首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smooth muscle cell migration is a key step of atherosclerosis and angiogenesis. We demonstrate that alpha(V)beta(3) and alpha(V)beta(5) integrins synergistically regulate smooth muscle cell migration onto vitronectin. Using an original haptotactic cell migration assay, we measured a strong stimulation of phosphoinositide metabolism in migrating vascular smooth muscle cells. Phosphatidic acid production and phosphoinositide 3-kinase IA activation were triggered only upon alpha(V)beta(3) engagement. Blockade of alpha(V)beta(3) engagement or phospholipase C activity resulted in a strong inhibition of smooth muscle cell spreading on vitronectin. By contrast, blockade of alpha(V)beta(5) reinforced elongation and polarization of cell shape. Moreover, Pyk2-associated tyrosine kinase and phosphoinositide 4-kinase activities measured in Pyk2 immunoprecipitates were stimulated upon cell migration. Blockade of either alpha(V)beta(3) or alpha(V)beta(5) function, as well as inhibition of phospholipase C activity, decreased both Pyk2-associated activities. We demonstrated that the Pyk2-associated phosphoinositide 4-kinase corresponded to the beta isoform. Our data point to the metabolism of phosphoinositides as a regulatory pathway for the differential roles played by alpha(V)beta(3) and alpha(V)beta(5) upon cell migration and identify the Pyk2-associated phosphoinositide 4-kinase beta as a common target for both integrins.  相似文献   

2.
3.
Active preparations of Na+,K(+)-ATPase containing three types of catalytic isoforms were isolated from the bovine brain to study the structure and function of the sodium pump. Na+,K(+)-ATPase from the brain grey matter was found to have a biphasic kinetics with respect to ouabain inhibition and to consist of a set of isozymes with subunit composition of alpha 1 beta 1, alpha 2 beta m and alpha 3 beta m (where m = 1 and/or 2). The alpha 1 beta 1 form clearly dominated. For the first time, glycosylation of the beta 1-subunit of the alpha 1 beta 1-type isozymes isolated from the kidney and brain was shown to be different. Na+,K(+)-ATPase from the brain stem and axolemma consisted mainly of a mixture of alpha 2 beta 1 and alpha 3 beta 1 isozymes having identical ouabain inhibition constants. In epithelial and arterial smooth muscle cells, where the plasma membrane is divided into functionally and biochemically distinct domains, the polarized distribution of Na+,K(+)-ATPase is maintained through interactions with the membrane cytoskeleton proteins ankyrin and spectrin (Nelson and Hammerton, 1989; Lee et al., 1996). We were the first to show the presence of the cytoskeleton protein tubulin (beta 5-isoform) and glyceraldehyde-3-phosphate dehydrogenase in a high-molecular-weight complex with Na+,K(+)-ATPase in brain stem neuron cells containing alpha 2 beta 1 and alpha 3 beta 1 isozymes. Consequently, the influence of not only subunit composition, but also of glycan and cytoskeleton structures and other plasma membrane-associated proteins on the functional properties of Na+,K(+)-ATPase isozymes is evident.  相似文献   

4.
Laminins (comprised of alpha, beta, and gamma chains) are heterotrimeric glycoproteins integral to all basement membranes. The function of the laminin alpha5 chain in the developing intestine was defined by analysing laminin alpha5(-/-) mutants and by grafting experiments. We show that laminin alpha5 plays a major role in smooth muscle organisation and differentiation, as excessive folding of intestinal loops and delay in the expression of specific markers are observed in laminin alpha5(-/-) mice. In the subepithelial basement membrane, loss of alpha5 expression was paralleled by ectopic or accelerated deposition of laminin alpha2 and alpha4 chains; this may explain why no obvious defects were observed in the villous form and enterocytic differentiation. This compensation process is attributable to mesenchyme-derived molecules as assessed by chick/mouse alpha5(-/-) grafted associations. Lack of the laminin alpha5 chain was accompanied by a decrease in epithelial alpha3beta1 integrin receptor expression adjacent to the epithelial basement membrane and of Lutheran blood group glycoprotein in the smooth muscle cells, indicating that these receptors are likely mediating interactions with laminin alpha5-containing molecules. Taken together, the data indicate that the laminin alpha5 chain is essential for normal development of the intestinal smooth muscle and point to possible mesenchyme-derived compensation to promote normal intestinal morphogenesis when laminin alpha5 is absent.  相似文献   

5.
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and exerts its actions via both ionotropic (GABA(A)) channels and metabotropic (GABA(B)) receptors. GABA(A) channels are ubiquitously expressed in neuronal tissues, and in mature neurons modulate an inward chloride current resulting in neuronal inhibition due to membrane hyperpolarization. In airway smooth muscle (ASM) cells, membrane hyperpolarization favors smooth muscle relaxation. Although GABA(A) channels and GABA(B) receptors have been functionally identified on peripheral nerves in the lung, GABA(A) channels have never been identified on ASM itself. We detected the mRNA encoding of the GABA(A) alpha(4)-, alpha(5)-, beta(3)-, delta-, gamma(1-3)-, pi-, and theta-subunits in total RNA isolated from native human and guinea pig ASM and from cultured human ASM cells. Selected immunoblots identified the GABA(A) alpha(4)-, alpha(5)-, beta(3)-, and gamma(2)-subunit proteins in native human and guinea pig ASM and cultured human ASM cells. The GABA(A) beta(3)-subunit protein was immunohistochemically localized to ASM in guinea pig tracheal rings. While muscimol, a specific GABA(A) channel agonist, did not affect the magnitude or the time to peak contractile effect of substance P, it directly concentration dependently relaxed a tachykinin-induced contraction in guinea pig tracheal rings, which was inhibited by the GABA(A)-selective antagonist gabazine. Muscimol also relaxed a contraction induced by an alternative contractile agonist histamine. These results demonstrate that functional GABA(A) channels are expressed on ASM and suggest a novel therapeutic target for the relaxation of ASM in diseases such as asthma and chronic obstructive lung disease.  相似文献   

6.
Adenosine triphosphate (ATP) is now established as a principle vaso-active mediator in the vasculature. Its actions on arteries are complex, and are mediated by the P2X and P2Y receptor families. It is generally accepted that ATP induces a bi-phasic response in arteries, inducing contraction via the P2X and P2Y receptors on the smooth muscle cells, and vasodilation via the actions of P2Y receptors located on the endothelium. However, a number of recent studies have placed P2X1 receptors on the endothelium of some arteries. The use of a specific P2X1 receptor ligand, alpha, beta methylene ATP has demonstrated that P2X1 receptors also have a bi-functional role. The actions of ATP on P2X1 receptors is therefore dependant on its location, inducing contraction when located on the smooth muscle cells, and dilation when expressed on the endothelium, comparable to that of P2Y receptors.  相似文献   

7.
Tumor promoting phorbol esters stimulate Ca++ phospholipid-dependent protein kinase C. It has been suggested that this enzyme regulates the functional properties of different cell membrane receptors. In this study we investigated the effect of phorbol esters on alpha 1-adrenoceptor binding and phosphatidylinositol metabolism in cultured smooth muscle cells derived from rabbit aorta. Treatment of these cells with biologically active phorbol esters for 15 min. to 2 hours caused a marked decrease of norepinephrine stimulation of inositol phospholipid metabolism and a 3 fold decrease in agonist affinity for 125I-HEAT binding to alpha 1-adrenoceptors in the intact smooth muscle cells. The ability of phorbol esters to modulate alpha 1-adrenoceptor responsiveness suggests that activation of protein kinase C may represent an important mechanism regulating alpha 1-adrenergic receptor functional properties.  相似文献   

8.
L-type, voltage-gated Ca2+ channels (CaL) play critical roles in brain and muscle cell excitability. Here we show that currents through heterologously expressed neuronal and smooth muscle CaL channel isoforms are acutely potentiated following alpha5beta1 integrin activation. Only the alpha1C pore-forming channel subunit is critical for this process. Truncation and site-directed mutagenesis strategies reveal that regulation of Cav1.2 by alpha5beta1 integrin requires phosphorylation of alpha1C C-terminal residues Ser1901 and Tyr2122. These sites are known to be phosphorylated by protein kinase A (PKA) and c-Src, respectively, and are conserved between rat neuronal (Cav1.2c) and smooth muscle (Cav1.2b) isoforms. Kinase assays are consistent with phosphorylation of these two residues by PKA and c-Src. Following alpha5beta1 integrin activation, native CaL channels in rat arteriolar smooth muscle exhibit potentiation that is completely blocked by combined PKA and Src inhibition. Our results demonstrate that integrin-ECM interactions are a common mechanism for the acute regulation of CaL channels in brain and muscle. These findings are consistent with the growing recognition of the importance of integrin-channel interactions in cellular responses to injury and the acute control of synaptic and blood vessel function.  相似文献   

9.
Unlike glucose transport, where translocation of the insulin-responsive glucose transporter (GLUT4) from an intracellular compartment to the plasma membrane is the principal mechanism underlying insulin stimulation, no consensus exists presently for the mechanism by which insulin activates the Na+/K(+)-ATPase. We have investigated (i) the subunit isoforms expressed and (ii) the effect of insulin on the subcellular distribution of the alpha beta isoforms of the Na+/K(+)-ATPase in plasma membranes (PM) and internal membranes (IM) from rat skeletal muscle. Western blot analysis, using isoform-specific antibodies to the various subunits of the Na+/K(+)-ATPase, revealed that skeletal muscle PM contains the alpha 1 and alpha 2 catalytic subunits and the beta 1 and beta 2 subunits of the Na+ pump. Skeletal muscle IM were enriched in alpha 2, beta 1, and beta 2; alpha 1 was barely detectable in this fraction. After insulin treatment, alpha 2 content in the PM increased, with a parallel decrease in its abundance in the IM pool; insulin did not have any effect on alpha 1 isoform amount or subcellular distribution. The beta 1 subunit, but not beta 2, was also elevated in the PM after insulin treatment, but this increase originated from a sucrose gradient fraction different from that of the alpha 2 subunit. Our findings suggest that insulin induces an isoform-specific translocation of Na+ pump subunits from different intracellular sources to the PM and that the hormone-responsive enzyme in rat skeletal muscle is an alpha 2:beta 1 dimer.  相似文献   

10.
ATP-sensitive potassium (KATP) channels couple the metabolic status of the cell to its membrane potential to regulate a number of cell actions, including secretion (neurons and neuroendocrine cells) and muscle contractility (skeletal, cardiac, and vascular smooth muscle). KATP channels consist of regulatory sulfonylurea receptors (SUR) and pore-forming (Kir6.X) subunits. We recently reported (Pasyk, E. A., Kang, Y., Huang, X., Cui, N., Sheu, L., and Gaisano, H. Y. (2004) J. Biol. Chem. 279, 4234-4240) that syntaxin-1A (Syn-1A), known to mediate exocytotic fusion, was capable of binding the nucleotide binding folds (NBF1 and C-terminal NBF2) of SUR1 to inhibit the KATP channels in insulin-secreting pancreatic islet beta cells. This prompted us to examine whether Syn-1A might modulate cardiac SUR2A/KATP channels. Here, we show that Syn-1A is present in the plasma membrane of rat cardiac myocytes and binds the SUR2A protein (of rat brain, heart, and human embryonic kidney 293 cells expressing SUR2A/Kir6. 2) at its NBF1 and NBF2 domains to decrease KATP channel activation. Unlike islet beta cells, in which Syn-1A inhibition of the channel activity was apparently mediated only via NBF1 and not NBF2 of SUR1, both exogenous recombinant NBF1 and NBF2 of SUR2A were found to abolish the inhibitory actions of Syn-1A on K(ATP) channels in rat cardiac myocytes and HEK293 cells expressing SUR2A/Kir6.2. Together with our recent report, this study suggests that Syn-1A binds both NBFs of SUR1 and SUR2A but appears to exhibit distinct interactions with NBF2 of these SUR proteins in modulating the KATP channels in islet beta cells and cardiac myocytes.  相似文献   

11.
Adrenergic mechanism for phosphorylase activation was gradually converted from an alpha 1- to a beta 2-type during primary culture of rat hepatocytes. beta 2-Receptor-mediated cAMP generation was also much greater in 8-h cultured cells than in fresh cells. Incubation of hepatocyte membranes with [alpha-32P]NAD and the preactivated A-protomer (an active component) of islet-activating protein (IAP), pertussis toxin, resulted in the ADP-ribosylation of a specific IAP substrate protein (Mr = 41,000). This ADP-ribosylation diminished progressively when the membrane-donor hepatocytes had been cultured. The early diminution was interfered with by the addition of nicotinamide or isonicotinamide, a potent inhibitor of ADP-ribosyltransferase, to the culture medium. The decrease of the IAP substrate was well correlated with the potentiation of beta-adrenergic functions under various conditions of culture. beta-Receptor-mediated activation of GTP-dependent membrane adenylate cyclase was, but glucagon-induced activation was not enhanced by either prior culture of hepatocytes or prior exposure of membranes to the A-protomer of IAP. There was no further enhancement, however, when membranes from cultured cells were exposed to the active toxin. Thus, the IAP-susceptible inhibitory guanine nucleotide-regulatory protein is coupled to beta-adrenergic receptors in such a manner as to reduce the degree of activation of cyclase, and the decrease in this IAP substrate may be responsible, at least partly, for development of beta-receptor functions during culture of hepatocytes. Its possible relation to accompanying inhibition of alpha 1-receptor functions is discussed.  相似文献   

12.
We have compared the biological and biochemical properties of recombinant PDGF AA, AB, and BB using three types of fibroblastic cells: NIH/3T3, human skin fibroblast, and fetal bovine aortic smooth muscle. PDGF binding, receptor autophosphorylation, phosphatidyl inositol hydrolysis, as well as chemotactic and mitogenic responses of the cells were analyzed. PDGF-AB and PDGF-BB showed similar receptor binding, receptor autophosphorylation, and potent biological activity for all three of the cell types tested. In contrast, PDGF-AA was biologically active only for the NIH/3T3 cells in which binding sites for PDGF-AA were abundant, but was inactive for bovine aortic smooth muscle cells and human skin fibroblasts in which binding sites for PDGF-AA were absent. PDGF-AA could not induce any biochemical changes in the human skin fibroblasts or smooth muscle cells. Western blot studies with anti-Type alpha and beta PDGF receptor antibodies indicate that the NIH/3T3 cells contained both PDGF alpha and beta receptors, whereas the human skin fibroblasts and bovine smooth muscle cells contained only detectable levels of beta receptors. These results indicate that cells possessing high levels of PDGF beta receptors only are capable of responding equally well to either PDGF AB or BB.  相似文献   

13.
PURPOSE OF REVIEW: Sphingosine 1-phosphate is a novel lipid mediator which exerts various actions on endothelial cells and vascular smooth muscle cells. In this review, we discuss the latest findings about the molecule in vascular biology. RECENT FINDINGS: It has been demonstrated that most sphingosine 1-phosphate-induced actions are mediated by the Edg-family of its receptors. Sphingosine 1-phosphate stimulates the migration and proliferation of endothelial cells and is cytoprotective towards them. The involvement of phosphoinositide 3-kinase and nitric oxide in sphingosine 1-phosphate downstream signaling in endothelial cells was recently reported, as was the enhancement of endothelial barrier integrity induced by the molecule. Sphingosine 1-phosphate inhibits migration of vascular smooth muscle cells and this inhibition was reported to be mediated by inhibition of Rac. Sphingosine 1-phosphate is concentrated in the lipoprotein fraction in plasma, and high-density lipoprotein exerted endothelial cytoprotection through its component of this molecule. SUMMARY: Sphingosine 1-phosphate might play a critical role in the development of atherosclerosis.  相似文献   

14.
The regulation of cytosolic Ca2+ homeostasis is essential for cells, and particularly for vascular smooth muscle cells. In this regulation, there is a participation of different factors and mechanisms situated at different levels in the cell, among them Ca2+ pumps play an important role. Thus, Ca2+ pump, to extrude Ca2+; Na+/Ca2+ exchanger; and different Ca2+ channels for Ca2+ entry are placed in the plasma membrane. In addition, the inner and outer surfaces of the plasmalemma possess the ability to bind Ca2+ that can be released by different agonists. The sarcoplasmic reticulum has an active role in this Ca2+ regulation; its membrane has a Ca2+ pump that facilitates luminal Ca2+ accumulation, thus reducing the cytosolic free Ca2+ concentration. This pump can be inhibited by different agents. Physiologically, its activity is regulated by the protein phospholamban; thus, when it is in its unphosphorylated state such a Ca2+ pump is inhibited. The sarcoplasmic reticulum membrane also possesses receptors for 1,4,5-inositol trisphosphate and ryanodine, which upon activation facilitates Ca2+ release from this store. The sarcoplasmic reticulum and the plasmalemma form the superficial buffer barrier that is considered as an effective barrier for Ca2+ influx. The cytosol possesses different proteins and several inorganic compounds with a Ca2+ buffering capacity. The hypothesis of capacitative Ca2+ entry into smooth muscle across the plasma membrane after intracellular store depletion and its mechanisms of inhibition and activation is also commented.  相似文献   

15.
Endogenous insulin-like growth factor-1 (IGF-I) stimulates growth of cultured human intestinal smooth muscle by activating distinct mitogen-activated protein (MAP) kinase-dependent and phosphatidylinositol 3-kinase-dependent signaling pathways. In Rat1 and Balb/c3T3 fibroblasts and in neurons the IGF-I receptor is coupled to an inhibitory G protein, G(i), which mediates G(beta)gamma-dependent MAP kinase activation. The present study determined whether in normal human intestinal smooth muscle cells the IGF-I receptor activates a heterotrimeric G protein and the role of G protein activation in mediating IGF-I-induced growth. IGF-I elicited IGF-I receptor tyrosine phosphorylation, resulting in the specific activation of G(i2). G(beta)gamma subunits selectively mediated IGF-I-dependent MAP kinase activation; G(alpha)i2 subunits selectively mediated IGF-I-dependent inhibition of adenylyl cyclase activity. IGF-I-stimulated MAP kinase activation and growth were inhibited by pertussis toxin, an inhibitor of G(i)/G(o) activation. Cyclic AMP inhibits growth of human intestinal muscle cells. IGF-I inhibited both basal and forskolin-stimulated cAMP levels. This inhibition was attenuated in the presence of pertussis toxin. IGF-I stimulated phosphatidylinositol 3-kinase activation, in contrast to MAP kinase activation, occurred independently of G(i2) activation. These data suggest that IGF-I specifically activates G(i2), resulting in concurrent G(beta)gamma-dependent stimulation of MAP kinase activity and growth, and G(alpha)i2-dependent inhibition of cAMP levels resulting in disinhibition of cAMP-mediated growth suppression.  相似文献   

16.
Two isozymic forms of cGMP-dependent protein kinase (designated types I alpha and I beta) were purified to homogeneity from bovine aorta smooth muscle. Type I alpha was apparently the same as the well characterized bovine lung cGMP-dependent protein kinase. Type I beta had a subunit Mr = 80,000 compared with Mr = 78,000 for type I alpha, and both forms were dimeric with similar calculated native Mr (170,000-178,000). Both enzymes contained two cGMP-binding sites per subunit, exhibited similar specificities for the peptide substrates tested, photoaffinity labeled with 8-N3[32P] cAMP, and catalyzed autophosphorylation. Silver-stained peptide maps of types I alpha and I beta were similar but not identical; however, autoradiographs of peptide maps of these enzymes prelabeled by either autophosphorylation or photoaffinity labeling showed clearly different patterns. The amino-terminal sequence of a breakdown product of type I beta could not be aligned confidently with any of the published sequence of bovine lung cGMP-dependent protein kinase. [3H]cGMP dissociation curves for types I alpha and I beta were both biphasic, but the dissociation rate of the slow component of type I beta was faster than the corresponding component of type I alpha. The concentration of cGMP required for half-maximal activation (K alpha) was slightly lower for type I alpha than for type I beta (0.29 and 0.44 microM, respectively), and the two enzymes had similar K alpha values for cAMP (16 and 18 microM, respectively). Types I alpha and I beta exhibited different K alpha values for several cGMP analogs. The abundance of type I beta in specific tissues suggested that it could have an important physiological role.  相似文献   

17.
Soluble guanylyl cyclase (sGC) is a cGMP-generating enzyme implicated in the control of smooth muscle tone that also regulates platelet aggregation. Moreover, sGC activation has been shown to reduce leukocyte adherence to the endothelium. Herein, we investigated the expression of sGC in a murine model of LPS-induced lung injury and evaluated the effects of sGC inhibition in the context of acute lung injury (ALI). Lung tissue sGC alpha1 and beta1 subunit protein levels were determined by Western blot and immunohistochemistry, and steady-state mRNA levels for the beta1 subunit were assessed by real-time PCR. LPS inhalation resulted in a decrease in beta1 mRNA levels, as well as a reduction in both sGC subunit protein levels. Decreased alpha1 and beta1 expression was observed in bronchial smooth muscle and epithelial cells. TNF-alpha was required for the LPS-triggered reduction in sGC protein levels, as no change in alpha1 and beta1 levels was observed in TNF-alpha knockout mice. To determine the effects of sGC blockade in LPS-induced lung injury, mice were exposed to 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-l-one (ODQ) prior to the LPS challenge. Such pretreatment led to a further increase in total cell number (mainly due to an increase in neutrophils) and protein concentration in the bronchoalveoalar lavage fluid; the effects of ODQ were reversed by a cell-permeable cGMP analog. We conclude that sGC expression is reduced in LPS-induced lung injury, while inhibition of the enzyme with ODQ worsens lung inflammation, suggesting that sGC exerts a protective role in ALI.  相似文献   

18.
J Heino 《Matrix biology》2000,19(4):319-323
Distinct collagen subtypes are recognized by specific cell surface receptors. Two of the best known collagen receptors are members of the integrin family and are named alpha1beta1 and alpha2beta1. Integrin alpha1beta1 is abundant on smooth muscle cells, whereas the alpha2beta1 integrin is the major collagen receptor on epithelial cells and platelets. Many cell types, such as fibroblasts, osteoblasts, chondrocytes, endothelial cells, and lymphocytes may concomitantly express both of the receptors. We have studied the cell biology of these integrins at two levels. First, we have analyzed their ligand binding mechanism and specificity. Second, we have studied their signaling function inside three-dimensional collagen gels. This mini-review summarizes our most recent results. In conclusion, our data indicate that alpha1beta1 and alpha2beta1 integrins have differences in their ligand binding specificity. Furthermore, the two receptors are connected to distinct signaling pathways and their ligation may lead to opposite cellular responses.  相似文献   

19.
Classical insulin and IGF-1 receptors are alpha 2 beta 2 heterotetrameric complexes synthesized from two identical alpha beta half-receptor precursors. Recent data strongly suggests, however, that nonidentical alpha beta half-receptor precursors can assemble to generate hybrid holoreceptor species both in vivo and in vitro. This review focuses primarily on two types of hybrid receptors. The first type is an insulin/IGF-1 hybrid receptor generated by the association of an alpha beta insulin half-receptor with an alpha beta IGF-1 half-receptor. The second type is one formed from a wildtype (kinase-active) insulin or IGF-1 alpha beta half-receptor and a mutant (kinase-inactive) insulin alpha beta half-receptor. Although the functional properties of insulin/IGF-1 hybrid receptors have not yet been completely defined, wildtype/mutant hybrid receptors are essentially substrate kinase inactive. These data indicate that the mutant alpha beta half-receptor exerts a transdominant inhibition upon the wildtype alpha beta half-receptor within the alpha 2 beta 2 holoreceptor complex. This defect in substrate kinase activity may contribute to the molecular defect underlying some syndromes of severe insulin resistance and diabetes. Heterozygous individuals expressing both wildtype and mutant tyrosine kinase-defective insulin receptor precursors demonstrate varying degrees of insulin resistance and diabetes. In addition, cell lines which express both endogenous wildtype and transfected kinase-defective insulin receptors display markedly decreased insulin and IGF-1 sensitivity and responsiveness. Formation of hybrid receptors which results in premature termination of insulin signal transduction may be one mechanism underlying the observation that kinase-inactive receptors inhibit the function of native receptors.  相似文献   

20.
beta(2)-Adrenergic receptors (beta(2)AR) act to relax airway smooth muscle and can serve to counteract hyperresponsiveness, although the effect may not be ablative even in the presence of exogenous agonist. Within this signaling cascade that ultimately transduces smooth muscle relaxation, a significant "spare receptor" pool has been hypothesized to be present in the airway. In order to modify the relationship between beta(2)AR and downstream effectors, transgenic mice (TG) were created overexpressing beta(2)AR approximately 75-fold in airway smooth muscle using a mouse smooth muscle alpha-actin promoter. While >90% of these receptors were expressed on the smooth muscle cell surface, the percentage of receptors able to form the agonist-promoted high affinity complex was less than that found with nontransgenic (NTG) cells (R(H) = 18 versus 36%). Nevertheless, beta(2)AR signaling was found to be enhanced. Intact airway smooth muscle cells from TG had basal cAMP levels that were greater than NTG cells. A marked increase in agonist-stimulated cAMP levels was found in the TG ( approximately 200% stimulation over basal) compared with NTG ( approximately 50% over basal) cells. Adenylyl cyclase studies gave similar results and also showed a 10-fold lower EC(50) for TG cells. Tracheal rings from TG mice that were precontracted with acetylcholine had an enhanced responsiveness (relaxation) to beta-agonist, with a 60-fold decrease in the ED(50), indicating that the enhanced signaling imposed by overexpression results in an increase in the coordinated function of the intact airway cells. In vivo studies showed a significantly blunted airway resistance response to the inhaled bronchoconstrictor methacholine in the TG mice. Indeed, with beta-agonist pretreatment, the TG mice displayed no response whatsoever to methacholine. These results are consistent with beta(2)AR being the limiting factor in the transduction system. Increases in the initial component of this transduction system (the beta(2)AR) are sufficient to markedly alter signaling and airway smooth muscle function to the extent that bronchial hyperresponsiveness is ablated, consistent with an anti-asthma phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号