首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Speciation is the process that generates biodiversity, but recent empirical findings show that it can also fail, leading to the collapse of two incipient species into one. Here, we elucidate the mechanisms behind speciation collapse using a stochastic individual‐based model with explicit genetics. We investigate the impact of two types of environmental disturbance: deteriorated visual conditions, which reduce foraging ability and impede mate choice, and environmental homogenization, which restructures ecological niches. We find that: (1) Species pairs can collapse into a variety of forms including new species pairs, monomorphic or polymorphic generalists, or single specialists. Notably, polymorphic generalist forms may be a transient stage to a monomorphic population; (2) Environmental restoration enables species pairs to reemerge from single generalist forms, but not from single specialist forms; (3) Speciation collapse is up to four orders of magnitude faster than speciation, while the reemergence of species pairs can be as slow as de novo speciation; (4) Although speciation collapse can be predicted from either demographic, phenotypic, or genetic signals, observations of phenotypic changes allow the most general and robust warning signal of speciation collapse. We conclude that factors altering ecological niches can reduce biodiversity by reshaping the ecosystem's evolutionary attractors.  相似文献   

2.
The closely related species of leafhoppers, Oncopsis flavicollis (L.) and 0. subangulata (Sahl.), are restricted to birches, Betula pendula Roth and B. pubescens Ehrh., as host plants. Morphometric discriminant analyses of adult insects from S Wales showed O. flavicollis populations from the two Betula species to be significantly different. The best discrimination was provided by characters of the male dorsal abdominal apodemes. Analyses of such apodeme morphology in populations more widely from S Britain showed three distinct types: in western localities type 1 dominantly on B. pubescens , type 2 dominantly on B. pendula and type 3 absent; in eastern localities type 3 only on B. pendula , type 2 on both species of Betula and type 1 only on B. pubescens. Acoustic calling and courtship signals of males showed clear differences between the three apodeme types of 0. flavicollis. It is concluded that the three 0. flavicollis types, together with 0. subangulata , are distinct but very closely related biological species. Contrary to earlier suggestions, this example provides no evidence for host plant utilization polymorphisms.  相似文献   

3.
    
Changes in mating signals among populations contribute to species formation. Often these signals involve a suite of display traits of different sensory modalities (\"multimodal signals\"); however, few studies have tested the consequences of multimodal signal divergence with most focusing on only a single divergent signal or suite of signals of the same sensory modality. Populations of the chestnut-bellied flycatcher Monarcha castaneiventris vary in song and plumage color across the Solomon Islands. Using taxidermic mount presentation and song playback experiments, we tested for the relative roles of divergent song and color in homotypic (\"same type\") recognition between one pair of recently diverged sister taxa (the nominate chestnut-bellied M. c. castaneiventris and the white-capped M. c. richardsii forms). We found that both plumage and song type influenced the intensity of aggressive response by territory-owners, with plumage color playing a stronger role. These results indicate that differences in plumage and song are used in homotypic recognition, suggesting the importance of multimodal signal divergence in the evolution of premating reproductive isolation.  相似文献   

4.
    
Evolutionary changes in traits that affect both ecological divergence and mating signals could lead to reproductive isolation and the formation of new species. Insect cuticular hydrocarbons (CHCs) are potential examples of such dual traits. They form a waxy layer on the cuticle of the insect to maintain water balance and prevent desiccation, while also acting as signaling molecules in mate recognition and chemical communication. Because the synthesis of these hydrocarbons in insect oenocytes occurs through a common biochemical pathway, natural or sexual selection on one role may affect the other. In this review, we explore how ecological divergence in insect CHCs can lead to divergence in mating signals and reproductive isolation. We suggest that the evolution of insect CHCs may be ripe models for understanding ecological speciation.  相似文献   

5.
    
Species recognition is an important aspect of an organism''s biology. Here, we consider how parasitoid wasps vary their reproductive decisions when their offspring face intra- and interspecific competition for resources and mates. We use host acceptance and sex ratio behaviour to test whether female Nasonia vitripennis and Nasonia longicornis discriminate between conspecifics and heterospecifics when ovipositing. We tested pairs of conspecific or heterospecific females ovipositing either simultaneously or sequentially on a single host, using strains varying in their recent history of sympatry. Both N. vitripennis and N. longicornis rejected parasitized hosts more often than unparasitized hosts, although females were more likely to superparasitize their own species in the sequential treatment. However, sex ratio behaviour did not vary, suggesting similar responses towards conspecifics and heterospecifics. This contrasts with theory predicting that heterospecifics should not influence sex ratios as their offspring do not influence local mate competition, where conspecifics would. These non-adaptive sex ratios reinforce the lack of adaptive kin discrimination in N. vitripennis and suggest a behavioural constraint. Discrimination between closely related species is therefore context dependent in Nasonia. We suggest that isolating mechanisms associated with the speciation process have influenced behaviour to a greater extent than selection on sex ratios.  相似文献   

6.
Male mate choice, expressed through courtship preferences, sometime occurs even under the mating system of polygyny, when the operational sex ratio is skewed toward males. The conditions under which male mate choice may be expected during polygyny are not well established. Servedio and Lande (2006, Evolution 60:674-685), assuming strict polygyny where all females have equal mating success, show that when having a preference does not increase the amount of energy that a male can put into courtship, male preferences for "arbitrary" female ornaments should not be expected to evolve; direct selection acts against them because they place males that carry them into situations in which there is high competition for mates. Here I explore in detail two situations under which logic dictates that this effect may be overcome or reversed. First I determine the contributions that direct and indirect selection place on male versus female preferences for traits that increase viability, using notation that allows the exact expression of these measures of selection. I find that direct selection against male preferences still predominates in the male mate choice model, causing less evolution by male than female preferences under these conditions. Second I address whether male mate choice is likely to evolve as a mechanism of premating isolation leading to species recognition, driven by the process of reinforcement. Reinforcement is compared under male and female mate choice, using a variety of models analyzed by both analytical techniques assuming weak selection and numerical techniques under broader selective conditions. I demonstrate that although under many conditions stronger premating isolation evolves under female mate choice, reinforcement may indeed occur via male mate choice alone.  相似文献   

7.
    
  相似文献   

8.
    
A key question in speciation research is how ecological and sexual divergence arise and interact. We tested the hypothesis that mate choice causes local adaptation and ecological divergence using the rationale that the performance~signal trait relationship should parallel the attractiveness~signal trait relationship. We used female fecundity as a measure of ecological performance. We used a species in the Enchenopa binotata treehopper complex, wherein speciation involves adaptation to novel environments and divergence in sexual communication. We used a full‐sibling, split‐family rearing design to estimate genetic correlations (rG) between fecundity and signal traits, and compared those relationships against population‐level mate preferences for the signal traits. Animal model estimates for rG between female fecundity and male signal traits overlapped zero—rejecting the hypothesis—but could reflect sample size limitations. The magnitude of rG correlated with the strength of the mate preferences for the corresponding signal traits, especially for signal frequency, which has the strongest mate preference and the most divergence in the complex. However, signal frequencies favored by the population‐level mate preference are not associated with high fecundity. Therefore, mate preferences do not appear to have been selected to favor high‐performance genotypes. Our findings suggest that ecological and sexual divergence may arise separately, but reinforce each other, during speciation.  相似文献   

9.
Sexual size dimorphism and phylogeny in North American minnows   总被引:11,自引:0,他引:11  
Sexual size dimorphism (SSD) is predicted to vary across mating systems. A previous study examined a model of SSD in fishes as it relates to three mating system variables: probability of sperm competition, male territorial guarding, and male-male contest. I tested the ability of these variables to predict SSD in North American freshwater minnows, after controlling for phylogenetic effects by an independent contrasts method. Across 58 species only male territorial guarding was significandy related to SSD in a stepwise multiple regression. When tested for 26 genera and subgenera, both male territorial guarding and male-male contest were significant in the model. The concentrated-changes test revealed that character changes in SSD (from males the same size or smaller than females, to males larger than females) were more concentrated on branches with presence of male guarding (similar results were found for changes in SSD and presence of sperm competition), at the species and genus levels. Both comparative approaches demonstrated that male guarding and male-male contest variables are linked to SSD in minnows.  相似文献   

10.
    
ABSTRACT Orchard Orioles (Icterus spurius) and Fuertes’ Orioles (I. fuertesi) recently diverged from each other, making them an ideal system for investigating trait evolution and mechanisms of reproductive isolation during the early stages of speciation. These taxa differ in adult male plumage coloration and in their breeding and wintering ranges, but quantitative comparisons of their song characteristics have revealed no discernible differences. We assessed evolutionary song divergence in this group by investigating patterns of syllable‐type sharing within and between populations. Of 529 distinct syllable types, 142 (26.8%) were shared among individuals, and sharing appeared to decrease with geographic distance. The total number of syllables shared between Orchard and Fuertes’ orioles (26; 4.9% of the total) was similar to levels of sharing between populations of Orchard Orioles. Furthermore, hierarchical cluster analyses showed individuals of the two taxa intermixed. Syllables also used as calls were shared more frequently within and between taxa, suggesting that they have evolved more slowly than those used exclusively in songs. Our results show that at least some aspects of song have not yet diverged between these incipient species, either due to cultural exchange or because songs have evolved relatively slowly compared to plumage colors.  相似文献   

11.
It is now recognized that speciation can proceed even when divergent natural selection is opposed by gene flow. Understanding the extent to which environmental gradients and geographical distance can limit gene flow within species can shed light on the relative roles of selection and dispersal limitation during the early stages of population divergence and speciation. On the remote Lord Howe Island (Australia), ecological speciation with gene flow is thought to have taken place in several plant genera. The aim of this study was to establish the contributions of isolation by environment (IBE) and isolation by community (IBC) to the genetic structure of 19 plant species, from a number of distantly related families, which have been subjected to similar environmental pressures over comparable time scales. We applied an individual-based, multivariate, model averaging approach to quantify IBE and IBC, while controlling for isolation by distance (IBD). Our analyses demonstrated that all species experienced some degree of ecologically driven isolation, whereas only 12 of 19 species were subjected to IBD. The prevalence of IBE within these plant species indicates that divergent selection in plants frequently produces local adaptation and supports hypotheses that ecological divergence can drive speciation in sympatry.  相似文献   

12.
Gaggiotti OE 《Molecular ecology》2011,20(11):2229-2232
Understanding speciation is a fundamental aim of evolutionary biology and a very challenging one. Speciation can be viewed as the dynamics of genetic differentiation between populations resulting in substantial reproductive isolation (Gavrilets 2003). It was generally accepted that very small levels of migration prevent genetic differentiation among populations and, therefore, speciation. However, recent theoretical work showed that sympatric speciation is possible (Gavrilets 2003). Nevertheless, providing empirical evidence that gene flow occurred during speciation is challenging because several gene flow scenarios can explain observed patterns of genetic differentiation. Positive migration rate estimates alone do not prove ongoing gene flow during divergence. We also need to know whether migration took place before, during or after speciation. There is no statistical method specifically aimed at estimating gene flow timing, but several studies used the isolation with migration model (Hey & Nielsen 2004, 2007; Hey 2010b) to estimate this parameter and make inferences about speciation scenarios. It is tempting to use statistical methods to estimate important evolutionary parameters even if they do not appear explicitly in the inference model. Nevertheless, before doing so, we need to determine whether they can provide reliable results. In this issue of Molecular Ecology, Strasburg and Rieseberg (2011) present a simulation study that examines the degree to which gene flow timing estimates obtained from IMa2 (Hey 2010b) can be used to make inferences about speciation mode. Their results are sobering; gene flow timing estimates obtained in this way are not reliable and cannot be used to unequivocally establish if gene flow was ongoing during speciation.  相似文献   

13.
    
Three geographically widely separated populations of the grasshopper Chorthippus parallelus (Orthoptera: Acrididae) have been examined for morphological divergence, divergence in characteristics of the acoustic sexual signals of males, and assortative mating. Significant assortative mating existed between two of the three pairwise combinations of populations in multiple-choice tests. This may be caused by divergence in three of the four acoustic signal parameters measured. The populations also differed in morphology, including characters associated with signal production. The results are discussed in relation to theories for the origin of premating isolation, and it is argued that the observed divergence has developed rapidly, possibly indicating the action of selection. However, this selection could not have been caused by interactions with closely related taxa.  相似文献   

14.
    
The study of animal communication systems is an important step towards gaining greater understanding of the processes influencing diversification because signals often play an important role in mate choice and can lead to reproductive isolation. Signal evolution can be influenced by a diversity of factors such as biophysical constraints on the emitter, the signalling environment, or selection to avoid heterospecific matings. Furthermore, because signals can be costly to produce, trade‐offs may exist between different types of signals. Here, we apply phylogenetic comparative analyses to study the evolution of acoustic and visual signals in Asian barbets, a clade of non‐Passerine, forest‐dependent birds. Our results suggest that evolution of acoustic and visual signals in barbets is influenced by diverse factors, such as morphology and signalling environment, suggesting a potential effect of sensory drive. We found no trade‐offs between visual and acoustic signals. Quite to the contrary, more colourful species sing significantly longer songs. Song characteristics presented distinct patterns of evolution. Song frequency diverged early on and the rate of evolution of this trait appears to be constrained by body size. On the other hand, characteristics associated with length of the song presented evidence for more recent divergence. Finally, our results indicate that there is a spatial component to the evolution of visual signals, and that visual signals are more divergent between closely related taxa than acoustic signals. Hence, visual signals in these species could play a role in speciation or reinforcement of reproductive isolation following secondary contacts.  相似文献   

15.
    
Simulating the evolution of reproductive isolation under sympatric speciation scenarios is a complex process that requires modelling several phases, including evolution of phenotypes, demography, migration, fitness components and mating preference. The last has been shown to be a key parameter in several simulation studies, allowing the incorporation of assortative mating (premating isolation). Mating preference can be modelled by different mathematical functions but, as far as we know, a formal comparison of those functions has not yet been undertaken. In this work, we briefly review the main functions used in the literature and suggest a new one. In doing so, we also define three basic properties (monotonicity, proportionality and symmetry) that an ideal function should satisfy when generating assortative mating. We simulated several scenarios to compare how all these functions perform based on these properties. We also draw attention to the fact that the existing functions are affected distinctly by changing the scale of the preferred trait value. Some functions remain unaffected by scaling the trait, while in others assortative mating increases proportionally to the trait value. Most of the functions tested did not fulfil all the properties studied, and we find certain flaws in some of them that should be considered before being used in future studies. We provide some general recommendations for using the preference functions in simulation studies, and suggest that an unnoticed scaling effect could have underestimated the chance to obtain speciation under certain scenarios. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 642–657.  相似文献   

16.
    
Divergence in acoustic signals may have a crucial role in the speciation process of animals that rely on sound for intra-specific recognition and mate attraction. The acoustic adaptation hypothesis (AAH) postulates that signals should diverge according to the physical properties of the signalling environment. To be efficient, signals should maximize transmission and decrease degradation. To test which drivers of divergence exert the most influence in a speciose group of insects, we used a phylogenetic approach to the evolution of acoustic signals in the cicada genus Tettigettalna, investigating the relationship between acoustic traits (and their mode of evolution) and body size, climate and micro-/macro-habitat usage. Different traits showed different evolutionary paths. While acoustic divergence was generally independent of phylogenetic history, some temporal variables’ divergence was associated with genetic drift. We found support for ecological adaptation at the temporal but not the spectral level. Temporal patterns are correlated with micro- and macro-habitat usage and temperature stochasticity in ways that run against the AAH predictions, degrading signals more easily. These traits are likely to have evolved as an anti-predator strategy in conspicuous environments and low-density populations. Our results support a role of ecological selection, not excluding a likely role of sexual selection in the evolution of Tettigettalna calling songs, which should be further investigated in an integrative approach.  相似文献   

17.
肖钰  王茜  何梓晗  李玲玲  胡新生 《生物多样性》2022,30(5):21480-3007
物种形成是进化生物学研究的一个永恒主题, 由于生物群体进化是连续和动态的, 物种界限变得难于界定。本文首先讨论了3种地理物种形成模式(同域、邻域及异域), 并分析了近期报道的研究证据。其次, 评述了合子后生殖隔离机制的分子遗传基础和应用群体基因组数据分析的证据, 包括BDMI模型(Bateson-Dobzhansky-Muller incompatibility)、QTLs (quantitative trait loci)、霍尔丹法则及大X染色体效应。最后, 探讨了交配系统作为合子前隔离机制之一与物种形成的关系, 认为近交或自交通过扩大种群遗传结构分化, 增强不同交配系统的种群间不对称基因渐渗, 或种群间无基因渐渗等途径, 促进新物种形成。已知植物交配系统的演化更倾向于从异交(或自交不亲和)向自交(或近交亲和)方式, 花性状和基因组的分化推动形成所谓的自交综合征, 研究交配系统驱动或强化物种形成模式对认识植物物种形成机制有重要意义。  相似文献   

18.
Populations of the morphological species, Nilaparvata lugens (Stål), were found to breed and feed on the grass, Leersia hexandra Schwartz, at six sites in Queensland, Australia. They differ from sympatric rice-feeding populations in characters of pulse repetition frequencies of male and female acoustic courtship signals. The two host-derived populations hybridize freely in the laboratory, but in mate choice experiments show very significant preferences for homogametic matings. No indication of field hybridization has been found, so that the two morphologically inseparable populations represent sympatric biological species in Australia.
Populations from L. hexandra are also reported from four localities in Sri Lanka and one in Orissa, India. These resemble previously studied populations from the Philippines. They differ significantly in courtship call characters, both from sympatric rice-associated populations and from allopatric Leersia -associated populations from Australia.
The geographical variation reported for acoustic signals is not consistent with Paterson's recognition concept of species, but may be interpreted in terms of theories of allopatric speciation involving sexual selection for mate recognition signals.  相似文献   

19.
Cooperative breeding in birds: the role of ecology   总被引:5,自引:2,他引:5  
Theory predicts that cooperative breeding should only occurin species in which certain individuals are constrained frombreeding independently by some peculiarity of the species' ecology.Here, we use comparative methods to examine the role of variationin ecology in explaining differences between taxa in the frequencyof cooperative breeding. We address three questions. First,does the frequency of cooperative breeding vary at just one phylogeneticlevel, or across several levels? Second, are differences inthe frequency of cooperative breeding among closely-relatedspecies correlated with ecology? Last, are ecological differencesbetween ancient lineages important in predisposing certain lineagesto cooperative breeding? We find that variation in the frequencyof cooperative breeding occurs across all phylogenetic levels,with 40% among families and 60% within families. Also, variationin the frequency of cooperative breeding between closely related speciesis associated with ecological differences. However, differencesin the frequency of cooperative breeding among more ancientlineages are not correlated with differences in ecology. Together,our results suggest that cooperative breeding is not due toany single factor, but is a two step-process: life-history predispositionand ecological facilitation. Low annual mortality predisposescertain lineages to cooperative breeding. Subsequently, changesin ecology facilitate the evolution of cooperative breedingwithin these predisposed lineages. The key ecological changesappear to be sedentariness and living in a relatively invariableand warm climate. Thus, although ecological variation is notthe most important factor in predisposing lineages to cooperativebreeding, it is important in determining exactly which speciesor populations in a predisposed lineage will adopt cooperativebreeding.  相似文献   

20.
The unit of adaptation is usually thought to be a gene or set of interacting genes, rather than the whole genome, and this may be true of species differentiation. Defining species on the basis of reproductive isolation (RI), on the other hand, is a concept best applied to the entire genome. The biological species concept (BSC; 84 ) stresses the isolation aspect of speciation on the basis of two fundamental genetic assumptions – the number of loci underlying species differentiation is large and the whole genome behaves as a cohesive, or coadapted genetic unit. Under these tenets, the exchange of any part of the genomes between diverging groups is thought to destroy their integrity. Hence, the maintenance of each species’ genome cohesiveness by isolating mechanisms has become the central concept of species. In contrast, the Darwinian view of speciation is about differential adaptation to different natural or sexual environments. RI is viewed as an important by product of differential adaptation and complete RI across the whole genome need not be considered as the most central criterion of speciation. The emphasis on natural and sexual selection thus makes the Darwinian view compatible with the modern genic concept of evolution. Genetic and molecular analyses of speciation in the last decade have yielded surprisingly strong support for the neo‐Darwinian view of extensive genetic differentiation and epistasis during speciation. However, the extent falls short of what BSC requires in order to achieve whole‐genome ‘cohesiveness’. Empirical observations suggest that the gene is the unit of species differentiation. Significantly, the genetic architecture underlying RI, the patterns of species hybridization and the molecular signature of speciation genes all appear to support the view that RI is one of the manifestations of differential adaptation, as 34 , Chap. 8) suggested. The nature of this adaptation may be as much the result of sexual selection as natural selection. In the light of studies since its early days, BSC may now need a major revision by shifting the emphasis from isolation at the level of whole genome to differential adaptation at the genic level. With this revision, BSC would in fact be close to Darwin’s original concept of speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号