首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular solute composition of the salt-tolerant yeast Debaryomyces hansenii was studied in glucose-limited chemostat cultures at different concentrations of NaCl (4 mM, 0.68 M, and 1.35 M). A strong positive correlation between the total intracellular polyol concentration (glycerol and arabinitol) and medium salinity was demonstrated. The intracellular polyol concentration was sufficient to balance about 75% of the osmotic pressure of the medium in cultures with 0.68 and 1.35 M NaCl. The intracellular concentration of K+ and Na+, which at low external salinity gave a considerable contribution to the intracellular water potential, was only slightly enhanced with raised medium salinity. However, the ratio of intracellular K+ to Na+ decreased; but this decrease was less drastic in the cells than in the surrounding medium, i.e., the cells were able to select for K+ in favor of Na+. The turgor pressure, which was estimated on the basis of intracellular solute concentrations, was 2,200 kPa in cultures with 4 mM NaCl and decreased when the external salinity was raised, resulting in a value of about 500 kPa in cultures with 1.35 M NaCl. The maintenance of a positive turgor pressure at high salinity was mainly due to an increased production and accumulation of glycerol.  相似文献   

2.
Using cultured cells of the marine alga, Halicystis parvula, we measured the concentrations of 11 inorganic ions in the vacuolar sap and the electrical potential difference (PD) between the vacuole and the external solution. In normal cells under steady-state conditions a comparison of the electrochemical equilibrium (Nernst) potential for each ion with the PD of -82 mV (inside negative) indicates that Na+ and K+ are actively transported out of the vacuole whereas all anions are pumped into the cell. Although the [K+] in the vacuole is only 9 mM, the cytoplasmic [K+] is about 420 mM, which suggests that the outwardly directed pump is at the tonoplast. Using large Halicystis cells we perfused the vacuole with an artificial seawater and conducted a short-circuit analysis of ion transport. The short-circuit current (SCC) of 299 peq - cm-2-s-1 is not significantly different from the net influx of Cl-. There is a small, but statistically significant net efflux of K+ (less than 1 pmol-cm-2.-1), while the influx and efflux of Na+ are not significantly different. Therefore, the SCC is a good measure of the activity of the Cl- pump. Finally, we measured the volumetric elastic modulus (epsilon) of the cell wall by measuring the change in cell volume when the internal hydrostatic pressure was altered. The value of epsilon at applied pressures between 0 and 0.4 atm is about 0.6 atm, which is at least 100-fold lower than the values of epsilon for all other algae which have been studied.  相似文献   

3.
The adaptation of microorganisms to life in brines allows two strategies: the accumulation of organic osmoregulators in the cell (as in many moderate halophiles, halomonads in particular) or the accumulation of inorganic ions at extremely high intracellular concentrations (as, for example, in haloanaerobes). To reveal the regularities of osmoregulation in haloalkaliphiles developing in soda lakes, Halomonas campisalis Z-7398-2 and Halomonas sp. AIR-2 were chosen as representatives of halomonads, and Natroniella acetigena, as a representative of haloanaerobes. It was established that, in alkaliphilic halomonads, the intracellular concentrations of inorganic ions are insufficient for counterbalancing the environmental osmotic pressure and balance is attained due to the accumulation of organic osmoregulators, such as ectoine and betaine. On the contrary, the alkaliphilic haloanaerobe N. acetigena employs K+, Na+, and Cl- ions for osmoregulation. High intracellular salt concentrations increasing with the content of Na+ in the medium were revealed in this organism. At a concentration of 1.91 M Na+ in the medium, N. acetigena accumulated 0.83 M K+, 0.91 M Na+, and 0.29 M Cl- in cells, and, with an increase in the Na+ content in the medium to 2.59 M, it accumulated 0.94 M K+, 1.98 M Na+, and 0.89 M Cl-, which counterbalanced the external osmotic pressure and provided for cell turgor. Thus, it was shown that alkaliphilic microorganisms use osmoregulation strategies similar to those of halophiles and these mechanisms are independent of the mechanism of pH homeostasis.  相似文献   

4.
The charophyte Lamprothamnium papulosum (Wallr.) J. Gr. is foundat salinities varying from nearly fresh water to twice thatof sea water. It can maintain its turgor constant at 302 mosmolkg–1 (0.73 MPa) when exposed to external osmotic pressuresof 550 to 1350 mosmol kg–1 (1.3–3.3 MPa). Turgorshows a tendency to rise slightly at lower osmotic pressure(388 mosmol kg–1 of turgor at 150 mosmol kg–1 externalosmolality). K+ and Cl are the main solutes in the vacuole,and are most important in controlling internal osmotic pressure.Mg2+, Ca2+, and SO2–4 are present in significant amountsbut their concentrations do not change with changes in externalsalinity. Na+ is present in lower concentration than K+, andplays a minor role in regulating turgor. Sucrose is presentin significant concentrations, but changes little with changesin salinity. Two enzymes involved in sucrose metabolism, sucrosephosphate synthetase (EC 2.4.1.14 [EC] ), and sucrose synthetase (EC2.4.1.13 [EC] ) are active in whole cell extracts of Lamprothamnium.As in the fresh water charophytes, Lamprothamnium membrane potentialmay be depolarized (close to EK) or hyperpolarized, and presumablyof electrogenic origin. Both types of potential are found atall salinities tested.  相似文献   

5.
Norepinephrine or increased extracellular K+ hyperpolarize the membrane of the earthworm somatic muscle fibre, whereas removal of Cl- from external solution or a hypotonic solution depolarize the membrane. The dependence of the membrane resting potential on the extracellular K+ is quite characteristic against the background of ouabain action. A preliminary membrane depolarisation by ouabain eliminates the above effects on the membrane resting potential. The data obtained suggest that the ouabain-sensitive active ion pump directly contributes to the membrane resting potential value. This hypothesis is discussed with respect to existence of active Cl- transport combined with Na+, K(+)-pump which presumably takes part in the intracellular osmotic pressure regulation in the earthworm somatic muscle.  相似文献   

6.
Effects of the K+ concentration in the bathing fluid ([K+]l) on the intracellular K+, Na+ and Cl- concentrations ([K+]i [Na+]i and [Cl-]i) as well as on the electrical potential were studied in rat duodenum. Changes in the mucosal K+ concentration ([K+]m), bringing the sum of Na+ and K+ concentrations to 147.2 mM constant, had little effect on the transmural potential difference (PDt), but did induce marked changes in the mucosal membrane potential (Vm). As [K+]m increased, Vm was depolarized gradually and obeyed the Nernst equation for a potassium electrode in the range of [K+]m greater than approx. 60 mM. Experiments of ion analyses were carried out on strips of duodenum to determine the effect of changing the external K+ concentrations on [K+] i, [Na+]i and [Cl-]i. An increase in [K+]o resulted in increases in [K+]i and [Cl-]i and a decrease in [Na+]i, [K+]i approaching its maximum at [K+]o greater than 70 mM. Such changes in [K+]i and [Na+]i seem to correlate quantitatively with the changes in [K+]o and [Na+]o. The values of the ratio of permeability coefficients, Pna+/PK+ were estimated using the Vm values and intracellular ion concentrations measured in these experiments. The results suggested that there appeared a rather abrupt increase in the PNa+/PK+ ratio from 0 to approx. 0.1, as [K+]m decreased.  相似文献   

7.
Mechanisms involved in cell volume regulation are important in SS, SC cells as they might be involved in determining the extent of sickling and the generation of dense cells and irreversibly sickled cells. We have studied in these cells the response to cell swelling of the K+,Cl- transporter. We found that Hb SS, SC and CC red cells have higher values of a ouabain-resistant, chloride-dependent and NEM-stimulated K+ efflux than AA red cells. In contrast, the Na+,K+,Cl- cotransport estimated from the bumetanide-sensitive component of K+ efflux was not significantly different in SS, SC and CC red cells. The (ouabain + bumetanide)-resistant K+ efflux from SS, SC and CC red cells was stimulated by cell swelling induced by reduction of the osmotic pressure (300 to 220 mosmol/l) and pH (8 to 7) of the flux media (140 mM NaCl). The Cl--dependent K+ efflux stimulated by osmotic swelling highly correlated with the NEM-stimulated component (r = 0.8, p less than 0.001, n = 22) and the acid-pH-induced swelling (r = 0.969, p less than 0.001, n = 22), indicating that it is driven by the K+,Cl- transporter.  相似文献   

8.
细胞内离子在气孔运动中的作用   总被引:1,自引:0,他引:1  
高巍  尚忠林 《植物学通报》2010,45(5):632-639
气孔运动与植物水分代谢密切相关。保卫细胞中的无机离子作为第二信使(Ca2+)或者渗透调节物质(K+、Cl-)在响应外界理化因子的刺激、调节保卫细胞膨压过程中发挥重要作用。保卫细胞质膜和液泡膜上的离子通道作为各种刺激因素作用的靶位点,是保卫细胞离子转运的关键组分,在气孔运动调控过程中扮演关键角色。该文对近年来保卫细胞离子的作用和离子通道研究的进展进行了综述。  相似文献   

9.
Juvenile Rhabdosargus holubi (Steindachner), one of the commonest teleosts in south east African estuaries, are strong osmoregulators, showing little change in their internal osmotic concentration over an extremely wide salinity range. In 35‰ seawater the internal osmotic concentration is held at 370 mosmol/1. At a salinity of 1‰ the internal osmotic concentration falls to 216 mosmol/1 and at a salinity of 65‰ rises to 381 mosmol/1. When exposed to a new salinity the internal osmotic concentration does not change until after 10 h; this may be of considerable importance to fish living in areas subject to short term changes of salinity.  相似文献   

10.
A method was devised to measure the work of adhesion (WA) to a substrate of mucus, a viscoelastic gel, from the measured contact angle of glycerol on a mucus substrate and the known physical properties of a Teflon surface. Fifteen sputum samples from cystic fibrosis (CF) patients were compared with 25 mucus samples from canine tracheal pouches (CP), studied in the hydrated and partially dehydrated states. Apparent viscosity (eta A) and recoverable shear strain (SR) were measured by fluxgate magnetometry, and water content was inferred from vapor pressure osmometry. Na+, K+, and Ca2+ concentrations were measured with specific ion electrodes and Cl- with a chloridimeter. The Cl- concentration of the CP mucus was inversely proportional to its osmolality, and the Cl- concentration of the CP mucus was 102.5 +/- 1.6 meq/l compared with 55.6 +/- 2.5 meq/l for CF sputum. When CP mucus osmolality was increased from 316.0 +/- 5.5 to 430.0 +/- 7.5 mosmol/kg, WA increased from 25.1 +/- 1.8 to 31.1 +/- 1.2 ergs/cm2 and eta A increased from 391 +/- 55 to 622 +/- 121 P, respectively. CF sputum WA was 30.2 +/- 0.6 ergs/cm2, eta A was 1,110 +/- 316 P, and osmolality was 466.0 +/- 14.0 mosmol/kg. The increased WA and eta A of mucus in CF patients may thus be dependent on the hydration of mucus, which is related to the documented Cl- transport defect.  相似文献   

11.
A new mathematical model of ion movements in airway epithelia is presented, which allows predictions of ion fluxes, membrane potentials and ion concentrations. The model includes sodium and chloride channels in the apical membrane, a Na/K pump and a cotransport system for Cl- with stoichiometry Na+:K+:2Cl- in the basolateral membrane. Potassium channels in the basolateral membrane are used to regulate cell volume. Membrane potentials, ion fluxes and intracellular ion concentration are calculated as functions of apical ion permeabilities, the maximum pump current and the cotransport parameters. The major predictions of the model are: (1) Cl- concentration in the cell is determined entirely by the intracellular concentration of negatively charged impermeable ions and the osmotic conditions; (2) changes in intracellular Na+ and K+ concentrations are inversely related; (3) cotransport provides the major driving force for Cl- flux, increases intracellular Na+ concentration, decreases intracellular K+ concentration and hyperpolarizes the cell interior; (4) the maximum rate of the Na/K pump, by contrast, has little effect on Na+ or Cl- transepithelial fluxes and a much less pronounced effect on cell membrane polarization; (5) an increase in apical Na+ permeability causes an increase in intracellular Na+ concentration and a significant increase in Na+ flux; (6) an increase in apical Cl- permeability decreases intracellular Na+ concentration and Na+ flux; (7) assuming Na+ and Cl- permeabilities equal to those measured in human nasal epithelia, the model predicts that under short circuit conditions, Na+ absorption is much higher than Cl- secretion, in agreement with experimental measurements.  相似文献   

12.
Summary Ionic composition and turgor pressure in the giant celled marine alga,Valonia macrophysa, were measured at environmental salinities ranging from 15 to 60 (11–44 atm). The steady-state turgor pressure, which is normally about 1.5 atm, changes only 2.5 atm in response to a 25 atm change in seawater osmotic pressure. Thus, turgor regulation is 90% effective. The salts important in turgor regulation are KCl and NaCl. During turgor regulation changes in intracellular KCl concentration account for 85% of the change in sap osmolality, and changes in NaCl account for the remaining 15%. Potassium is actively transported into the vacuole, whereas chloride appears to be passively transported as the counter ion. Thus, potassium transport, which we have shown previously to be sensitive to the turgor pressure, accounts for most of the turgor regulation at all salinities.  相似文献   

13.
The possible role of cerebrocortical ion homeostasis, NAD/NADH redox state and of cortical oxygen tension was investigated in the initiation of hypoxic cortical vasodilatation. In addition, changes in cerebrocortical extracellular concentrations of Na+, K+, and Cl- during anoxia were studied. The results were as follows. a) The cerebrocortical reflectance decrease, e.g. cerebral vasodilatation, lagged behind the cortical pO2 decrease by 1-2 sec, but preceded the decrease of arterial blood pressure and ECoG as well as the extracellular Na+, K+, Cl- increases by 20-30 sec. Since the cortical pO2 decreased first and the ion changes lagged behind the onset of vasodilatation by 20-30 sec, it is suggested that the CBF increase in hypoxia is mediated via the cortical pO2 decrease. b) A significant NAD reduction was already present after 20 sec. of nitrogen breathing. Since the ECoG and MABP decreased, and K+ activity increased much later than this, it is presumed that the NAD reduction during the first 30-40 sec of anoxia indicates an increased rate of glycolysis, but not mitochondrial hypoxia. c) In the predepolarization phase a 17% K+, 4% Na+, 5% Cl- increase is probably the result of a reduction of the extracellular spaces caused by water movement and by the migration of Na+ and Cl- from the extracellular to the intracellular space. The large K+, Na+, Cl- changes during terminal depolarization can be interpreted as a result of the failure of the membrane bound Na+ -K+ pump and of the altered ion permeability of the cell membranes.  相似文献   

14.
The modulation of serotonin uptake kinetics by Na+, Cl-, H+, and K+ was investigated in brush-border membrane vesicles prepared from normal human term placentas. The presence of Na+ and Cl- in the external medium was mandatory for the function of the serotonin transporter. In both cases, the initial uptake rate of serotonin was a hyperbolic function of the ion concentration, indicating involvement of one Na+ and one Cl- per transport of one serotonin molecule. The apparent dissociation constant for Na+ and Cl- was 145 and 79 mM, respectively. The external Na+ increased the Vmax of the transporter and also increased the affinity of the transporter for serotonin. The external Cl- also showed similar effects on the Vmax and the Kt, but its effect on the Kt was small compared to that of Na+. The presence of an inside-acidic pH, with or without a transmembrane pH gradient, stimulated the NaCl-dependent serotonin uptake. The effect of internal [H+] on the transport function was to increase the Vmax and decrease the affinity of the transporter for serotonin. The presence of K+ inside the vesicles also greatly stimulated the initial rates of serotonin uptake, and the stimulation was greater at pH 7.5 than at pH 6.5. This stimulation was a hyperbolic function of the internal K+ concentration at both pH values, indicating involvement of one K+ per transport of one serotonin molecule. The apparent dissociation constant for K+ was 5.6 mM at pH 6.5 and 4.0 mM at pH 7.5. The effects of internal [K+] on the uptake kinetics were similar to those of internal [H+].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The ion activities in the lateral spaces of the unilateral preparation of the gallbladder of Rana catesbiana were measured by double-barrelled ion-selective microelectrodes. The bladders were bathed in a saline solution with a low osmolarity (62 mOsm) containing, in mM: 27 Na+, 27 Cl-, 2 K+, 1 Ca++, 4 HCO3-. Working at reduced osmolarities had the advantage of an increased volume transport and of widened intercellular spaces. The reference barrel recorded an electrical potential of +2.7 mV in the spaces; they contained a solution similar to the external solution. The electrodes recorded a Na+ concentration of 27 mM, a K+ concentration of 1.7 mM, a Ca++ concentration of 0.69 mM and a Cl- concentration of 28.5 mM. In the spaces there was a lower resistance between the tip of the electrode and the serosal bath than that recorded with the tip in the lumen, and injection of fluorescent dye (11 A diameter) via the electrodes did not stain the cells. The concentrations in the secretion were similar to those in the spaces. The intracellular compartment had an apparent K+ concentration of 95 mM, and the concentrations of Na+ and Cl- were both about 5 mM. These data indicate that when the gallbladder is bathed with hypotonic solutions and is transporting fluid at approximately three or four times the normal rate, there are no significant osmotic gradients between the lumen and the lateral spaces. It is suggested that transcellular transport of water is implemented by a combination of high osmotic permeabilities across both mucosal and serosal cell membranes and low reflection coefficients (for K+ salts) at the serosal cell membranes.  相似文献   

16.
Peanut (Arachis hypogaea L.) and cotton (Gossypium hirsutum) plants were grown for 4 weeks in saline, isoosmotic rooting substrates with different proportions of K and Na. Isoosmotic media did not affect growth (except at the highest external K concentrations) or estimates of intracellular osmotic pressure in expanding leaves (i.e. osmotic pressure of leaf sap and intracellular osmotic pressure as calculated from pressure-volume curves). In expanded leaves, an increase in the proportion of external K increased sap osmotic pressure. The sum of [K+Na+Cl] in the sap of expanding and expanded leaves accounted for the effect of isoosmotic media on the concentration of osmolytes with high electrical conductance, so the difference between sap osmotic pressure and [K+Na+Cl] accounted for the concetration of osmolytes with low conductance. In expanding leaves, an increase in the proportion of external K increased [K+Na+Cl] and decreased the concentration of osmolytes with low conductance. In expanded leaves, an increase in the proportion of external K increased [K+Na+Cl] to approximately the same extent as sap osmotic pressure. Isoosmotic regulation was apparent in expanding leaves but not evident in expanded leaves. This suggests a turgor homeostat which can influence the concentration of organic solutes in expanding leaves but cannot control the import of inorganic solutes from a rooting medium nor the total production of organic solutes in plants with a low sink:source ratio.  相似文献   

17.
In vivo K+, Na+, Ca2+, Cl- and H+ activities in the cytosol and the contractile vacuole fluid, the overall cytosolic osmolarity, the fluid segregation rate per contractile vacuole and the membrane potential of the contractile vacuole complex of Paramecium multimicronucleatum were determined in cells adapted to 24 or 124 mosm l(-1) solutions containing as the monovalent cation(s): 1) 2 mmol l(-1) K+; 2) 2 mmol l(-1) Na+; 3) 1 mmol l(-1) K+ plus 1 mmol l(-1) Na+; or 4) 2 mmol l(-1) choline. In cells adapted to a given external osmolarity i) the fluid segregation rate was the same if adapted to either K+ or Na+, twice as high when adapted to solutions containing both K+ and Na+, and reduced by 50% or more in solutions containing only choline, ii) the fluid of the contractile vacuole was always hypertonic to the cytosol while the sum of the ionic activities measured in the fluid of the contractile vacuole was the same in cells adapted to either K+ or Na+, at least 25% higher in cells adapted to solutions containing both K+ and Na+, and was reduced by 55% or more in solutions containing only choline, iii) the cytosolic osmolarity was the same in cells adapted to K+ alone, to Na+ alone or to both K+ and Na+, whereas it was significantly lower in cells adapted to choline. At a given external osmolarity, a positive relationship between the osmotic gradient across the membrane of the contractile vacuole complex and the fluid segregation rate was observed. We conclude that both the plasma membrane and the membrane of the contractile vacuole complex play roles in fluid segregation. The presence of external Na+ moderated K+ uptake and caused the Ca2+ activity in the contractile vacuole fluid to rise dramatically. Thus, Ca2+ can be eliminated through the contractile vacuole complex when Na+ is present externally. The membrane potential of the contractile vacuole complex remained essentially the same regardless of the external ionic conditions and the ionic composition of the fluid of the contractile vacuole. Notwithstanding the large number of V-ATPases in the membrane of the decorated spongiome, the fluid of the contractile vacuole was found to be only mildly acidic, pH 6.4.  相似文献   

18.
The elemental and water content of cultured bovine adrenal chromaffin cells and their secretory chromaffin granules have been measured and compared with isolated chromaffin granules using quick freezing, ultracryomicrotomy, and electron microprobe analysis methods. In units of millimole/kilogram dry weight (+/- S.E.) granules in situ contained: P, 523 +/- 32; K+, 124 +/- 9; S, 82 +/- 3; Cl-, 74 +/- 9; Ca2+, 13 +/- 2; Mg2+, 6 +/- 2; and Na+, -2 +/- 2. Following routine isolation in isotonic sucrose buffer, granule K and Cl- had decreased while granule Na+ increased. Cl- exhibited a consistent decrease to 35-40 mmol/kg dry weight. Granule Na+ and K+ concentrations ranged from 43 to 12 mmol/kg and 28 to 60 mmol/kg dry weight, respectively, depending on the Na+ and K+ content of the buffer. Despite the redistribution of monovalent ions, granule Ca2+, granule P, being in the form of ATP, and granule S, being in the form of protein, were not significantly changed. The stability of these elements is consistent with the existence of a stable storage complex for Ca2+, ATP, and protein. Using the granule as an internal standard with a water content of 66%, the water contents of external space, nucleus, cytoplasm, and mitochondria were estimated to be 89, 88, 82, and 70%, respectively. Wet weight concentrations for each element were calculated for granules and cytoplasm from which the transgranular concentration gradients for K+, Cl-, and Na+ were determined. Cl-, a permeant anion, was 2-fold higher in the granule than in the cytoplasm while K+, a slightly permeant cation, had an opposite distribution ratio slightly less than two. Together, the K+ and Cl- data suggest the presence of an inside-positive granule membrane potential of approximately 10-16 mV. The surprising lack of Na+ from the granule matrix suggests a hugh inward gradient for Na+ even though the Na+ content of chromaffin cell cytoplasm is low at 5 mmol/kg water. The lack of an outward Na+ gradient is important in that it indicates that the previously described electroneutral Na+-Ca2+ exchange system, by which isolated granules accumulate Ca2+, does not operate in mature granules in situ. Consequently, if chromaffin granules regulate internal calcium during stimulus secretion coupling, a mechanism other that Na+-Ca2+ exchange is necessary.  相似文献   

19.
Using ion-selective microelectrodes, we measured the activity of H+, K+, Ca2+, and Cl- and the electrical potential both in the vacuole and in the cytoplasm of the unicellular green alga Eremosphaera viridis to obtain comparable values of the named parameters from the same object under identical conditions. The cytosol had a pH of 7.3, and activities of the other ions were 130 mM K+, 160 nM Ca2+, and 2.2 mM Cl-. We observed only small and transient light-dependent changes of the cytosolic Ca2+ activity. The vacuolar K+ activity did not differ significantly from the cytosolic one. The Ca2+ activity inside the vacuole was approximately 200 [mu]M, the pH was 5.0, and the Cl- activity was 6.2 mM. The concentrations of K+, Ca2+, and Cl- in cell extracts were measured by induction-coupled plasma spectroscopy and anion chromatography. This confirmed the vacuolar activities for K+ and Cl- obtained with ion-selective microelectrodes and indicated that approximately 60% of the vacuolar Ca2+ was buffered. The tonoplast potential was vanishingly low ([less than or equal to][plus or minus]2 mV). There was no detectable electrochemical potential gradient for K+ across the tonoplast, but there was, however, an obvious electrochemical potential gradient for Cl- (-26 mV), indicating an active accumulation of Cl- inside the vacuole.  相似文献   

20.
The giant marine alga Valonia utricularis is capable of regulating its turgor pressure in response to changes in the osmotic pressure of the sea water. The turgor pressure response comprises two phases, a fast, exponential phase arising exclusively from water shifting between the vacuole and the external medium (time constant about 10 min) and a second very slow, almost exponential phase adjusting (but not always) the turgor pressure near to the original value by release or uptake of KCl (time constant about 5 h). The changes in the vacuolar membrane potential as well as in the individual conductances of the tonoplast and plasmalemma accompanying turgor pressure regulation were measured by using the vacuolar perfusion assembly (with integrated microelectrodes, pressure transducers and pressure‐regulating valves) as described by Wang et al. (J. Membrane Biology 157, 311–321, 1997). Measurements on pressure‐clamped cells gave strong evidence that the turgor pressure, but not effects related to water flow (i.e. electro‐osmosis or streaming potential) or changes in the internal osmotic pressure and in the osmotic gradients, triggers the cascade of osmotic and electrical events recorded after disturbance of the osmotic equilibrium. The findings definitely exclude the existence of osmosensors as postulated for other plant cells and bacteria. There was also evidence that turgor pressure signals were primarily sensed by ion transporters in the vacuolar membrane because conductance changes were first recorded in the many‐folded tonoplast and then significantly delayed in the plasmalemma independent of the direction of the osmotic challenge. Consistently, turgor pressure up‐regulation (but not down‐regulation) could be inhibited reversibly by external addition of the K+ transport inhibitor Ba2+ and/or by the Cl transport inhibitor 4,4′‐diisothiocyanatostilbene‐2,2′‐disulfonic acid (DIDS). Extensive studies under iso‐, hyper‐ and hypo‐osmotic conditions revealed that K+ and Cl contribute predominantly to the plasmalemma conductance. Addition of 0.3 mm NaCN showed further that part of the K+ and Cl transporters depended on ATP. These transporters are apparently up‐regulated upon hyper‐osmotic, but not hypo‐osmotic challenge. These findings explain the strong increase of the K+ influx upon lowering turgor pressure and the less pronounced pressure‐dependence of the Cl influx of V. utricularis reported in the literature. The data derived from the blockage experiments under hypo‐osmotic conditions were also equally consistent with the experimental findings that the K+ efflux is solely passive and progressively increases with increasing turgor pressure due to an increase of the volumetric elastic modulus of the cell wall. However, despite unravelling some of the sequences and other components involved in turgor pressure regulation of V. utricularis the co‐ordination between the ion transporters in the tonoplast and plasmalemma remains unresolved because of the failure to block the tonoplast transporters by addition of Ba2+ and DIDS from the vacuolar side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号