首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary structure of human IGF-I, except for the disulfide bond system, has been reported by Rinderknecht and Humbel. IGF-I afforded the corresponding characteristic peptide fragment on V8 protease digestion, which contained Cys6, Cys47, Cys48, and Cys52. Two possible fragments, Type I with Cys6-Cys47 and Cys48-Cys52, and Type II with Cys6-Cys48 and Cys47-Cys52, were synthesized. The disulfide bond system of IGF-I was unequivocally determined to be the Type II form along with Cys18-Cys61. Interestingly, the Type I system was included in the disulfide bond isomer produced as the main by-product in the refolding step on IGF-I synthesis by the recombinant DNA method.  相似文献   

2.
Energetics of structural domains in alpha-lactalbumin.   总被引:3,自引:3,他引:0       下载免费PDF全文
alpha-Lactalbumin is a small, globular protein that is stabilized by four disulfide bonds and contains two structural domains. One of these domains is rich in alpha-helix (the alpha-domain) and has Cys 6-Cys 120 and Cys 28-Cys 111 disulfide bonds. The other domain is rich in beta-sheet (the beta-domain), has Cys 61-Cys 77 and Cys 73-Cys 91 disulfide bonds, and includes one calcium binding site. To investigate the interaction between domains, we studied derivatives of bovine alpha-lactalbumin differing in the number of disulfide bonds, using calorimetry and CD at different temperatures and solvent conditions. The three-disulfide form, having a reduced Cys 6-Cys 120 disulfide bond with carboxymethylated cysteines, is similar to intact alpha-lactalbumin in secondary and tertiary structure as judged by its ellipticity in the near and far UV. the two-disulfide form of alpha-lactalbumin, having reduced Cys 6-Cys 120 and Cys 28-Cys 111 disulfide bonds with carboxymethylated cysteines, retains about half the secondary and tertiary structure of the intact alpha-lactalbumin. The remaining structure is able to bind calcium and unfolds cooperatively upon heating, although at lower temperature and with significantly lower enthalpy and entropy. We conclude that, in the two disulfide form, alpha-lactalbumin retains its calcium-binding beta-domain, whereas the alpha-domain is unfolded. It appears that the beta-domain does not require alpha-domain to fold, but its structure is stabilized significantly by the presence of the adjacent folded alpha-domain.  相似文献   

3.
Human lysozyme is made up of 130 amino acid residues and has four disulfide bonds at Cys6-Cys128, Cys30-Cys116, Cys65-Cys81, and Cys77-Cys95. Our previous results using the Saccharomyces cerevisiae secretion system indicate that the individual disulfide bonds of human lysozyme have different functions in the correct in vivo folding and enzymatic activity of the protein (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). In this paper, we report the results of experiments that were focused on the roles of Cys65 and Cys81 in the folding of human lysozyme protein in yeast. A mutant protein (C81A), in which Cys81 was replaced with Ala, had almost the same enzymatic activity and conformation as those of the native enzyme. On the other hand, another mutant (C65A), in which Cys65 was replaced with Ala, was not found to fold correctly. These results indicate that Cys81 is not a requisite for both correct folding and activity, whereas Cys65 is indispensable. The mutant protein C81A is seen to contain a new, non-native disulfide bond at Cys65-Cys77. The possible occurrence of disulfide bond interchange during our mapping experiments cannot be ruled out by the experimental techniques presently available, but characterization of other mutant proteins and computer analysis suggest that the intramolecular exchange of disulfide bonds is present in the folding pathway of human lysozyme in vivo.  相似文献   

4.
Disulfide bonds between the side chains of cysteine residues are the only common crosslinks in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the conformational stability and catalytic activity of RNase A has been determined by using variants in which each cystine is replaced independently with a pair of alanine residues. Thermal unfolding experiments monitored by ultraviolet spectroscopy and differential scanning calorimetry reveal that wild-type RNase A and each disulfide variant unfold in a two-state process and that each disulfide bond contributes substantially to conformational stability. The two terminal disulfide bonds in the amino-acid sequence (Cys26-Cys84 and Cys58-Cys110) enhance stability more than do the two embedded ones (Cys40-Cys95 and Cys65-Cys72). Removing either one of the terminal disulfide bonds liberates a similar number of residues and has a similar effect on conformational stability, decreasing the midpoint of the thermal transition by almost 40 degrees C. The disulfide variants catalyze the cleavage of poly(cytidylic acid) with values of kcat/Km that are 2- to 40-fold less than that of wild-type RNase A. The two embedded disulfide bonds, which are least important to conformational stability, are most important to catalytic activity. These embedded disulfide bonds likely contribute to the proper alignment of residues (such as Lys41 and Lys66) that are necessary for efficient catalysis of RNA cleavage.  相似文献   

5.
The 45-residue C-terminal EGF-like domain in human blood coagulation factor IX has been synthesized by a 2-step method to form selectively 3 disulfide bridges. Four out of 6 cysteines are blocked with either trityl or 4-methyl-benzyl, and the remaining 2 cysteines are blocked with acetamidomethyl (Acm). In the first step, 4 free cysteinyl thiols are released concurrently with the removal of all protecting groups except Acm and are oxidized to form 1 of the 3 possible isomers containing 2 pairs of disulfides. In the second step, iodine is used to remove the Acm groups to yield the third disulfide bridge. This approach reduces the number of possible disulfide bridging patterns from 15 to 3. To determine the optimal protecting group strategy, 3 peptides are synthesized, each with Acm blocking 1 of the 3 pairs of cysteines involved in disulfide bridges: Cys5 to Cys16 (Cys 1-3), Cys12 to Cys26 (Cys 2-4), or Cys28 to Cys41 (Cys 5-6). Only the peptide having the Cys 2-4 pair blocked with Acm forms the desired disulfide isomer (Cys 1-3/5-6) in high yield after the first step folding, as identified by proteolytic digestion in conjunction with mass spectrometric peptide mapping. Thus, the choice of which pair of cysteines to block with Acm is critically important. In the case of EGF-like peptides, it is better to place the Acm blocking groups on one of the pairs of cysteines involved in the crossing of disulfide bonds.  相似文献   

6.
Kaerner A  Rabenstein DL 《Biochemistry》1999,38(17):5459-5470
alpha-Conotoxin GI is a 13 residue snail toxin peptide cross-linked by Cys2-Cys7 and Cys3-Cys13 disulfide bridges. The formation of the two disulfide bonds by thiol/disulfide exchange with oxidized glutathione (GSSG) has been characterized. To characterize formation of the first disulfide bond in each of the two pathways by which the two disulfide bonds can form, two model peptides were synthesized in which Cys3 and Cys13 (Cono-1) or Cys2 and Cys7 (Cono-2) were replaced by alanines. Equilibrium constants were determined for formation of the single disulfide bonds of Cono-1 and Cono-2, and an overall equilibrium constant was measured for formation of the two disulfide bonds of alpha-conotoxin GI in pH 7.00 buffer and in pH 7. 00 buffer plus 8 M urea using concentrations obtained by HPLC analysis of equilibrium thiol/disulfide exchange reaction mixtures. The results indicate a modest amount of cooperativity in the formation of the second disulfide bond in both of the two-step pathways by which alpha-conotoxin GI folds into its native structure at pH 7.00. However, when considered in terms of the reactive thiolate species, the results indicate substantial cooperativity in formation of the second disulfide bond. The solution conformational and structural properties of Cono-1, Cono-2, and alpha-conotoxin GI were studied by 1H NMR to identify structural features which might facilitate formation of the disulfide bonds or are induced by formation of the disulfide bonds. The NMR data indicate that both Cono-1 and Cono-2 have some secondary structure in solution, including some of the same secondary structure as alpha-conotoxin GI, which facilitates formation of the second disulfide bond by thiol/disulfide exchange. However, both Cono-1 and Cono-2 are considerably less structured than alpha-conotoxin GI, which indicates that formation of the second disulfide bond to give the Cys2-Cys7, Cys3-Cys13 pairing induces considerable structure into the backbone of the peptide.  相似文献   

7.
The membrane-associated flavoprotein Ero1p promotes disulfide bond formation in the endoplasmic reticulum (ER) by selectively oxidizing the soluble oxidoreductase protein disulfide isomerase (Pdi1p), which in turn can directly oxidize secretory proteins. Two redox-active disulfide bonds are essential for Ero1p oxidase activity: Cys100-Cys105 and Cys352-Cys355. Genetic and structural data indicate a disulfide bond is transferred from Cys100-Cys105 directly to Pdi1p, whereas a Cys352-Cys355 disulfide bond is used to reoxidize the reduced Cys100-Cys105 pair through an internal thiol-transfer reaction. Electron transfer from Cys352-Cys355 to molecular oxygen, by way of a flavin cofactor, maintains Cys352-Cys355 in an oxidized form. Herein, we identify a mixed disulfide species that confirms the Ero1p intercysteine thiol-transfer relay in vivo and identify Cys105 and Cys352 as the cysteines that mediate thiol-disulfide exchange. Moreover, we describe Ero1p mutants that have the surprising ability to oxidize substrates in the absence of Cys100-Cys105. We show the oxidase activity of these mutants results from structural changes in Ero1p that allow substrates increased access to Cys352-Cys355, which are normally buried beneath the protein surface. The altered activity of these Ero1p mutants toward selected substrates leads us to propose the catalytic mechanism involving transfer between cysteine pairs evolved to impart substrate specificity to Ero1p.  相似文献   

8.
Yang YS  Mitta G  Chavanieu A  Calas B  Sanchez JF  Roch P  Aumelas A 《Biochemistry》2000,39(47):14436-14447
MGD-1 is a 39-residue defensin-like peptide isolated from the edible Mediterranean mussel, Mytilus galloprovincialis. This peptide is characterized by the presence of four disulfide bonds. We report here its solid-phase synthesis and an easy way to improve the yield of the four native disulfide bonds. Synthetic and native MGD-1 display similar antibacterial activity, suggesting that the hydroxylation of Trp28 observed in native MGD-1 is not involved in the antimicrobial effect. The three-dimensional solution structure of MGD-1 has been established using (1)H NMR and mainly consists of a helical part (Asn7-Ser16) and two antiparallel beta-strands (Arg20-Cys25 and Cys33-Arg37), together giving rise to the common cystine-stabilized alpha-beta motif frequently observed in scorpion toxins. In MGD-1, the cystine-stabilized alpha-beta motif is stabilized by four disulfide bonds (Cys4-Cys25, Cys10-Cys33, Cys14-Cys35, and Cys21-Cys38), instead of by the three disulfide bonds commonly found in arthropod defensins. Except for the Cys21-Cys38 disulfide bond which is solvent-exposed, the three others belong to the particularly hydrophobic core of the highly constrained structure. Moreover, the C4-P5 amide bond in the cis conformation characterizes the MGD-1 structure. MGD-1 and insect defensin A possess similar bactericidal anti-Gram-positive activity, suggesting that the fourth disulfide bond of MGD-1 is not essential for the biological activity. In agreement with the general features of antibacterial peptides, the MGD-1 and defensin A structures display a typical distribution of positively charged and hydrophobic side chains. The positively charged residues of MGD-1 are located in three clusters. For these two defensin peptides isolated from insects and mollusks, it appears that the rather well conserved location of certain positively charged residues and of the large hydrophobic cluster are enough to generate the bactericidal potency and the Gram-positive specificity.  相似文献   

9.
Hirudin is an anticoagulant polypeptide isolated from a medicinal leech that inhibits thrombin with extraordinary potency (Kd = 0.2-1.0 pM) and selectivity. Hirudin is composed of a compact N-terminal region (residues 1-47, cross-linked by three disulfide bridges) that binds to the active site of thrombin, and a flexible C-terminal tail (residues 48-64) that interacts with the exosite I of the enzyme. To minimize the sequence of hirudin able to bind thrombin and also to improve its therapeutic profile, several N-terminal fragments have been prepared as potential anticoagulants. However, the practical use of these fragments has been impaired by their relatively poor affinity for the enzyme, as given by the increased value of the dissociation constant (Kd) of the corresponding thrombin complexes (Kd = 30-400 nM). The aim of the present study is to obtain a derivative of the N-terminal domain 1-47 of hirudin displaying enhanced inhibitory potency for thrombin compared to the natural product. In this view, we have synthesized an analogue of fragment 1-47 of hirudin HM2 in which Val1 has been replaced by tert-butylglycine, Ser2 by Arg, and Tyr3 by beta-naphthylalanine, to give the BugArgNal analogue. The results of chemical and conformational characterization indicate that the synthetic peptide is able to fold efficiently with the correct disulfide topology (Cys6-Cys14, Cys16-Cys28, Cys22-Cys37), while retaining the conformational properties of the natural fragment. Thrombin inhibition data indicate that the effects of amino acid replacements are perfectly additive if compared to the singly substituted analogues (De Filippis V, Quarzago D, Vindigni A, Di Cera E, Fontana A, 1998, Biochemistry 37:13507-13515), yielding a molecule that inhibits the fast or slow form of thrombin by 2,670- and 6,818-fold more effectively than the natural fragment, and that binds exclusively at the active site of the enzyme with an affinity (Kd,fast = 15.4 pM, Kd,slow = 220 pM) comparable to that of full-length hirudin (Kd,fast = 0.2 pM, Kd,slow = 5.5 pM). Moreover, BugArgNal displays absolute selectivity for thrombin over the other physiologically important serine proteases trypsin, plasmin, factor Xa, and tissue plasminogen activator, up to the highest concentration of inhibitor tested (10 microM).  相似文献   

10.
The N-terminal cysteine-rich somatomedin B (SMB) domain (residues 1-44) of the human glycoprotein vitronectin contains the high-affinity binding sites for plasminogen activator inhibitor-1 (PAI-1) and the urokinase receptor (uPAR). We previously showed that the eight cysteine residues of recombinant SMB (rSMB) are organized into four disulfide bonds in a linear uncrossed pattern (Cys(5)-Cys(9), Cys(19)-Cys(21), Cys(25)-Cys(31), and Cys(32)-Cys(39)). In the present study, we use an alternative method to show that this disulfide bond arrangement remains a major preferred one in solution, and we determine the solution structure of the domain using NMR analysis. The solution structure shows that the four disulfide bonds are tightly packed in the center of the domain, replacing the traditional hydrophobic core expected for a globular protein. The few noncysteine hydrophobic side chains form a cluster on the outside of the domain, providing a distinctive binding surface for the physiological partners PAI-1 and uPAR. The hydrophobic surface consists mainly of side chains from the loop formed by the Cys(25)-Cys(31) disulfide bond, and is surrounded by conserved acidic and basic side chains, which are likely to contribute to the specificity of the intermolecular interactions of this domain. Interestingly, the overall fold of the molecule is compatible with several arrangements of the disulfide bonds. A number of different disulfide bond arrangements were able to satisfy the NMR restraints, and an extensive series of conformational energy calculations performed in explicit solvent confirmed that several disulfide bond arrangements have comparable stabilization energies. An experimental demonstration of the presence of alternative disulfide conformations in active rSMB is provided by the behavior of a mutant in which Asn(14) is replaced by Met. This mutant has the same PAI-1 binding activity as rVN1-51, but its fragmentation pattern following cyanogen bromide treatment is incompatible with the linear uncrossed disulfide arrangement. These results suggest that active forms of the SMB domain may have a number of allowed disulfide bond arrangements as long as the Cys(25)-Cys(31) disulfide bond is preserved.  相似文献   

11.
Location of disulfide bonds within the sequence of human serum cholinesterase   总被引:10,自引:0,他引:10  
Human serum cholinesterase was digested with pepsin under conditions which left disulfide bonds intact. Peptides were isolated by high pressure liquid chromatography, and those containing disulfide bonds were identified by a color assay. Peptides were characterized by amino acid sequencing and composition analysis. Human serum cholinesterase contains 8 half-cystines in each subunit of 574 amino acids. Six of these form three internal disulfide bridges: between Cys65-Cys92, Cys252-Cys263, and Cys400-Cys519. A disulfide bond with Cys65 rather than Cys66 was inferred by homology with Torpedo acetylcholinesterase. Cys571 forms a disulfide bridge with Cys571 of an identical subunit. This interchain disulfide bridge is four amino acids from the carboxyl terminus. A peptide containing the interchain disulfide is readily cleaved from cholinesterase by trypsin (Lockridge, O., and La Du, B. N. (1982) J. Biol. Chem. 257, 12012-12018), suggesting that the carboxyl terminus is near the surface of the globular tetrameric protein. The disulfide bridges in human cholinesterase have exactly the same location as in Torpedo californica acetylcholinesterase. There is one potential free sulfhydryl in human cholinesterase at Cys66, but this sulfhydryl could not be alkylated. Comparison of human cholinesterase, and Torpedo and Drosophila acetylcholinesterases to the serine proteases suggests that the cholinesterases constitute a separate family of serine esterases, distinct from the trypsin family and from subtilisin.  相似文献   

12.
The three-dimensional solution structure of a novel peptide, Pi7, purified from the venom of the scorpion Pandinus imperator, and for which no specific receptor has been found yet, was determined by two-dimensional homonuclear proton NMR methods from a nanomole amount of compound using a nano-nmr probe. Pandinus imperator peptide 7 does not block voltage-dependent K(+)-channels and does not displace labeled noxiustoxin from rat brain synaptosomal membranes. The toxin has 38 amino acid residues and, similarly to Pi1, is stabilized by four disulfide bridges (Cys6-Cys27, Cys12-Cys32, Cys16-Cys34, and Cys22-Cys37). In addition, the lysine at position 26 crucial for potassium-channel blocking is replaced in Pi7 by an arginine. Tyrosine 34, equivalent to Tyr36 of ChTX is present, but the N-terminal positions 1 and 2 are occupied by two acidic residues Asp and Glu, respectively. The dihedral angles and distance restraints obtained from measured NMR parameters were used in structural calculations in order to determine the conformation of the peptide. The disulfide-bridge topology was established using distance restraints allowing ambiguous partners between S atoms combined with NMR-derived structural information. The structure is organized around a short alpha-helix spanning residues Thr9 to Thr20/Gly21 and a beta-sheet. These two elements of secondary structure are stabilized by two disulfide bridges, Cys12-Cys32 and Cys16-Cys34. The antiparallel beta-sheet is composed of two strands extending from Asn22 to Cys34 with a tight turn at Ile28-Asn29 in contact with the N-terminal fragment Ile4 to Cys6.  相似文献   

13.
The minicollagens found in the nematocysts of Hydra constitute a family of invertebrate collagens with unusual properties. They share a common modular architecture with a central collagen sequence ranging from 14 to 16 Gly-X-Y repeats flanked by polyproline/hydroxyproline stretches and short terminal domains that show a conserved cysteine pattern (CXXXCXXXCXXX-CXXXCC). The minicollagen cysteine-rich domains are believed to function in a switch of the disulfide connectivity from intra- to intermolecular bonds during maturation of the capsule wall. The solution structure of the C-terminal fragment including a minicollagen cysteine-rich domain of minicollagen-1 was determined in two independent groups by 1H NMR. The corresponding peptide comprising the last 24 residues of the molecule was produced synthetically and refolded by oxidation under low protein concentrations. Both presented structures are identical in their fold and disulfide connections (Cys2-Cys18, Cys6-Cys14, and Cys10-Cys19) revealing a robust structural motif that is supposed to serve as the polymerization module of the nematocyst capsule.  相似文献   

14.
Mutant human lysozymes (HLZ) lacking two disulfide bonds were constructed to study the importance of each disulfide bond on oxidative refolding. To avoid destabilization, a calcium-binding site was introduced. Five of the six species of two-disulfide mutants could be obtained with enzymatic activity. Based on the information obtained from refolding and unfolding experiments, the order of importance in oxidative refolding was found to be as follows: SS2(Cys30-Cys116) > SS1(Cys6-Cys128) SS3(Cys65-Cys81) > SS4(Cys77-Cys95). Without SS2, these mutants refolded with low efficiency or did not refold at all. The bond SS2 is located in the interface of B-and D-helices, and a small hydrophobic cluster is formed near SS2. This cluster may play an important role in the folding process and stabilization, and SS2 may act as a stabilizer through its polypeptide linkage. The bond SS2 is the most important disulfide bond for oxidative folding of lysozymes.  相似文献   

15.
The mutant h-lysozyme, W64CC65A, with Trp64 and Cys65 replaced by Cys and Ala, respectively, was secreted by yeast and purified. Peptide mapping confirmed that W64CC65A contained a nonnative Cys64-Cys81 bond and three native disulfide bonds. The mutant had 2% of the lytic activity of the wild-type lysozyme. The midpoint concentration of the guanidine hydrochloride denaturation curve, the [D]1/2, was 2.7 M for W64CC65A at pH 3.0 and 25 degrees C, whereas the [D]1/2 for the wild-type h-lysozyme was 2.9 M. These results show that the W64CC65A protein is a compactly folded molecule. Our previous results, using the mutant C81A, indicate that Cys81 is not required for correct folding and activity, whereas Cys65 is indispensable (Taniyama, Y., Yamamoto, Y., Kuroki, R., and Kikuchi, M. (1990) J. Biol. Chem. 65, 7570-7575). Cys64 substituted for Cys65 in W64CC65A, even though the distance between the alpha-carbons at positions 64 and 81 in the wild-type h-lysozyme is not favorable for forming a disulfide bond. Unlike C81A, the mutant W64CC65/81A, which has the additional substitution of Ala for Cys81, did not fold. These results suggest that the absence of both the Cys64-Cys81 bond and the amino acid residue Trp64 caused the misfolding or destabilization of W64CC65/81A in vivo. It is proposed that the formation of the alternative bond, Cys64-Cys81 is important for the folding of W64CC65A in vivo.  相似文献   

16.
Human alpha-thrombin is a very important plasma serine protease, which is involved in physiologically vital processes like hemostasis, thrombosis, and activation of platelets. Knowledge regarding the structural stability of alpha-thrombin is essential for understanding its biological regulation. Here, we investigated the structural and conformational stability of alpha-thrombin using the techniques of disulfide reduction and disulfide scrambling. alpha-Thrombin is composed of a light A-chain (36 residues) and a heavy B-chain (259 residues) linked covalently by an inter-chain disulfide bond (Cys(1)-Cys(122)). The B-chain is stabilized by three intra-chain disulfide bonds (Cys(42)-Cys(58), Cys(168)-Cys(182), and Cys(191)-Cys(220)) (Chymotrypsinogen nomenclature). Upon reduction with dithiothreitol (DTT), alpha-thrombin unfolded in a 'sequential' manner with sequential reduction of Cys(168)-Cys(182) within the B-chain followed by the inter-chain disulfide, generating two distinct partially reduced intermediates, I-1 and I-2, respectively. Conformational stability of alpha-thrombin was investigated by the technique of disulfide scrambling. alpha-Thrombin denatures by scrambling its native disulfide bonds in the presence of denaturant [urea, guanidine hydrochloride (GdmCl) or guanidine thiocyanate (GdmSCN)] and a thiol initiator. During the process, cleavage of the inter-chain disulfide bond and release of the A-chain from B-chain was the foremost event. The three disulfides in the B-chain subsequently scrambled to form three major isomers (designated as X-Ba, X-Bb, and X-Bc). Complete denaturation of alpha-thrombin was observed at low concentrations of denaturants (0.5 M GdmSCN, 1.5 M GdmCl, or 3 M urea) indicating low conformational stability of the protease.  相似文献   

17.
Hirudin, the thrombin-specific inhibitor from the leech Hirudo medicinalis, is a single-chain polypeptide (65 amino-acid residues) linked by three disulfide bridges. Localization of the three disulfide bonds could be assigned on the basis of the structures of cystine peptides derived by high performance liquid chromatography separations of thermolysinolytic digest of native hirudin. By characterization of the nine major fragments by amino-acid analysis, N-terminal amino-acid determination and sequence analysis, the following disulfide linkages were identified: Cys6-Cys14, Cys16-Cys28 and Cys22-Cys39. Due to the lack of any closer sequence homology and topological structural homology to other serine proteinase inhibitor proteins, hirudin seems to be unique in its primary structure and hence designates an unknown inhibitor family.  相似文献   

18.
Bian Y  Liang X  Fang N  Tang XF  Tang B  Shen P  Peng Z 《FEBS letters》2006,580(25):6007-6014
Thermophilic WF146 protease possesses four surface loop insertions and a disulfide bond, resembling its psychrophilic (subtilisins S41 and S39) and mesophilic (subtilisins SSII and sphericase) homologs. Deletion of the insertion 3 (positions 193-197) or insertion 4 (positions 210-221) of WF146 protease resulted in a significant decrease of the enzyme stability. In addition, substitution of the residues Pro211 and Ala212 or residue Glu221 which localized in the vicinity of a Ca(2+) binding site of the enzyme by the corresponding residues in subtilisin S41 remarkably reduced the half-life of the enzyme at 70 degrees C, suggesting that the three residues contributed to the thermostability of the enzyme, probably by enhancing the affinity of enzyme to Ca(2+). In the presence of dithiothreitol, the WF146 protease suffered excessive autolysis, indicating that the Cys52-Cys65 disulfide bond played a critical role in stabilizing the WF146 protease against autolysis. The autolytic cleavage sites of the WF146 protease were identified to locate between residues Asn63-Gly64 and Cys65-Ala66 by N-terminal amino acid analysis of the autolytic product. It was noticed that the effect of the autolytic cleavage at Asn63-Gly64 could be compensated by the disulfide bond Cys52-Cys65 under non-reducing condition, and the disulfide bond cross-linked autolytic product remained active. The apparent stabilization effect of the disulfide bond Cys52-Cys65 in the WF146 protease might provide a rational basis for improving the stability of subtilase against autolysis by protein engineering.  相似文献   

19.
Charybdotoxin, a 37 amino acid peptide which is a minor component of Leiurus quinquestriatus venom, was synthesized by the solution procedure applying our maximum protection strategy. After formation of the three disulfide bonds, for which a redox buffer was necessary, the final product was purified to homogeneity and found to have similar biological potency to that reported by others for the natural product. The disulfide bond configuration was found to be: Cys7-Cys28; Cys13-Cys33; Cys17-Cys35. Conformational analysis by 1H-NMR showed that the molecule exists as a very tightly folded structure, in which residues 1-7 and 24-37 form a triple-stranded beta-sheet, with a turn at positions 30-31. The region from 11-20 appears to adopt an alpha-helical conformation.  相似文献   

20.
We prepared two dissected fragments of hen lysozyme and examined whether or not these two fragments associated to form a native-like structure. One (Fragment I) is the peptide fragment Asn59-homoserine-105 containing Cys64-Cys80 and Cys76-Cys94. The other (Fragment II) is the peptide fragment Lys1-homoserine-58 connected by two disulfide bridges, Cys6-Cys127 and Cys30-Cys115, to the peptide fragment Asn106-Leu129. It was found that the Fragment I immobilized in the cuvette formed an equimolar complex with Fragment II (K(d) = 3.3x10(-4) M at pH 8 and 25 degrees C) by means of surface plasmon resonance. Moreover, from analyses by circular dichroism spectroscopy and ion-exchange chromatography of the mixture of Fragments I and II at pH 8 under non-reducing conditions, it was suggested that these fragments associated to give the native-like structure. However, the mutant Fragment I in which Cys64-Cys80 and Cys76-Cys94 are lacking owing to the mutation of Cys to Ala, or the mutant fragment in which Trp62 is mutated to Gly, did not form the native-like species with Fragment II, because the mutant Fragment I derived from mutant lysozymes had no local conformation due to mutations. Considering our previous results where the preferential oxidation of two inside disulfide bonds, Cys64-Cys80 and Cys76-Cys94, occurred in the refolding of the fully reduced Fragment I, we suggest that the peptide region corresponding to Fragment I is an initiation site for hen lysozyme folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号