0.4% of the total viral phospholipids, representing a 90-fold decrease in PG relative to the PG content of phage grown on a wild-type host. Phosphatidylethanolamine and phosphatidic acid, the two major phospholipid species present in these phage preparations, accounted for 88.4 and 9.4% of the total viral phospholipids, respectively. This drastic alteration of the phage phospholipid composition had little or no adverse effect on either the stability or infectivity of the phage. We conclude that the enrichment of the PR4 virion in PG does not reflect an absolute structural requirement of the phage and is not essential for phage infectivity.  相似文献   

14.
Phosphatidylglycerol (PG), a ubiquitous constituent of thylakoid membranes of chloroplasts and cyanobacteria, is demonstrated to be essential for the functionality of plastoquinone electron acceptor Q(B) in the photosystem II reaction center of oxygenic photosynthesis. Growth of the pgsA mutant cells of Synechocystis sp. PCC6803 that are defective in phosphatidylglycerolphosphate synthase and are incapable of synthesizing PG, in a medium without PG, resulted in a 90% decrease in PG content and a 50% loss of photosynthetic oxygen-evolving activity as reported [Hagio, M., Gombos, Z., Várkonyi, Z., Masamoto, K., Sato, N., Tsuzuki, M., and Wada, H. (2000) Plant Physiol. 124, 795-804]. We have studied each step of the electron transport in photosystem II of the pgsA mutant to clarify the functional site of PG. Accumulation of Q(A)(-) was indicated by the fast rise of chlorophyll fluorescence yield under continuous and flash illumination. Oxidation of Q(A)(-) by Q(B) plastoquinone was shown to become slow, and Q(A)(-) reoxidation required a few seconds when measured by double flash fluorescence measurements. Thermoluminescence measurements further indicated the accumulation of the S(2)Q(A)(-) state but not of the S(2)Q(B)(-) state following the PG deprivation. These results suggest that the function of Q(B) plastoquinone was inactivated by the PG deprivation. We assume that PG is an indispensable component of the photosystem II reaction center complex to maintain the structural integrity of the Q(B)-binding site. These findings provide the first clear identification of a specific functional site of PG in the photosynthetic reaction center.  相似文献   

15.
Phosphatidylglycerol, the most abundant acidic phospholipid in Escherichia coli, has been considered to play specific roles in various cellular processes and is believed to be essential for cell viability. It is functionally replaced in some cases by cardiolipin, another abundant acidic phospholipid derived from phosphatidylglycerol. However, we now show that a null pgsA mutant is viable, if the major outer membrane lipoprotein is deficient. The pgsA gene normally encodes phosphatidylglycerophosphate synthase that catalyzes the committed step in the biosynthesis of these acidic phospholipids. In the mutant, the activity of this enzyme and both phosphatidylglycerol and cardiolipin were not detected (less than 0.01% of total phospholipid, both below the detection limit), although phosphatidic acid, an acidic biosynthetic precursor, accumulated (4.0%). Nonetheless, the null mutant grew almost normally in rich media. In low-osmolarity media and minimal media, however, it could not grow. It did not grow at temperatures over 40 degrees C, explaining the previous inability to construct a null pgsA mutant (W. Xia and W. Dowhan, Proc. Natl. Acad. Sci. USA 92:783-787, 1995). Phosphatidylglycerol and cardiolipin are therefore nonessential for cell viability or basic life functions. This notion allows us to formulate a working model that defines the physiological functions of acidic phospholipids in E. coli and explains the suppressing effect of lipoprotein deficiency.  相似文献   

16.
The lethal effect of an Escherichia coli pgsA null mutation, which causes a complete lack of the major acidic phospholipids, phosphatidylglycerol and cardiolipin, is alleviated by a lack of the major outer membrane lipoprotein encoded by the lpp gene, but an lpp pgsA strain shows a thermosensitive growth defect. Using transposon mutagenesis, we found that this thermosensitivity was suppressed by disruption of the rcsC, rcsF, and yojN genes, which code for a sensor kinase, accessory positive factor, and phosphotransmitter, respectively, of the Rcs phosphorelay signal transduction system initially identified as regulating the capsular polysaccharide synthesis (cps) genes. Disruption of the rcsB gene coding for the response regulator of the system also suppressed the thermosensitivity, whereas disruption of cpsE did not. By monitoring the expression of a cpsB'-lac fusion, we showed that the Rcs system is activated in the pgsA mutant and is reverted to a wild-type level by the rcs mutations. These results indicate that envelope stress due to an acidic phospholipid deficiency activates the Rcs phosphorelay system and thereby causes the thermosensitive growth defect independent of the activation of capsule synthesis.  相似文献   

17.
Bis(monoacylglycero)phosphate (BMP) is a unique lipid enriched in the late endosomes participating in the trafficking of lipids and proteins through this organelle. The de novo biosynthesis of BMP has not been clearly demonstrated. We investigated whether phosphatidylglycerol (PG) and cardiolipin (CL) could serve as precursors of de novo BMP synthesis using two different cellular models: CHO cells deficient in phosphatidylglycerophosphate (PGP) synthase, the enzyme responsible for the first step of PG synthesis; and human lymphoblasts from patients with Barth syndrome (BTHS), characterized by mutations in tafazzin, an enzyme implicated in the deacylation-reacylation cycle of CL. The biosynthesis of both PG and BMP was reduced significantly in the PGP synthase-deficient CHO mutants. Furthermore, overexpression of PGP synthase in the deficient mutants induced an increase of BMP biosynthesis. In contrast to CHO mutants, BMP biosynthesis and its fatty acid composition were not altered in BTHS lymphoblasts. Our results thus suggest that in mammalian cells, PG, but not CL, is a precursor of the de novo biosynthesis of BMP. Despite the decrease of de novo synthesis, the cellular content of BMP remained unchanged in CHO mutants, suggesting that other pathway(s) than de novo biosynthesis are also used for BMP synthesis.  相似文献   

18.
Valproate (VPA) is one of the two drugs approved by the Food and Drug Administration (FDA) for the treatment of bipolar disorder. The therapeutic mechanism of VPA has not been established. We have shown previously that growth of the yeast Saccharomyces cerevisiae in the presence of VPA causes a decrease in intracellular inositol and inositol-1-P, and a dramatic increase in expression of INO1, which encodes the rate limiting enzyme for de novo inositol biosynthesis. To understand the underlying mechanism of action of VPA, INO1, CHO1 and INO2 expression, intracellular inositol and phospholipid biosynthesis were studied as a function of acute and chronic exposure of growing cells to the drug. A decrease in intracellular inositol was apparent immediately after addition of VPA. Surprisingly, expression of genes that are usually derepressed during inositol depletion, including INO1, CHO1 and INO2 (that contain inositol-responsive UASINO sequences) decreased several fold during the first hour, after which expression began to increase. Incorporation of 32Pi into total phospholipids was significantly decreased. Pulse labelling of CDP-DG and PG, shown previously to increase during inositol depletion, increased within 30 min. However, pulse labelling of PS, which normally increases during inositol depletion, was decreased within 30 min. PS synthase activity in cell extracts decreased with time, although VPA did not directly inhibit PS synthase enzyme activity. Thus, in contrast to the effect of chronic VPA treatment, short-term exposure to VPA abrogated the normal response to inositol depletion of inositol responsive genes and led to aberrant synthesis of phospholipids.  相似文献   

19.
Export-specific chaperone SecB and translocational ATPase SecA catalyze the cytoplasmic steps of Sec-dependent secretion in Escherichia coli. Their effects on secretion of periplasmic alkaline phosphatase (PhoA) were shown to depend on the N-terminal region of the mature PhoA sequence contained in the PhoA precursor. Amino acid substitutions in the vicinity of the signal peptide (positions +2, +3) not only dramatically inhibited secretion, but also reduced its dependence on SecB and SecA. Immunoprecipitation reported their impaired binding with mutant prePhoA. The results testified that SecB and SecA interact with the mature PhoA region located close to the signal peptide in prePhoA.  相似文献   

20.
After a transition from high to low oxygen tension, there was a twofold to 50-fold increase in the content of membrane-bound respiratory pigments of Haemophilus parainfluenzae, and there were concurrent changes in the metabolism of the membrane phospholipids: (i) a twofold decrease in the rate of turnover of the phosphate in all the phospholipids; (ii) a shift from simple one-phase, linear incorporation of phosphate into phospholipids to a complex biphasic incorporation of phosphate into phospholipids; and (iii) an increase in the total phospholipids with a slight increase in the proportion of phosphatidylglycerol (PG) and a slight decrease in the proportion of phosphatidylethanolamine (PE). Changes in the rates of incorporation of phosphate into the phospholipids occurred without a change in the rate of bacterial growth. When the compensatory adjustment of the proportions of the respiratory pigments reached a steady state, the total phospholipid, the rate of incorporation of phosphate into phospholipids, and the proportion of PG fell. At steady-state proportions of cytochromes, the proportion of PE and the rate of turnover of the phosphate in the phospholipids increased. All through an incorporation experiment of 1.5 divisions, the specific activity of the phosphate of PG was twice that of phosphatidic acid (PA). The phosphate of PG turned over 1.2 to 1.5 times more rapidly than the phosphate of PA in cells with high and low cytochrome levels. If the PA was an accurate measure of the precursor for the cytidine-5′-diphosphate-diglyceride, which in turn was the precursor of all the lipids, then the results of these experiments suggested that exchange reactions, in addition to synthesis from PA, were involved in phospholipid metabolism. These reactions were more sensitive to changes in oxygen concentration than was the growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号