首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu(2+) ion interaction with DNA in aqueous solutions containing urea (0-5 M) was studied by IR spectroscopy. It was shown that upon the Cu(2+) ion binding DNA transition into a compact form occurs. This transition is of positive cooperativity. We suppose that the mechanism of Cu(2+)-induced DNA compaction in solutions containing urea is not completely electrostatic. Urea addition to the DNA solution decreases the Cu(2+) ion concentration required to induce DNA compaction. As the urea content in solution rises, the binding constant of Cu(2+) ions interacting with DNA increases, going through the maximum in the case of 2 M solution; further increase of the urea content in solutions leads to decrease of the binding constant. DNA transition into the compact form under the Cu(2+) ion action is determined not only by the effects of the solution dielectric permeability but by the solvation effects; when changes of the dielectric permeability are small the solvation effects may prevail. Urea addition to the DNA solution also decreases cooperativity of the DNA compaction process. Perhaps, cooperativity of the DNA transition into the compact state depends on the ordered spatial structure of water adjacent to the macromolecule and decreases on the structure destruction.  相似文献   

2.
Hackl EV  Blagoi YP 《Biopolymers》2005,77(6):315-324
The work examines the structural transitions of DNA under the action of Cu2+ and Ca2+ ions in aqueous solution at temperatures of 29 and 45 degrees C by ir spectroscopy. Upon binding to the divalent ions studied, DNA transits into the compact state both at 29 and 45 degrees C. In the compact state DNA remains in B-form limits. The compaction process is of high positive cooperativity. As temperature increases the divalent metal ion concentration required to induce DNA compaction decreases in the case of Cu(2+)-induced compaction and increases in the case of Ca(2+)-induced compaction. It is suggested that the mechanism of the temperature effect on DNA compaction in the presence of Cu2+ ions possessing higher affinity for DNA bases differs from that of the temperature influence on Ca(2+)-induced DNA compaction. In the case of copper ions the determining factor is the increase of binding constants of the Cu2+ ions interacting with the denatured parts formed on DNA while in the case of calcium ions it is the decreased screening action of counterions upon the increase of their hydration with temperature. The efficiency of divalent metal ions studied in inducing DNA compaction depends on hydration of counterions. DNA compaction occurs in a narrow interval of Cu2+ concentrations. As the Cu2+ ion concentration increases, DNA compaction is replaced with Cu(2+)-induced DNA aggregation. At elevated temperatures Cu(2+)-induced DNA compaction could acquire a phase transition character.  相似文献   

3.
Silver nanoparticles: partial oxidation and antibacterial activities   总被引:4,自引:0,他引:4  
The physical and chemical properties of silver nanoparticles that are responsible for their antimicrobial activities have been studied with spherical silver nanoparticles (average diameter approximately 9 nm) synthesized by the borohydride reduction of Ag+ ions, in relation to their sensitivity to oxidation, activities towards silver-resistant bacteria, size-dependent activities, and dispersal in electrolytic solutions. Partially (surface) oxidized silver nanoparticles have antibacterial activities, but zero-valent nanoparticles do not. The levels of chemisorbed Ag+ that form on the particle's surface, as revealed by changes in the surface plasmon resonance absorption during oxidation and reduction, correlate well with the observed antibacterial activities. Silver nanoparticles, like Ag+ in the form of AgNO3 solution, are tolerated by the bacteria strains resistant to Ag+. The antibacterial activities of silver nanoparticles are related to their size, with the smaller particles having higher activities on the basis of equivalent silver mass content. The silver nanoparticles aggregate in media with a high electrolyte content, resulting in a loss of antibacterial activities. However, complexation with albumin can stabilize the silver nanoparticles against aggregation, leading to a retention of the antibacterial activities. Taken together, the results show that the antibacterial activities of silver nanoparticles are dependent on chemisorbed Ag+, which is readily formed owing to extreme sensitivity to oxygen. The antibacterial activities of silver nanoparticles are dependent on optimally displayed oxidized surfaces, which are present in well-dispersed suspensions.  相似文献   

4.
Structure and activity of apoferritin-stabilized gold nanoparticles   总被引:1,自引:0,他引:1  
A simple method for synthesizing gold nanoparticles stabilized by horse spleen apoferritin (HSAF) is reported using NaBH(4) or 3-(N-morpholino)propanesulfonic acid (MOPS) as the reducing agent. AuCl(4)(-) reduction by NaBH(4) was complete within a few seconds, whereas reduction by MOPS was much slower; in all cases, protein was required during reduction to keep the gold particles in aqueous solution. Transmission electron microscopy (TEM) showed that the gold nanoparticles were associated with the outer surface of the protein. The average particle diameters were 3.6 and 15.4 nm for NaBH(4)-reduced and MOPS-reduced Au-HSAF, respectively. A 5-nm difference in the UV-Vis absorption maximum was observed for NaBH(4)-reduced (530 nm) and MOPS-reduced Au-HSAF (535 nm), which was attributed to the greater size and aggregation of the MOPS-reduced gold sample. NaBH(4)-reduced Au-HSAF was much more effective than MOPS-reduced Au-HSAF in catalyzing the reduction of 4-nitrophenol by NaBH(4), based on the greater accessibility of the NaBH(4)-reduced gold particle to the substrate. Rapid reduction of AuCl(4)(-) by NaBH(4) was determined to result in less surface passivation by the protein. Methods for studying ferritin-gold nanoparticle assemblies may be readily applied to other protein-metal colloid systems.  相似文献   

5.
It was shown that the staining of proteins in polyacrylamide gel by silver is inhibited by contact with air of the ammonia complex with silver ions used at the first stage of detection. It was proved by experiments on the reduction of silver by ethanolamine from a complex with ethanolamine and by formaldehyde from a complex with ammonia that the formation of silver nanoparticles initiated by proteins is inhibited by air carbon dioxide. The participation of carbon dioxide in this process is discussed. It was found that even the breathing of an experimenter can induce variations in carbon dioxide concentration sufficient to adversely affect the reproducibility of the silver staining techniques. It was concluded that, for stable staining of proteins by silver in polyacrylamide gel, it is necessary to maintain a low concentration of carbon dioxide in air over the detection solutions.  相似文献   

6.
Geranium leaf assisted biosynthesis of silver nanoparticles   总被引:8,自引:0,他引:8  
Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. In this paper, we report on the use of Geranium (Pelargonium graveolens) leaf extract in the extracellular synthesis of silver nanoparticles. On treating aqueous silver nitrate solution with geranium leaf extract, rapid reduction of the silver ions is observed leading to the formation of highly stable, crystalline silver nanoparticles in solution. Transmission electron microscopy analysis of the silver particles indicated that they ranged in size from 16 to 40 nm and were assembled in solution into quasilinear superstructures. The rate of reduction of the silver ions by the geranium leaf extract is faster than that observed by us in an earlier study using a fungus, Fusarium oxysporum, thus highlighting the possibility that nanoparticle biosynthesis methodologies will achieve rates of synthesis comparable to those of chemical methods. This study also represents an important advance in the use of plants over microorganisms in the biosynthesis of metal nanoparticles.  相似文献   

7.
Preparation of reduced bovine Cu,Zn superoxide dismutase.   总被引:1,自引:0,他引:1       下载免费PDF全文
N.m.r. and e.p.r. were used to measure the oxidation state of copper in Cu,Zn superoxide dismutase treated with reducing agents such as NaBH4, K4Fe(CN)6, Na2S2O4 and H2O2. The activity and the electrophoretic pattern of the treated enzyme were also studied. On the basis of the reducing ability and of the absence of inactivating effects, NaBH4 was the most suitable reducer of those tested. Some characteristics of the reduction of superoxide dismutase by NaBH4 were further investigated. The results obtained indicate that NaBH4 can be used to prepare, in a few minutes, solutions of completely reduced enzyme without any apparent change of the activity and of the structure.  相似文献   

8.

To form silver nanoparticles by reduction from metal ions in the presence of a reducing agent, D-glucose, a water-soluble derivative of chitosan, succinyl-chitosan, was used as a polymer matrix at room temperature. The synthesis of silver nanoparticles can also be carried out without a reducing agent by thermal activation of the system using an alkali (NaOH) as an accelerator. The presence of silver nanoparticles in the obtained colloidal solutions was judged by the appearance of an absorption band in the electron plasmon resonance spectra (?max = 417 nm). It has been shown that the use of an additional component, polyethylene oxide, in a macromolecular system makes it possible to obtain small silver nanoparticles (1–3 nm). The results of in vitro studies of the antimicrobial activity of the obtained colloidal solutions containing silver nanoparticles confirm that a decrease in the size of silver nanoparticles leads to an expansion of the spectrum of antibacterial activity of strains of gram-positive and gram-negative bacteria (B. subtilis ATCC 6633, S. aureus 209P, E. coli ATCC 25922) and to the manifestation of a pronounced antifungal action in relation to A. niger INA 00760.

  相似文献   

9.

It was shown experimentally that the action of continuous electric field on nanoporous silicate glasses with interconnecting pores, containing silver nanoparticles, leads to the spatial redistribution of nanoparticles. The concentration of nanoparticles near the negative electrode increases and results in silver nano- and microdendrite structure growth. The main mechanisms of the described effects are the field emission of silver ions from silver nanoparticles near negative electrode, migration of silver ions in the external electric field to the negative electrode, reduction of silver ions by free electrons, and new silver nanoparticle formation. The experiments have shown that at the ends of microdendrites, local field enhancement appears, which results in luminescence enhancement and in SERS.

  相似文献   

10.
Using methods of IR spectroscopy, light scattering, gel-electrophoresis DNA structural transitions are studied under the action of Cu2+, Zn2+, Mn2+, Ca2+ and Mg2+ ions in aqueous solution. Cu2+, Zn2+, Mn2+ and Ca2+ ions bind both to DNA phosphate groups and bases while Mg2+ ions-only to phosphate groups of DNA. Upon interaction with divalent metal ions studied (except for Mg2+ ions) DNA undergoes structural transition into a compact form. DNA compaction is characterized by a drastic decrease in the volume occupied by DNA molecules with reversible formation of DNA dense particles of well-defined finite size and ordered morphology. The DNA secondary structure in condensed particles corresponds to the B-form family. The mechanism of DNA compaction under Mt2+ ion action is not dominated by electrostatics. The effectiveness of the divalent metal ions studied to induce DNA compaction correlates with the affinity of these ions for DNA nucleic bases: Cu2+>Zn2+>Mn2+>Ca2+>Mg2+. Mt2+ ion interaction with DNA bases (or Mt2+ chelation with a base and an oxygen of a phosphate group) may be responsible for DNA compaction. Mt2+ ion interaction with DNA bases can destabilize DNA causing bends and reducing its persistent length that will facilitate DNA compaction.  相似文献   

11.
This study reveals a green process for the production of multi-morphological silver (Ag NPs) and gold (Au NPs) nanoparticles, synthesized using an agro-industrial residue cashew nut shell liquid. Aqueous solutions of Ag+ ions for silver and chloroaurate ions for gold were treated with cashew nut shell extract for the formation of Ag and Au NPs. The nano metallic dispersions were characterized by measuring the surface plasmon absorbance at 440 and 546 nm for Ag and Au NPs. Transmission electron microscopy showed the formation of nanoparticles in the range of 5–20 nm for silver and gold with assorted morphologies such as round, triangular, spherical and irregular. Scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction analyses of the freeze-dried powder confirmed the formation of metallic Ag and Au NPs in crystalline form. Further analysis by Fourier transform infrared spectroscopy provided evidence for the presence of various biomolecules, which might be responsible for the reduction of silver and gold ions. The obtained Ag and Au NPs had significant antibacterial activity, minimum inhibitory concentration and minimum bactericidal concentration on bacteria associated with fish diseases.  相似文献   

12.
Hwang IS  Lee J  Hwang JH  Kim KJ  Lee DG 《The FEBS journal》2012,279(7):1327-1338
Silver nanoparticles have been shown to be detrimental to fungal cells although the mechanism(s) of action have not been clearly established. In this study, we used Candida albicans cells to show that silver nanoparticles exert their antifungal effect through apoptosis. Many studies have shown that the accumulation of reactive oxygen species induces and regulates the induction of apoptosis. Furthermore, hydroxyl radicals are considered an important component of cell death. Therefore, we assumed that hydroxyl radicals were related to apoptosis and the effect of thiourea as a hydroxyl radical scavenger was investigated. We measured the production of reactive oxygen species and investigated whether silver nanoparticles induced the accumulation of hydroxyl radicals. A reduction in the mitochondrial membrane potential shown by flow cytometry analysis and the release of cytochrome c from mitochondria were also verified. In addition, the apoptotic effects of silver nanoparticles were detected by fluorescence microscopy using other confirmed diagnostic markers of yeast apoptosis including phosphatidylserine externalization, DNA and nuclear fragmentation, and the activation of metacaspases. Cells exposed to silver nanoparticles showed increased reactive oxygen species and hydroxyl radical production. All other phenomena of mitochondrial dysfunction and apoptotic features also appeared. The results indicate that silver nanoparticles possess antifungal effects with apoptotic features and we suggest that the hydroxyl radicals generated by silver nanoparticles have a significant role in mitochondrial dysfunctional apoptosis.  相似文献   

13.
He S  Zhang Y  Guo Z  Gu N 《Biotechnology progress》2008,24(2):476-480
An environmentally friendly method using a cell-free extract (CFE) of Rhodopseudomonas capsulata is proposed to synthesize gold nanowires with a network structure. This procedure offers control over the shapes of gold nanoparticles with the change of HAuCl4 concentration. The CFE solutions were added with different concentrations of HAuCl4, resulting in the bioreduction of gold ions and biosynthesis of morphologies of gold nanostructures. It is probable that proteins acted as the major biomolecules involved in the bioreduction and synthesis of gold nanoparticles. At a lower concentration of gold ions, exclusively spherical gold nanoparticles with sizes ranging from 10 to 20 nm were produced, whereas gold nanowires with a network structure formed at the higher concentration of gold ions in the aqueous solution. This method is expected to be applicable to the synthesis of other metallic nanowires such as silver and platinum, and even other anisotropic metal nanostructures are expected using the biosynthetic methods.  相似文献   

14.
Hydrogen peroxide-induced base damage in deoxyribonucleic acid   总被引:5,自引:0,他引:5  
Aqueous solutions of calf thymus deoxyribonucleic acid (DNA) were exposed to hydrogen peroxide in the presence of air. Base products formed in DNA were identified and quantitated following acid hydrolysis and trimethylsilylation using gas chromatography-mass spectrometry. The yields of these products were dependent upon the hydrogen peroxide concentration, and increased in the following order: 8-hydroxyadenine, cytosine glycol, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 8-hydroxyguanine, thymine glycol, and 4,6-diamino-5-formamidopyrimidine. Previous studies have shown that these compounds are typically formed in DNA in aqueous solution by hydroxyl radicals generated by ionizing radiation. Hydrogen peroxide is thought to participate in a Fenton-like reaction with transition metals, which are readily bound to DNA in trace quantities, resulting in the production of hydroxyl radicals close to the DNA. This proposed mechanism was examined by exposing DNA to hydrogen peroxide either in the presence of a hydroxyl radical scavenger or following pretreatment of DNA with metal-ion chelators. The results indicate that trace quantities of transition metal ions can react readily with hydrogen peroxide to produce radical species. The production of radical species was monitored by determining the altered bases that resulted from the reaction between radicals and DNA. The yields of the base products were reduced by 40 to 60% with 10 mmol dm-3 of dimethyl sulfoxide. A 100-fold increase in the concentration of dimethyl sulfoxide did not result in a further reduction in hydrogen peroxide-induced base damage. DNA which was freed from bound metal ions by pretreatment with metal ion chelators followed by exhaustive dialysis was found to be an ineffective substrate for hydrogen peroxide. The yields of base products measured in this DNA were at background levels. These results support the role of metal ions bound to DNA in the site-specific formation of highly reactive radical species, most likely hydroxyl radicals, in hydrogen peroxide-induced damage to the bases in DNA.  相似文献   

15.
Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material.  相似文献   

16.
Chen  Xiaojuan  Wen  Rui  Zhang  Lisheng  Lahiri  Abhishek  Wang  Peijie  Fang  Yan 《Plasmonics (Norwell, Mass.)》2014,9(4):945-949

In this paper, we highlight the formation of Ag/Au core-shell nanoparticles at room temperature by using a low-power laser. We have investigated the plasmon-induced reduction of Ag+ ions on bare Au nanoparticles synthesized by laser ablation technique, and citrate-capped Au nanoparticles synthesized by chemical method. It is demonstrated that citrate plays an important role for the reduction of silver ions. The citrate gets oxidized by the ‘hot’ holes produced due to the surface plasmon resonance (SPR) of the Au nanoparticles which then reduces the Ag+ ions to Ag. The importance of excitation laser wavelength is also demonstrated to facilitate the reduction process.

  相似文献   

17.
Scutellaria barbata is a perennial herb which was vastly prescribed in Chinese medicine to treat inflammations, infections and it is also used a detoxifying agent. We synthesized silver nanoparticles with Scutellaria barbata extract and characterized the nanoparticles with UV–Vis spectroscopic analysis, TEM, AFM, FTIR and XRD. The biofilm inhibiting property of synthesized silver nanoparticles were examined with XTT reduction assay and the antimicrobial property was examined with well diffusion method. The silver nanoparticles were also coated with cotton fabrics and their efficacy against antimicrobials was analyzed to prove its application. The cytotoxic property of synthesized silver nanoparticles was examined with L929 fibroblast cells using MTT assay. Finally we analyzed the wound healing property of synthesized silver nanoparticles with wound scratch assay. The result of our UV–Vis spectroscopic analysis confirms Scutellaria barbata aqueous extract reduced silver ions and synthesized silver nanoparticles. The characterization studies TEM, AFM, FTIR and XRD confirms the synthesized silver nanoparticles are in ideal shape and size to be utilized as a drug. The XTT reduction assay proves silver nanoparticles effectively inhibits the biofilm formation in both resistant and sensitive strains. Antimicrobial sensitivity tests confirms synthesized silver nanoparticles and cotton coated synthesized silver nanoparticles both are effective against gram positive, gram negative and fungal species. Further the results of MTT assay confirms the synthesized silver nanoparticles are non toxic and finally the wound healing potency of the nanoparticles was confirmed with wound scratch assay. Over all our results authentically confirms the silver nanoparticles synthesized with Scutellaria barbata aqueous extract is potent wound healing drug.  相似文献   

18.
19.
Antimicrobial cellulose acetate nanofibers containing silver nanoparticles   总被引:11,自引:0,他引:11  
It was found for the first time that polymer nanofibers containing Ag nanoparticles on their surface could be produced by UV irradiation of polymer nanofibers electrospun with small amounts of silver nitrate (AgNO3). When the cellulose acetate (CA) nanofibers electrospun from CA solutions with 0.5 wt% of AgNO3 were irradiated with UV light at 245 nm, Ag nanoparticles were predominantly generated on the surface of the CA nanofibers. The number and size of the Ag nanoparticles were continuously increased up to 240 min. The Ag+ ions and Ag clusters diffused and aggregated on the surface of the CA nanofibers during the UV irradiation. The Ag nanoparticles with an average size of 21 nm exhibited strong antimicrobial activity.  相似文献   

20.
The present paper describes about the easy, simple and convenient procedure for the synthesis of silver nanoparticles (Ag-NPs) in aqueous solutions by the reduction of silver nitrate with adrenaline. The surfactant molecules of cetyltrimethylammonium bromide (CTABr) and sodium dodecyl ate (SDS) behaved differently during the reduction of Ag+ ions by adrenaline. The obtained data suggest that the variation of [CTABr] gave a maxima-like curve for rate constant versus [CTABr], while, the values of rate constant decreased with the increase in [SDS]. The addition of surfactant molecules stabilized the Ag-NPs. The UV–Visible spectra were analyzed to deduce the particle size. The calculated sizes of the nanoparticles were further compared by the TEM images. The XRD spectrum confirmed the crystalline nature of silver nanoparticles having the face-centered cubic crystal structure. The edge length of unit cell was found 4.076 Å. The kinetics of formation of Ag-NPs was performed at different concentrations of adrenaline, AgNO3, NaOH and [surfactant]. The values of rate constant were independent on [adrenaline] and [AgNO3]. The increase in [NaOH] increased the rate of agglomeration of silver particles to form Ag-NPs. A linear relationship was obtained for the plot of rate constant versus [NaOH].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号