首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of heterocyclic mercaptans incorporating 1,3,4-thiadiazole- and 1,2,4-triazole rings have been prepared and assayed for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic human isozymes I and II, and the transmembrane, tumor-associated hCA IX. Against hCA I the investigated thiols showed inhibition constants in the range of 97 nM to 548 microM, against hCA II in the range of 7.9-618 microM, and against hCA IX in the range of 9.3-772 microM. Thiadiazoles were generally more active than triazoles against all investigated isozymes. Generally, the best inhibitors were the simple derivative 5-amino-1,3,4-thiadiazole-2-thiol and its N-acetylated derivative, which were anyhow at least two orders of magnitude less effective inhibitors when compared to the corresponding sulfonamides, acetazolamide, and its deacetylated derivative. An exception was constituted by 5-(2-pyridylcarboxamido)-1,3,4-thiadiazole-2-thiol, which is the first hCA I-selective inhibitor ever reported, possessing an inhibition constant of 97 nM against isozyme I, and being a 105 times less effective hCA II inhibitor, and 3154 times less effective hCA IX inhibitor. Thus, the thiol moiety may lead to effective CA inhibitors targeting isozyme I, whereas it is a less effective zinc-binding function for the design of CA II and CA IX inhibitors over the sulfonamide group.  相似文献   

2.
A small library of N-hydroxysulfamides was synthesized by an original approach in order to investigate whether this zinc-binding function is efficient for the design of inhibitors targeting the cytosolic (hCA I and II) and transmembrane, tumor-associated (hCA IX and XII) isozymes of carbonic anhydrase (CA, EC 4.2.1.1). The parent derivative, N-hydroxysulfamide was a more potent inhibitor as compared to sulfamide or sulfamic acid against all isozymes, with inhibition constants in the range of 473 nM-4.05 microM. Its substituted n-decyl-, n-dodecyl-, benzyl-, and biphenylmethyl-derivatives were less inhibitory against hCA I (K(I)s in the range of 5.8-8.2 microM) but more inhibitory against hCA II (K(I)s in the range of 50.5-473 nM). The same situation was true for the tumor-associated isozymes, with K(I)s in the range of 353-790 nM against hCA IX and 372-874 nM against hCA XII. Some sulfamides/sulfamates possessing similar substitution patterns have also been investigated for the inhibition of these isozymes, being shown that in some particular cases sulfamides are more efficient inhibitors as compared to the corresponding sulfamates. Potent CA inhibitors targeting the cytosolic or tumor-associated CA isozymes can thus be designed from various classes of sulfonamides, sulfamides, or sulfamates and their derivatives, considering the extensive interactions in which the inhibitor and the enzyme active site are engaged, based on recent X-ray crystallographic data.  相似文献   

3.
A series of S-substituted 4-chloro-2-mercapto-5-methyl-benzenesulfonamides has been investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), that is, the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor-associated isozymes CA IX and XII. The new derivatives were inefficient inhibitors of isoform I (K(I)s in the range of 2.7-18.7 microM) but generally had low nanomolar affinity for the inhibition of the other three isoforms (K(I)s in the range of 2.4-214 nM against hCA II; 1.4-47.5 nM against hCA IX, and 1.7-569 nM against hCA XII, respectively). Some selectivity for the inhibition of the tumor-associated versus the cyctosolic isoform II with some of these compounds has also been evidenced. As CA IX is an important marker of tumor hypoxia and its predictive, prognostic, and druggability potentials for designing antitumor therapies were recently validated, detection of selective, potent CA IX inhibitors may be relevant in the fight against cancers overexpressing CA isozymes.  相似文献   

4.
A library of boron-containing carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, including sulfonamides, sulfamides, and sulfamates is reported. The new compounds have been synthesized by derivatization reactions of 4-carboxy-/amino-/hydroxy-phenylboronic acid pinacol esters with amino/isothiocyanato-substituted aromatic/heteroaromatic sulfonamides or by sulfamoylation reactions with sulfamoyl chloride. The new derivatives have been assayed for the inhibition of three physiologically relevant CA isozymes, the cytosolic CA I and II, and the transmembrane, tumor-associated isozyme CA IX. Effective inhibitors were detected both among sulfonamides, sulfamates, and sulfamides. Against the human isozyme hCA I the new compounds showed inhibition constants in the range of 34-94nM, against hCA II in the range of 3.1-48nM, and against hCA IX in the range of 7.3-89nM, respectively. As hypoxic tumors highly overexpress CA IX, the design of boron-containing inhibitors with high affinity for the tumor-associated CA isozymes may lead to important advances in boron neutron capture therapy (BNCT) applications targeting such tumors, which are non-responsive to both classical chemo- and radiotherapy.  相似文献   

5.
A series of 2-mercapto-substituted-benzenesulfonamides has been prepared by a unique two-step procedure starting from the corresponding 2-chloro-substituted benzenesulfonamides. Compounds bearing an unsubstituted mercapto group and the corresponding S-benzoyl derivatives were investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), i.e., the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor associated isozymes CA IX and XII. These derivatives were medium potency hCA I inhibitors (K(I)s in the range of 1.5-5.7 microM), two derivatives were strong hCA II inhibitors (K(I)s in the range of 15-16 nM), whereas the others showed weak activity. These compounds inhibited hCA IX with inhibition constants in the range 160-1950 nM and hCA XII with inhibition constants in the range 1.2-413 nM. Some of these derivatives showed a certain degree of selectivity for inhibition of the tumor-associated over the cytosolic isoforms, being thus interesting leads for the development of potentially novel applications in the management of hypoxic tumors which overexpress CA IX and XII.  相似文献   

6.
A series of sulfonamides incorporating 4-thioureido-benzolamide moieties have been prepared from aminobenzolamide and thiophosgene followed by the reaction of the thiocyanato intermediate with aliphatic/aromatic amines or hydrazines. The new derivatives have been investigated as inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), and more precisely of the cytosolic isozymes hCA I and II, as well as the tumor-associated isozyme hCA IX (all of human origin). The new compounds showed excellent inhibitory properties against all three isozymes with inhibition constants in the range of 0.6-62 nM against hCA I, 0.5-1.7 nM against hCA II and 3.2-23 nM against hCA IX, respectively. These derivatives are interesting candidates for the development of novel therapies targeting hypoxic tumors.  相似文献   

7.
A series of spin-labeled sulfonamides incorporating TEMPO moieties were synthesized by a procedure involving the formation of a thiourea functionality between the benzenesulfonamide and free radical fragment of the molecules. The new compounds were tested as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) and showed efficient inhibition of the physiologically relevant isozymes hCA II and hCA IX (hCA IX being predominantly found in tumors) and moderate to weak inhibitory activity against hCA I. Some derivatives were also selective for inhibiting the tumor-associated isoform over the cytosolic one CA II, and presented significant changes in their ESR signals when complexed to the enzyme active site, being interesting candidates for the investigation of hypoxic tumors overexpressing CA IX by ESR techniques, as well as for imaging/treatment purposes.  相似文献   

8.
The inhibition of the two transmembrane, tumor-associated isozymes of carbonic anhydrase (CA, EC 4.2.1.1) of human origin, hCA IX and XII, with a library of aromatic and heteroaromatic sulfonamides has been investigated. Most of them were sulfanilamide, homosulfanilamide, and 4-aminoethyl-benzenesulfonamide derivatives, to which tails that should induce diverse physico-chemical properties have been attached at the amino moiety, whereas several of these compounds were derived from metanilamide, benzene-1,3-disulfonamide or the 1,3,4-thiadiazole/thiadiazoline-2-sulfonamides. The tails were of the alkyl/aryl-carboxamido/sulfonamido-, ureido or thioureido type. Against hCA IX the investigated compounds showed inhibition constants in the range of 3-294 nM, whereas against hCA XII in the range of 1.9-348 nM, respectively. The best hCA IX inhibitors were ureas/thioureas incorporating 4-aminoethyl-benzenesulfonamide and metanilamide moieties. The best hCA XII inhibitors were 1,3,4-thiadiazole/thiadiazoline-2-sulfonamides incorporating 5-acylamido or 5-arylsulfonylamido moieties. These compounds also inhibited appreciably the cytosolic isozymes hCA I and II, but some selectivity for the transmembrane, tumor-associated isozymes was observed for some of them, which is an encouraging result for the design of novel therapies targeting hypoxic tumors, in which these carbonic anhydrases are highly overexpressed.  相似文献   

9.
The interaction of five human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, that is, hCA I, II, IV, V, and IX with a small library of phosphonic acids/organic phosphates, including methylphosphonic acid, MPA; phenylphosphonic acid, PPA; N-(phosphonoacetyl)-L-aspartic acid, PALA, methylene diphosphonic acid MDPA, the O-phosphates of serine (Ser-OP) and threonine (Thr-OP) as well as the antiviral phosphonate foscarnet has been studied. hCA I was activated by all these compounds, with the best activators being MPA and PPA (K(A)s of 0.10-1.20 microM). MPA and PPA were on the other hand nanomolar inhibitors of hCA II (K(I)s of 98-99 nM). PALA showed an affinity of 7.8 microM, whereas the other compounds were weak, millimolar inhibitors of this isozyme. The best hCA IV inhibitors were PALA (79 nM) and PPA (5.4 microM), whereas the other compounds showed K(I)s in the range of 0.31-5.34 mM. The mitochondrial isozyme was weakly inhibited by all these compounds (K(I)s in the range of 0.09-41.7 mM), similarly to the transmembrane, tumor-associated isozyme (K(I)s in the range of 0.86-2.25 mM). Thus, phosphonates may lead to CA inhibitors with selectivity against two physiologically relevant isozymes, the cytosolic hCA II or the membrane-bound hCA IV.  相似文献   

10.
Reaction of 4,4-biphenyl-disulfonyl chloride with aromatic/heterocyclic sulfonamides also incorporating a free amino group, such as 4-aminobenzenesulfonamide, 4-aminoethyl-benzenesulfonamide, 6-chloro-4-aminobenzene-1,3-disulfonamide or 5-amino-1,3,4-thiadiazole-2-sulfonamide afforded bis-sulfonamides which have been tested as inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4..2.1.1). The compounds were rather modest inhibitors of isozymes CA I and XII, but were more efficient as inhibitors of the cytosolic CA II and transmembrane, tumor-associated CA IX (inhibition constants in the range of 21-129 nM gainst hCA II, and 23-79 nM against hCA IX, respectively). The new bis-sulfonamides also showed inhibition of growth of several tumor cell lines (ex vivo), with GI(50) values in the range of 0.74-10.0 microg/mL against the human colon cancer cell line HCT116, the human lung cancer cell line H460 and the human breast cancer cell line MCF-7.  相似文献   

11.
An inhibition study of the human cytosolic isozymes I, and II, the mitochondrial isoform VA, and the tumor-associated, transmembrane isozyme IX of carbonic anhydrase (CA, EC 4.2.1.1) with a library of aromatic/heteroaromatic/polycyclic difluoromethanesulfonamides is reported. Most of the inhibitors were derivatives of benzenedifluoromethanesulfonamide incorporating substituted-phenyl moieties, or were methylsulfonamide and difluoromethyl-sulfonamide derivatives of the sulfamates COUMATE and EMATE, respectively. Except for the methylsulfonamide-COUMATE derivative which behaved as a potent CA II inhibitor (K(I) of 32nM), these sulfonamides were moderate inhibitors of all isozymes, with inhibition constants in the range of 96-5200nM against hCA I, of 80-670nM against hCA II, and of 195-9280nM against hCA IX, respectively. Remarkably, some derivatives, such as 3-bromophenyl-difluoromethanesulfonamide, showed a trend to selectively inhibit the mitochondrial isoform CA VA, showing selectivity ratios for inhibiting CA VA over CA II of 3.53; over CA I of 6.84 and over CA IX of 9.34, respectively, although it is a moderate inhibitor (K(I) of 160nM). Some of these derivatives may be considered as leads for the design of isozyme selective CA inhibitors targeting the mitochondrial isozyme CA VA, with potential use as anti-obesity agents.  相似文献   

12.
A series of benzenesulfonamide derivatives incorporating triazine moieties in their molecules was obtained by reaction of cyanuric chloride with sulfanilamide, homosulfanilamide, or 4-aminoethylbenzenesulfonamide. The dichlorotriazinyl-benzenesulfonamides intermediates were subsequently derivatized by reaction with various nucleophiles, such as water, methylamine, or aliphatic alcohols (methanol and ethanol). The library of sulfonamides incorporating triazinyl moieties was tested for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic hCA I and II, and the transmembrane, tumor-associated hCA IX. The new compounds reported here inhibited hCA I with K(I)s in the range of 75-136nM, hCA II with K(I)s in the range of 13-278nM, and hCA IX with K(I)s in the range of 0.12-549nM. The first hCA IX-selective inhibitors were thus detected, as the chlorotriazinyl-sulfanilamide and the bis-ethoxytriazinyl derivatives of sulfanilamide/homosulfanilamide showed selectivity ratios for CA IX over CA II inhibition in the range of 166-706. Furthermore, some of these compounds have subnanomolar affinity for hCA IX, with K(I)s in the range 0.12-0.34nM. These derivatives are interesting candidates for the development of novel unconventional anticancer strategies targeting the hypoxic areas of tumors. Clear renal cell carcinoma, which is the most lethal urologic malignancy and is both characterized by very high CA IX expression and chemotherapy unresponsiveness, could be the leading candidate of such novel therapies.  相似文献   

13.
A series of chiral 1,3,4-oxadiazole-5-thiols incorporating 2-substituted-benzenesulfonamide moieties has been prepared from amino acids, via the ester and carbohydrazide intermediate, followed by cyclization with carbon disulfide. Some of these compounds have been investigated for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the human cytosolic hCA I and II, and the human, transmembrane, tumor-associated isozyme hCA IX. All these compounds showed weak (millimolar) affinity for the three isozymes, except two carbohydrazides and two heterocyclic thiols which selectively inhibited the tumor-associated isozyme with inhibition constants around 10 microM. Such compounds constitute interesting lead molecules for the possible design of CA IX-selective inhibitors.  相似文献   

14.
A series of bis-sulfamates incorporating aliphatic, aromatic, or betulinyl moieties in their molecules was obtained by reaction of the corresponding diols/diphenols with sulfamoyl chloride. The library of bis-sulfamates thus obtained was tested for the inhibition of three physiologically relevant human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, the cytosolic hCA I and II, and the transmembrane, tumor-associated hCA IX. The new compounds reported here inhibited hCA I with K(I) s in the range of 79 nM-16.45 microM, hCA II with K(I) s in the range of 6-643 nM, and hCA IX with K(I) s in the range of 4-5400 nM. Several low nanomolar hCA IX inhibitors were detected, such as 1,8-octylene-bis-sulfamate or 1,10-decylene-bis-sulfamate (K(I) s in the range of 4-7 nM), which showed good selectivity ratios (in the range of 3.50-3.85) for hCA IX over hCA II inhibition. The most selective hCA IX inhibitor was phenyl-1,4-dimethylene-bis-sulfamate (K(I) of 61.6 nM), which was a 10.43 times better hCA IX than hCA II inhibitor. These derivatives are interesting candidates for the development of novel antitumor therapies targeting hypoxic tumors, since hCA IX is highly overexpressed in such tissues, and its presence is correlated with bad prognosis and unfavorable clinical outcome.  相似文献   

15.
Metal complexing anions represent an important class of inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The first inhibition study of the transmembrane isozymes CA XII (tumor-associated) and XIV with anions is reported. These isozymes showed inhibition profiles with physiologic/non-physiologic anions quite distinct from any other cytosolic (CA I and II) or transmembrane isoforms (e.g., CA IX) investigated earlier. hCA XII has a good affinity for fluoride and bicarbonate but is not inhibited by heavier halides, perchlorate, nitrate, and nitrite. The best hCA XII inhibitors were cyanide (K(I) of 1 microM) and azide (K(I) of 80 microM). hCA XIV was on the other hand weakly inhibited by fluoride and not at all inhibited by perchlorate, but showed good affinity for most other anions investigated here. Chloride and bicarbonate showed K(I)s in the range of 0.75-0.77 mM for this isoform. The best hCA XIV anion inhibitors were sulfate, phenylarsonic, and phenylboronic acid (K(I) in the range of 10-92 microM).  相似文献   

16.
Polyfluorinated CAIs show very good inhibitory properties against different carbonic anhydrase (CA) isozymes, such as CA I, II, and IV, but such compounds have not been tested for their interaction with the transmembrane, tumor-associated isozyme CA IX. Thus, a series of such compounds has been obtained by attaching 2,3,5,6-tetrafluorobenzoyl- and 2,3,5,6-tetrafluorophenylsulfonyl- moieties to aromatic/heterocyclic sulfonamides possessing derivatizable amino moieties. Some of these compounds showed excellent CA IX inhibitory properties and also selectivity ratios favorable to CA IX over CA II, the other physiologically relevant isozyme with high affinity for sulfonamide inhibitors. The first subnanomolar and rather selective CA IX inhibitor has been discovered, as the 2,3,5,6-tetrafluorobenzoyl derivative of metanilamide showed an inhibition constant of 0.8 nM against hCA IX, and a selectivity ratio of 26.25 against CA IX over CA II. Several other low nanomolar CA IX inhibitors were detected among the new derivatives reported here. The reported derivatives constitute valuable candidates for the development of novel antitumor therapies based on the selective inhibition of tumor-associated CA isozymes.  相似文献   

17.
The synthesis of a new class of sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs), also possessing carboxylate/hydroxamate moieties in their molecule, is reported. These compounds may act on dual antitumor targets, the tumor-associated CA isozymes (CA IX) and some matrix metalloproteinases (MMPs). The compounds were prepared by an original method starting from iminodiacetic acid, and assayed as inhibitors of three isozymes, hCA I, II (cytosolic), and IX (transmembrane). The new derivatives showed weak inhibitory activity against isozyme I (K(I)s in the range of 95-8300 nM), were excellent to moderate CA II inhibitors (K(I)s in the range of 8.4-65 nM), and very good and selective CA IX inhibitors (K(I)s in the range of 3.8-26 nM). The primary sulfonamide moiety is a better zinc-binding group in the design of CAIs as compared to the carboxylate/hydroxamate one, but the presence of hydroxamate functionalities in the molecule of CAIs leads to selectivity for the tumor-associated isozyme IX over the ubiquitous, cytosolic isoform II.  相似文献   

18.
The inhibition of five human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes; the cytosolic hCA I and II, the membrane-bound hCA IV, the mitochondrial hCA V, and the tumor-associated, transmembrane hCA IX, with anions isosteric and isoelectronic with sulfate, nitrate, and carbonate; such as chlorate, perchlorate, bromate, iodate, periodate, silicate, bismuthate, vanadate, molybdate, and wolframate is reported. Apparently, the geometry of the inhibitor (tetrahedral or trigonal) does not influence its binding to the Zn(II) ion of the enzyme active site, but the nature of the central element is the most important factor influencing potency. Isozymes hCA I and II are best inhibited by chlorate, perchlorate, and silicate, together with the anions structurally related to sulfate, sulfamate, and sulfamidate, but sulfate itself is a weak inhibitor (inhibition constant of 74 mM against hCA I and 183 mM against hCA II). Molybdate is a very weak hCA I inhibitor (K(I) of 914 mM) but it interacts with hCA II (K(I) of 27.5mM). Isozyme IV is well inhibited by sulfate (K(I) of 9 mM), sulfamate, and sulfamidate (in the low micromolar range), but not by perchlorate (K(I) of 767 mM). The mitochondrial isozyme V has the lowest affinity for sulfate (K(I) of 680 mM) and carbonate (K(I) of 95 mM) among all the investigated isozymes, suggesting on one hand its possible participation in metabolon(s) with sulfate anion exchanger(s), and on the other hand an evolutionary adaptation to working at higher pH values (around 8.5 in mitochondria) where rather high amounts of carbonate in equilibrium with bicarbonate may be present. Metasilicate, isosteric to carbonate, is also about a 10 times weaker inhibitor of this isozyme as compared to other CAs investigated here (K(I) of 28.2 mM). Surprisingly, the tumor-associated isozyme IX is resistant to sulfate inhibition (K(I) of 154 mM) but has affinity in the low micromolar range for carbonate, sulfamate, and sulfamidate (K(I) in the range of 8.6-9.6 microM). This constitutes another proof that this isozyme best works at acidic pH values present in tumors, being inhibited substantially at higher pH values when more carbonate may be present. Bromate and chlorate are quite weak CA IX inhibitors (K(I) s of 147-274 mM).  相似文献   

19.
A series of selected benzo[b]thiophene-5- and 6-sulfonamide derivatives previously reported to show cytotoxic activity and some others newly synthesized has been tested for the interactions with several CA isozymes, some of which are known to be involved in tumorigenesis (hCA IX), whereas others are ubiquitously found in many normal tissues (the cytosolic isoforms hCA I and II). The unsubstituted sulfonamides inhibited hCA I with inhibition constants in the range of 63-138 nM, hCA II with inhibition constants in the range of 6.3-8.8 nM, and hCA IX with inhibition constants in the range of 2.8-15 nM, being thus more active than clinically used inhibitors such as acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide or indisulam (E 7070). Some of these derivatives also showed some selectivity for the inhibition of the tumor-associated (hCA IX) over the cytosolic isozyme hCA II. Although these derivatives may act on many targets other than the CAs (such as the NADH oxidase) or may induce apoptosis by accumulation of reactive oxygen species, it is quite important to try to decipher as many as possible of the potential mechanisms that lead to derivatives with potent antitumor activity in order to develop novel therapeutic strategies for the management of cancer.  相似文献   

20.
Reaction of 4,4-biphenyl-disulfonyl chloride with aromatic/heterocyclic sulfonamides also incorporating a free amino group, such as 4-aminobenzenesulfonamide, 4-aminoethyl-benzenesulfonamide, 6-chloro-4-aminobenzene-1,3-disulfonamide or 5-amino-1,3,4-thiadiazole-2-sulfonamide afforded bis-sulfonamides which have been tested as inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4..2.1.1). The compounds were rather modest inhibitors of isozymes CA I and XII, but were more efficient as inhibitors of the cytosolic CA II and transmembrane, tumor-associated CA IX (inhibition constants in the range of 21–129 nM gainst hCA II, and 23–79 nM against hCA IX, respectively). The new bis-sulfonamides also showed inhibition of growth of several tumor cell lines (ex vivo), with GI50 values in the range of 0.74–10.0 μg/mL against the human colon cancer cell line HCT116, the human lung cancer cell line H460 and the human breast cancer cell line MCF-7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号