首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A search was undertaken to screen microorganisms in soil which produce an enzyme capable of deacylating glutaryl-7-aminocephalosporanic acid (glutaryl-7-ACA) to 7-aminocephalosporanic acid (7-ACA). To facilitate screening, a model substrate, glutaryl-p-nitroanilide, and a 7-ACA sensitive strain, Enterobacter taylorae BY312, were used as a color indicator and bioassay, respectively. An isolate, Pseudomonas cepacia BY21, was found to produce glutaryl-7-ACA acylase, of which the activity was optimal at pH 8.0 and 45°C.  相似文献   

2.
Summary In this study, an investigation was performed into the thermal and operational characteristics of glutaryl-7-aminocephalosporanic acid (GL-7-ACA) acylase (EC 3.5.1.-) immobilized on silica gel that had been modified by epoxide silanization. The pH values for the optimum activity of free and immobilized GL-7-ACA acylase were almost the same. However, the pH-dependent activity profile for the immobilized GL-7-ACA acylase is considerably expanded. Both free and immobilized enzymes generally had the highest activity at 50 °C. In thermodynamic studies, it was found that immobilization using epoxide silanization made GL-7-ACA acylase thermodynamically stable. In the results of repeated batch production of 7-ACA, 89.0 and 83.5% of the 7-ACA produced at the initial cycle were maintained after 20 times of recycle at 25 °C and 30 °C, respectively. Hence it was suggested that mass production of 7-ACA at 25 °C using immobilized GL-7-ACA acylase by epoxide silanization would be possible on a large scale.  相似文献   

3.
Pseudomonas cepacia BY21 was found to produce glutaryl acylase that is capable of deacylating glutaryl-7-aminocephalosporanic acid (glutaryl-7-ACA) to 7-aminocephalosporanic acid (7-ACA), which is a starting material for semi-synthetic cephalosporin antibiotics. Amino acids of the reported glutaryl acylases from variousPseudomonas sp. strains show a high similarity (>93% identity). Thus, with the known nucleotide sequences ofPseudomonas glutaryl acylases in GenBank, PCR primers were designed to clone a glutaryl acylase gene fromP. cepacia BY21. The unknown β-subunit gene of glutaryl acylase from chromosomal DNA ofP. cepacia BY21 was cloned successfully by PCR. The β-subunit amino acids ofP. cepacia BY21 acylase (GenBank accession number AY948547) were similar to those ofPseudomonas diminuta KAC-1 acylase except that Asn408 ofP. diminuta KAC-1 acylase was changed to Leu408.  相似文献   

4.
-Lactam acylases such as penicillin G acylases, penicillin V acylases and glutaryl 7-aminocephalosporanic acid acylases are used in the manufacture of 6-aminopenicillanic acid, 7-aminodesacetoxycephalosporanic acid and 7-aminocephalosporanic acid (7-ACA). Genetically-engineered strains producing 1050 U/g, 3200 U/g and 7000 to 10,000 U/I of penicillin G acylase, penicillin V acylase and glutaryl-7-ACA acylase, respectively, have been developed. The penicillin G acylase studied to date and the glutaryl-7-ACA acylase from Pseudomonas sp. share some common features: the active enzyme molecules are composed of two dissimilar subunits that are generated from respective precursor polypeptide; the proteolytic processing is a post-translational modification which is regulated by temperature; and the Ser residue at the N-terminus of the -sub-unit (Ser290; penicillin G acylase numbering) is implicated as the active site residue. Protein engineering, to generate penicillin G acylase molecules and their precursors with altered sequences, and the structure-function correlation of the engineered molecules are discussed.The authors are with Research and Development, Hindustan Antibiotics Ltd, Pimpri, Pune 411 018, India;  相似文献   

5.
Luo H  Li Q  Yu H  Shen Z 《Biotechnology letters》2004,26(11):939-945
Two fusion proteins of D-amino acid oxidase (DAAO) and glutaryl-7-aminocephalosporanic acid acylase (GLA) were designed to simplify the bioconversion process of cephalosporin C to 7-aminocephalosporanic acid (7-ACA), which is conventionally produced in a two-step enzymatic process. Two recombinant plasmids, pET-DLA and pET-ALD, were constructed to express fusion proteins of DAAO-linker-GLA (DLA) and GLA-linker-DAAO (ALD), respectively. When the recombinant plasmids were expressed in E. coli, the fusion protein DLA was not correctly folded and only DAAO activity could be detected. ALD, however, possessed activities of both DAAO and GLA, which directly catalyze the conversion of cephalosporin C into 7-ACA.  相似文献   

6.
Several screening methods were developed for the selection of Pseudomonas strains capable of hydrolyzing glutaryl-7-aminocephalosporanic acid to 7-aminocephalosporanic acid. An isolate exhibiting high acylase activity, designated BL072, was identified as a strain of Pseudomonas diminuta. It grew optimally at pH 7 to 8 and at a temperature of 32 to 40°C, but acylase activity was highest when the strain was grown at 28°C. Mutants of BL072 were generated by nitrosoguanidine treatment and screened for increased production of glutaryl-7-aminocephalosporanic acid acylase. A superior mutant gave a fourfold increase in acylase titer. The cell-associated acylase had similar activities against various glutaryl-cephems but had undetectable activity against cephalosporin C. This acylase may prove useful for the conversion of cephalosporin C to 7-aminocephalosporanic acid.  相似文献   

7.
Semisynthetic cephalosporins are important antibacterials in clinical practice. Semisynthetic cephalosporins are manufactured by derivatizing 7-aminocephalosporanic acid (7-ACA) and its desacetylated form. Microbial enzymes such as D-amino acid oxidase, glutaryl-7-ACA acylase and cephalosporin esterase are being used as biocatalysts for the conversion of cephalosporin C (CEPH-C) to 7-ACA and its desacetylated derivatives. Recent developments in the field of enzymatic modifications of cephalosporin with special emphasis on group of enzymes called as cephalosporin acylase is discussed in this review. Aspects related to screening methods, isolation and purification, immobilization, molecular cloning, gene structure and expression and protein engineering of cephalosporin acylases have been covered. Topics pertaining to enzymatic modifications of cephalosporin by D-amino acid oxidase, cephalosporin methoxylase and beta-lactamase are also covered.  相似文献   

8.
ABSTRACT

Semisynthetic cephalosporins are important antibacterials in clinical practice. Semisynthetic cephalosporins are manufactured by derivatizing 7-aminocephalosporanic acid (7-ACA) and its desacetylated form. Microbial enzymes such as D-amino acid oxidase, glutaryl-7-ACA acylase and cephalosporin esterase are being used as biocatalysts for the conversion of cephalosporin C (CEPH-C) to 7-ACA and its desacetylated derivatives. Recent developments in the field of enzymatic modifications of cephalosporin with special emphasis on group of enzymes called as cephalosporin acylase is discussed in this review. Aspects related to screening methods, isolation and purification, immobilization, molecular cloning, gene structure and expression and protein engineering of cephalosporin acylases have been covered. Topics pertaining to enzymatic modifications of cephalosporin by D-amino acid oxidase, cephalosporin methoxylase and β -lactamase are also covered.  相似文献   

9.
R Binder  J Brown    G Romancik 《Applied microbiology》1994,60(6):1805-1809
Pseudomonas strain BL072 produces an acylase enzyme active in hydrolyzing glutaryl-7-aminocephalosporanic acid to 7-aminocephalosporanic acid. This acylase was purified by column chromatography and gel electrophoresis. The native acylase was composed of two subunits of approximately 65 and 24 kDa, though some heterogeneity was seen in both the native acylase and its small subunit. The isoelectric point of the acylase is approximately 8.5, and it has Km of 1.6 mM for glutaryl desacetoxy aminocephalosporanic acid. The acylase hydrolyzes the desacetoxy and desacetyl derivatives of glutaryl-7-aminocephalosporanic acid at rates similar to that of glutaryl-7-aminocephalosporanic acid. Cephalosporin C was hydrolyzed at a reduced rate. The pH optimum was found to be 8.0, and an activation energy of 9 kcal/mol (ca. 38 kJ/mol) was observed. The acylase has transacylase activity 10 times that of its hydrolytic activity. Eupergit C-immobilized acylase had a half-life of greater than 400 h.  相似文献   

10.
The penicillin G acylase (PGA) and cephalosporin acylase (CA) families, which are members of the N-terminal (Ntn) hydrolases, are valuable for the production of backbone chemicals like 6-aminopenicillanic acid and 7-aminocephalosporanic acid (7-ACA), which can be used to synthesize semi-synthetic penicillins and cephalosporins, respectively. Regardless of the low sequence similarity between PGA and CA, the structural homologies at their active-sites are very high. However, despite this structural conservation, they catalyze very different substrates. PGA reacts with the hydrophobic aromatic side-chain (the phenylacetyl moiety) of penicillin G (PG), whereas CA targets the hydrophilic linear side-chain (the glutaryl moiety) of glutaryl-7-ACA (GL-7-ACA). These different substrate specificities are likely to be due to differences in the side-chains of the active-site residues. In this study, mutagenesis of active-site residues binding the side-chain moiety of PG changed the substrate specificity of PGA to that of CA. This mutant PGA may constitute an alternative source of engineered enzymes for the industrial production of 7-ACA.  相似文献   

11.
The first large-scale production of 7-aminocephalosporanic acid (7ACA) from cephalosporin C (CPC) using a wholly enzymatic synthesis method is reported here. We produced 7ACA from CPC in as high a molar yield as 85% using the immobilized enzymes D-amino acid oxidase (D-AOD) and glutaryl-7-ACA acylase (GL-acylase). In the first reactor, CPC is converted to keto-adipyl-7-aminocephalosporanic acid (keto-7ACA) using an immobilized D-AOD isolated from a yeast, Trigonopsis variabilis. The keto-7ACA is then spontaneously converted to glutaryl-7-aminocephalosporanic acid (GL-7ACA) via a chemical reaction with hydrogen peroxide. The hydrogen peroxide is also a product of the D-AOD reaction. Near quantitative conversion of the keto-7ACA to GL-7ACA was observed. The second reactor converts GL-7ACA to 7ACA using an immobilized GL-acylase, which was isolated from a reconbinant Escherichia coli. The final 7ACA crystalline product is a high quality product. The reactions are conducted under very mild aqueous conditions: pH 8.0 and 20 degrees to 25 degrees C. The production of desacetyl side products is minimal. This process is currently being implemented on an industrial scale to produce 7ACA. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
To convert cephalosporin C to 7-aminocephalosporin (7-ACA), a D-amino acid oxidase (DAAO) gene from Trigonopsis variabilis and a glutaryl-7-aminocephalosporanic acid acylase (GL-7-ACA acylase) gene from Pseudomonas were cloned and expressed in recombinant Escherichia coli. For DAAO recombinant strain BL21(DE3)/pET-DAAO, a high DAAO activity of 250 U ml−1 was obtained by a fed-batch culture. A GL-7-ACA acylase gene, in which the signal peptide sequence was deleted, was also successfully expressed in a recombinant E. coli BL21(DE3)/pET-ACY with a high expression level of 3000 U l−1. A novel recombinant strain, BL21(DE3)/pET-DA, harboring both genes of DAAO and GL-7-ACA acylase, was further constructed, and a rather high DAAO activity of 140 U ml−1 and GL-7-ACA acylase activity of 950 U l−1 were simultaneously obtained. This recombinant strain, in which two genes are co-expressed, made it possible to catalyze cephalosporin C into 7-ACA directly.  相似文献   

13.
7-Aminocephalosporanic acid (7-ACA) is an important material in the production of semisynthetic cephalosporins, which are the best-selling antibiotics worldwide. 7-ACA is produced from cephalosporin C via glutaryl-7-ACA (GL-7-ACA) by a bioconversion process using d-amino acid oxidase and cephalosporin acylase (or GL-7-ACA acylase). Previous studies demonstrated that a single amino acid substitution, D433N, provided GL-7-ACA acylase activity for gamma-glutamyltranspeptidase (GGT) of Escherichia coli K-12. In this study, based on its three-dimensional structure, residues involved in substrate recognition of E. coli GGT were rationally mutagenized, and effective mutations were then combined. A novel screening method, activity staining followed by a GL-7-ACA acylase assay with whole cells, was developed, and it enabled us to obtain mutant enzymes with enhanced GL-7-ACA acylase activity. The best mutant enzyme for catalytic efficiency, with a k(cat)/K(m) value for GL-7-ACA almost 50-fold higher than that of the D433N enzyme, has three amino acid substitutions: D433N, Y444A, and G484A. We also suggest that GGT from Bacillus subtilis 168 can be another source of GL-7-ACA acylase for industrial applications.  相似文献   

14.
Cephalosporin acylase (CA) is a recently identified N-terminal hydrolase. It is also a commercially important enzyme in producing 7-aminocephalosporanic acid (7-ACA), a backbone chemical in synthesizing semi-synthetic cephalosporin antibiotics. CA is translated as an inactive single chain precursor, being post-translationally modified into an active enzyme. The post-translational modification takes place in two steps. The first intramolecular autocatalytic proteolysis takes place at one end of the spacer peptide by a nucleophilic Ser or Thr, which in turn becomes a new N-terminal Ser or Thr. The second intermolecular modification cleaves off the other end of the spacer peptide by another CA. Two binary structures in complex with glutaryl-7-ACA (the most favored substrate of CAs) and glutarate (side chain of glutaryl-7-ACA) were determined, and they revealed the detailed interactions of glutaryl-7-ACA with the active site residues (Y. Kim and W. G. J. Hol (2001) Chem. Biol., in press). In this report: 1) we have mutated key active site residues into nonfunctional amino acids, and their roles in catalysis were further analyzed; 2) we performed mutagenesis studies indicating that secondary intermolecular modification is carried out in the same active site where deacylation reaction of CA occurs; and 3) the cleavage site of secondary intermolecular modification by another CA was identified in the spacer peptide using mutational analysis. Finally, a schematic model for intermolecular cleavage of CA is proposed.  相似文献   

15.
A batch of the immobilized industrial biocatalyst glutaryl-7-ACA acylase (GA), one of the two enzymes involved in the biotransformation of cephalosporin C (CefC) into 7-aminocephalosporanic acid (7-ACA), was characterized. K(m) value for glutaryl-7-ACA was 5 mM. Enzyme activity was found to be optimal at pH between 7 and 9.5 and to increase with temperature and in buffered solutions. To avoid product degradation, optimal reaction conditions were obtained working at 25 degrees C using a 50-mM phosphate buffer, pH 8.0. Immobilized GA showed good stability at pH value below 9 and at temperature up to 30 degrees C. The inactivation of immobilized GA in the presence of different amounts of H(2)O(2), a side product that might be present in the plant-scale industrial solutions of glutaryl-7-ACA, was also investigated, but the deactivation rates were negligible at H(2)O(2) concentration that might be reached under operative conditions. Finally, biocatalyst performance in the complete two-step enzymatic conversion process from CefC to 7-ACA was determined on a laboratory scale. Following the complete conversion of a 75 mM solution of CefC into glutaryl-7-ACA catalyzed by an immobilized D-amino acid oxidase (DAAO), immobilized GA was used for the transformation of this intermediate into the final product 7-ACA. This reaction was repeated for 42 cycles. An estimation of the residual activity of the biocatalyst showed that 50% inactivation of immobilized GA was reached after approximately 300 cycles, corresponding to an enzyme consumption of 0.4 kU per kg of isolated 7-ACA.  相似文献   

16.
Semisynthetic cephalosporins, the best-selling antibiotics worldwide, are derived from 7-aminocephalosporanic acid (7-ACA). Currently, in the pharmaceutical industrie, 7-ACA is mainly produced from cephalosporin C by sequential application of D -amino acid oxidase and cephalosporin acylase. Here we study the potential of industrially amenable enzyme γ-glutamyltranspeptidase from Bacillus subtilis for 7-ACA production, since the wild-type γ-glutamyltranspeptidase of B. subtilis has inherent glutaryl-7-aminocephalosporanic acid acylase activity with a kcat value of 0.0485 s-1. Its activity has been enhanced by site directed and random mutagenesis. The kcat/Km value was increased to 3.41 s-1 mM-1 for a E423Y/E442Q/D445N mutant enzyme and the kcat value was increased to 0.508 s-1 for a D445G mutant enzyme. Consequently, the catalytic efficiency and the turnover rate were improved up to about 1000-fold and 10-fold, compared with the wildtype γ-glutamyltranspeptidase of B. subtilis.  相似文献   

17.
Semisynthetic cephalosporins are primarily synthesized from 7-aminocephalosporanic acid (7-ACA), mainly by environmentally toxic chemical deacylation of cephalosporin C (CPC). Thus, the enzymatic conversion of CPC to 7-ACA by cephalosporin acylase (CA) would be very interesting. However, CAs use glutaryl-7-ACA (GL-7-ACA) as a primary substrate and the enzymes have low turnover rates for CPC. The active-site residues of a CA were mutagenized to various residues to increase the deacylation activity of CPC, based on the active-site conformation of the CA structure. The aim was to generate sterically favored conformation of the active-site to accommodate the D-alpha-aminoadipyl moiety of CPC, the side-chain moiety that corresponds to the glutaryl moiety of GL-7-ACA. A triple mutant of the CA, Q50betaM/Y149alphaK/F177betaG, showed the greatest improvement of deacylation activity to CPC up to 790% of the wild-type. Our current study is an efficient method for improving the deacylation activity to CPC by employing the structure-based repetitive saturation mutagenesis.  相似文献   

18.
Glutaryl 7-aminocephalosporanic acid (GL-7-ACA) acylase of Pseudomonas sp. strain GK16 catalyzes the cleavage of the amide bond in the GL-7-ACA side chain to produce glutaric acid and 7-aminocephalosporanic acid (7-ACA). The active enzyme is an (alphabeta)(2) heterotetramer of two non-identical subunits that are cleaved autoproteolytically from an enzymatically inactive precursor polypeptide. In this study, we prepared and characterized a chemically modified enzyme, and also examined an effect of the modification on enzyme catalysis and autocatalytic processing of the enzyme precursor. We found that treatment of the enzyme with cyanate ion led to a significant loss of the enzyme activity. Structural and functional analyses of the modified enzyme showed that carbamylation of the free alpha-amino group of the N-terminal Ser-199 of the beta subunit resulted in the loss of the enzyme activity. The pH dependence of the kinetic parameters indicates that a single ionizing group is involved in enzyme catalysis with pK(a) = 6.0, which could be attributed to the alpha-amino group of the N-terminal Ser-199. The carbamylation also inhibited the secondary processing of the enzyme precursor, suggesting a possible role of the alpha-amino group for the reaction. Mutagenesis of the invariant N-terminal residue Ser-199 confirmed the key function of its side chain hydroxyl group in both enzyme catalysis and autoproteolytic activation. Partial activity and correct processing of a mutant S199T were in agreement with the general mechanism of N-terminal nucleophile hydrolases. Our results indicate that GL-7-ACA acylase utilizes as a nucleophile Ser-199 in both enzyme activity and autocatalytic processing and most importantly its own alpha-amino group of the Ser-199 as a general base catalyst for the activation of the hydroxyl group both in enzyme catalysis and in the secondary cleavage of the enzyme precursor. All of the data also imply that GL-7-ACA acylase is a member of a novel class of N-terminal nucleophile hydrolases that have a single catalytic center for enzyme catalysis.  相似文献   

19.
The glutaryl 7-aminocephalosporanic acid (GL-7-ACA) acylase from Pseudomonas sp. strain GK16 is an (alphabeta)2 heterotetramer of two non-identical subunits that are cleaved autoproteolytically from an enzymatically inactive precursor polypeptide. The newly formed N-terminal serine of the beta subunit plays an essential role as a nucleophile in enzyme activity. Chemical modification studies on the recombinant enzyme purified from Escherichia coli revealed the involvement of a single arginine and tryptophan residue, per alphabeta heterodimer of the enzyme, in the catalytic activity of the enzyme. Glutaric acid, 7-aminocephalosporanic acid (7-ACA) (competitive inhibitors) and GL-7-ACA (substrate) could not protect the enzyme against phenylglyoxal-mediated inactivation, whereas except for glutaric acid protection was observed in case of N-bromosuccinimide-mediated inactivation of the enzyme. Kinetic parameters of partially inactivated enzyme samples suggested that while arginine is involved in catalysis, tryptophan is involved in substrate binding.  相似文献   

20.
A search was undertaken to screen microorganisms that produce an enzyme capable of deacylating glutaryl-7-aminocephalosporanic acid to 7-aminocephalosporanic acid in soil samples. The screening was carried out by preparing enrichment cultures containing glutaryl-7ACA and cephalosporin C as selective carbon sources. A non-β-lactam model compound, glutaryl-p-nitroanilide, was synthesized as a substrate suitable for the rapid screening of microorganisms isolated from the enrichment cultures. Two isolates exhibiting acylase activity, designated BY7.4 and BY8.1, were identified as strains ofPseudomonas species.Pseudomonas BY8.1 showed higher acylase activity toward Gl-7ACA thanPseudomonas BY7.4. Environmental conditions for the optimal acylase activity ofPseudomonas BY8.1 were shown to be pH 9 and 30°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号