首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron paramagnetic resonance (EPR) signals at g′ = 4.3 are commonly encountered in biological samples owing to mononuclear high-spin (S = 5/2) Fe3+ ions in sites of low symmetry. The present study was undertaken to develop the experimental method and a suitable g′ = 4.3 intensity standard and for accurately quantifying the amount of Fe3+ responsible for such signals. By following the work of Aasa and Vänngård (J. Magn. Reson. 19:308–315, 1975), we present equations relating the EPR intensity of S = 5/2 ions to the intensities of S = 1/2 standards more commonly employed in EPR spectrometry. Of the chelates tested, Fe3+–EDTA (1:3 ratio) in 1:3 glycerol/water (v/v), pH 2, was found to be an excellent standard for frozen-solution S = 5/2 samples at 77 K. The spin concentrations of Cu2+–EDTA and aqua VO2+, both S = 1/2 ions, and of Fe3+–transferrin, an S = 5/2 ion, were measured against this standard and found to agree within 2.2% of their known metal ion concentrations. Relative standard deviations of ±3.6, ±5.3 and ±2.9% in spin concentration were obtained for the three samples, respectively. The spin concentration determined for Fe3+–desferrioxamine of known Fe3+ concentration was anomalously low suggesting the presence of EPR-silent multimeric iron species in solution.  相似文献   

2.
A species of Dechloromonas, strain UWNR4, was isolated from a nitrate-reducing, enrichment culture obtained from Wisconsin River (USA) sediments. This strain was characterized for anaerobic oxidation of both aqueous and chelated Fe(II) coupled to nitrate reduction at circumneutral pH. Dechloromonas sp. UWNR4 was incubated in anoxic batch reactors in a defined medium containing 4.5–5 mM NO3 ?, 6 mM Fe2+ and 1–1.8 mM acetate. Strain UWNR4 efficiently oxidized Fe2+ with 90 % oxidation of Fe2+ after 3 days of incubation. However, oxidation of Fe2+ resulted in Fe(III)-hydroxide-encrusted cells and loss of metabolic activity, suggested by inability of the cells to utilize further additions of acetate. In similar experiments with chelated iron (Fe(II)-EDTA), encrusted cells were not produced and further additions of acetate and Fe(II)-EDTA could be oxidized. Although members of the genus Dechloromonas are primarily known as perchlorate and nitrate reducers, our findings suggest that some species could be members of microbial communities influencing iron redox cycling in anoxic, freshwater sediments. Our work using Fe(II)-EDTA also demonstrates that Fe(II) oxidation was microbially catalyzed rather than a result of abiotic oxidation by biogenic NO2 ?.  相似文献   

3.
A highly enantioselective cis-epoxysuccinic acid hydrolase from Nocardia tartaricans was purified to electrophoretic homogeneity. The enzyme was purified 184-fold with a yield of 18.8 %. The purified cis-epoxysuccinic acid hydrolase had a monomeric molecular weight of 28 kDa, and its optimum conditions were 37 °C and pH 7–9. With sodium cis-epoxysuccinate as the substrate, Michaelis–Menten enzyme kinetics analysis gave a Km value of 35.71 mM and a Vmax of 2.65 mM min?1. The enzyme was activated by Ni2+ and Al3+, while strongly inhibited by Fe3+, Fe2+, Cu2+, and Ag+. The cis-epoxysuccinic acid hydrolase gene was cloned, and its open reading frame sequence predicted a protein composed of 253 amino acids. A pET11a expression plasmid carrying the gene under the control of the T7 promoter was introduced into Escherichia coli, and the cis-epoxysuccinic acid hydrolase gene was successfully expressed in the recombinant strains.  相似文献   

4.
Rate equations and kinetic parameters were obtained for various reactions involved in the bacterial oxidation of pyrite. The rate constants were 3.5 μM Fe2+ per min per FeS2 percent pulp density for the spontaneous pyrite dissolution, 10 μM Fe2+ per min per mM Fe3+ for the indirect leaching with Fe3+, 90 μM O2 per min per mg of wet cells per ml for the Thiobacillus ferrooxidans oxidation of washed pyrite, and 250 μM O2 per min per mg of wet cells per ml for the T. ferrooxidans oxidation of unwashed pyrite. The Km values for pyrite concentration were similar and were 1.9, 2.5, and 2.75% pulp density for indirect leaching, washed pyrite oxidation by T. ferrooxidans, and unwashed pyrite oxidation by T. ferrooxidans, respectively. The last reaction was competitively inhibited by increasing concentrations of cells, with a Ki value of 0.13 mg of wet cells per ml. T. ferrooxidans cells also increased the rate of Fe2+ production from Fe3+ plus pyrite.  相似文献   

5.
In this study, the process of pyrite colonization and leaching by three iron-oxidizing Acidithiobacillus species was investigated by fluorescence microscopy, bacterial attachment, and leaching assays. Within the first 4–5 days, only the biofilm subpopulation was responsible for pyrite dissolution. Pyrite-grown cells, in contrast to iron-grown cells, were able to oxidize iron(II) ions or pyrite after 24 h iron starvation and incubation with 1 mM H2O2, indicating that these cells were adapted to the presence of enhanced levels of reactive oxygen species (ROS), which are generated on metal sulfide surfaces. Acidithiobacillus ferrivorans SS3 and Acidithiobacillus ferrooxidans R1 showed enhanced pyrite colonization and biofilm formation compared to A. ferrooxidans T. A broad range of factors influencing the biofilm formation on pyrite were also identified, some of them were strain-specific. Cultivation at non-optimum growth temperatures or increased ionic strength led to a decreased colonization of pyrite. The presence of iron(III) ions increased pyrite colonization, especially when pyrite-grown cells were used, while the addition of 20 mM copper(II) ions resulted in reduced biofilm formation on pyrite. This observation correlated with a different extracellular polymeric substance (EPS) composition of copper-exposed cells. Interestingly, the addition of 1 mM sodium glucuronate in combination with iron(III) ions led to a 5-fold and 7-fold increased cell attachment after 1 and 8 days of incubation, respectively, in A. ferrooxidans T. In addition, sodium glucuronate addition enhanced pyrite dissolution by 25 %.  相似文献   

6.
7.
Objectives: The aim of the work was the development of a simple method for measuring the plasma prothrombin carbonylation and the study the impact of prothrombin and fibrinogen oxidation on the rate of plasma clotting.

Methods: A new method was based on the ability of prothrombin to be adsorbed by the barium sulfate. It consists of four steps: prothrombin mixing with the water suspension of BaSO4; reaction of 2,4-dinitrophenylhydrazine with the BaSO4-bound prothrombin; desorption of prothrombin-2,4-dinitrophenylhydrazone complex from BaSO4 in an alkaline medium; neutralization and reading of the optical absorbance of the complex (λ?=?370?nm). The prothrombin/fibrinogen carbonylation and plasma clotting rate in vitro in the presence of reactive oxygen species (ROS)-generating agents (0.05–0.8?mM Fe2+/H2O2) were monitored.

Results: The plasma volume required for measurement of carbonylated prothrombin was 0.4?ml. High level of linearity and reproducibility was observed (r?=?0.9995, P?=?0.0005 – for the protein; r?=?0.9971, P?=?0.0029 – for carbonyls). In the intact rats, the concentration of blood plasma prothrombin was 0.355?±?0.009?mg/ml, and that of carbonyls was 4.94?±?0.09?nmol/mg.

Discussion: Prothrombin and plasma clotting rate was not affected by low concentrations of ROS (0.05–0.2?mM Fe2+/H2O2). The fibrinogen was susceptible to ROS-related effect over all the used range of concentration (0.05–0.8?mM Fe2+/H2O2). Carbonylation of fibrinogen did not affect the plasma clotting activity at low ROS concentration (0.05–0.2?mM Fe2+/H2O2), however it retarded the clotting at higher ROS (0.2–0.8?mM Fe2+/H2O2).  相似文献   

8.
Pleurotus ferulae is a mushroom typically found in arid steppe that is distributed widely in the Junggar Basin of Xinjiang, China. In this work, laccase production by P. ferulae JM30X was optimized in terms of medium composition and culture conditions. After optimization, the highest laccase activity obtained was 6,832.86 U/L. A single isozyme with a molecular weight of 66 kDa was observed by SDS-PAGE and native-PAGE. Optimum pH and temperature were 3.0 and 50–70 °C, respectively. The best laccase substrate was ABTS, for which the Michaelis-Menten constant (K m) and catalytic efficiency (K cat/K m) value for P. ferulae laccase were 0.193 mM and 2.73?×?106 (mM s)?1, respectively. The activity of purified laccase was increased by more than four-fold by Cu2+, Mn2+ and Mg2+, while it was completely inhibited by Fe2+ and Fe3+. The production of laccase was influenced by the initial pH and K+ concentration, and the activity of purified laccase was enhanced by Cu2+, Mn2+ and Mg2+. This Pleurotus genus laccase from P. ferulae JM30X was analyzed by MS spectrum and the results are conducive to furthering our understanding of Pleurotus genus laccases.  相似文献   

9.
The filamentous fungus Aspergillus terreus secretes both invertase and β-glucosidase when grown under submerged fermentation containing rye flour as the carbon source. The aim of this study was to characterize the co-purified fraction, especially the invertase activity. An invertase and a β-glucosidase were co-purified by two chromatographic steps, and the isolated enzymatic fraction was 139-fold enriched in invertase activity. SDS-PAGE analysis of the co-purified enzymes suggests that the protein fraction with invertase activity was heterodimeric, with subunits of 47 and 27 kDa. Maximal invertase activity, which was determined by response surface methodology, occurred in pH and temperature ranges of 4.0–6.0 and 55–65 °C, respectively. The invertase in co-purified enzymes was stable for 1 h at pH 3.0–10.0 and maintained full activity for up to 1 h at 55 °C when diluted in water. Invertase activity was stimulated by 1 mM concentrations of Mn2+ (161 %), Co2+ (68 %) and Mg2+ (61 %) and was inhibited by Al3+, Ag+, Fe2+ and Fe3+. In addition to sucrose, the co-purified enzymes hydrolyzed cellobiose, inulin and raffinose, and the apparent affinities for sucrose and cellobiose were quite similar (KM = 22 mM). However, in the presence of Mn2+, the apparent affinity and Vmax for sucrose hydrolysis increased approximately 2- and 2.9-fold, respectively, while for cellobiose, a 2.6-fold increase in Vmax was observed, but the apparent affinity decreased 5.5-fold. Thus, it is possible to propose an application of this multifunctional extract containing both invertase and β-glucosidase to degrade plant biomass, thus increasing the concentration of monosaccharides obtained from sucrose and cellobiose.  相似文献   

10.
Suaeda fruticosa Forssk is a leaf succulent obligate halophyte that produces numerous seeds under saline conditions. Seeds are a good source of high quality edible oil and leaves are capable of removing substantial amount of salt from the saline soil besides many other economic usages. Little is known about the biochemical basis of salt tolerance in this species. We studied some biochemical responses of S. fruticosa to different exogenous treatments under non-saline (0 mM), moderate (300 mM) or high (600 mM) NaCl levels. Eight-week-old seedlings were sprayed twice a week with distilled water, hydrogen peroxide (H2O2, 100 μM), glycine betaine (GB, 10 mM), or ascorbic acid (AsA, 20 mM) for 30 days. At moderate (300 mM) NaCl, leaf Na+, Ca2+ and osmolality increased, along with unchanged ROS and antioxidant enzyme activities, possibly causing a better plant growth. Plants grew slowly at 600 mM NaCl to avoid leaf Na+ buildup relative to those at 300 mM NaCl. Exogenous application of distilled water and H2O2 improved ROS scavenging mechanisms, although growth was unaffected. ASA and GB alleviated salt-induced growth inhibition at 600 mM NaCl through enhancing the antioxidant defense system and osmotic and ion homeostasis, respectively.  相似文献   

11.

Background and aims

Salinity is an increasing problem for agricultural production worldwide. Understanding how Na+ enters plants is important if reducing Na+ influx, a key component of the regulation of Na+ accumulation in plants and improving salt tolerance of crop plants, is to be achieved. Our previous work indicated that two distinct low-affinity Na+ uptake pathways exist in the halophyte Suaeda maritima. Here, we report the external NaCl concentration at which uptake switches from pathway 1 to pathway 2 and the kinetics of the interaction between external K+ concentration and Na+ uptake and accumulation in S. maritima in order to determine the roles of K+ transporters or channels in low-affinity Na+ uptake.

Methods

Na+ influx, Na+ and K+ accumulations in S. maritima exposed to various concentrations of NaCl (0–200 mM) were analyzed in the absence and presence of the inhibitors TEA and Ba+ (5 mM TEA or 3 mM Ba2+) or KCl (0, 10 or 50 mM).

Results

Our earlier proposal was confirmed and extended that there are two distinct low-affinity Na+ uptake pathways in S. maritima: pathway 1 might be mediated by a HKT-type transporter under low salinity conditions and pathway 2 by an AKT1-type channel or a KUP/HAK/KT type transporter under high salinity conditions. The external NaCl concentration at which two distinct low-affinity Na+ uptake switches from pathway 1 to pathway 2, the ‘turning point’, is between 90 and 95 mM. Over a short period (12 h) of Na+ and K+ treatments, a low concentration of K+ (10 mM) facilitated Na+ uptake by S. maritima under high salinity (100–200 mM NaCl), whether or not the plants had been subjected to a longer (3 d) period of K+ starvation. The kinetics suggests that low concentration of K+ (10 mM) might activate AKT1-type channels or KUP/HAK/KT-type transporters under high salinity (100–200 mM NaCl).

Conclusions

The turning-point of external NaCl concentrations for the two low-affinity Na+ uptake pathways in Suaeda maritima is between 90 and 95 mM. A low concentration of K+ (10 mM) might activate AKT1 or KUP/HAK/KT and facilitate Na+ uptake under high salinity (100–200 mM NaCl). The kinetics of K+ on Na+ uptake and accumulation in S maritima are also consistent with there being two low-affinity Na+ uptake pathways.  相似文献   

12.
The aim of this paper was to describe the effect of various metal ions on the activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2. We also compared activity of different dioxygenases isolated from this strain, in the presence of metal ions, after induction by various aromatic compounds. S. maltophilia KB2 degraded 13 mM 3,4-dihydroxybenzoate, 10 mM benzoic acid and 12 mM phenol within 24 h of incubation. In the presence of dihydroxybenzoate and benzoate, the activity of protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase was observed. Although Fe3+, Cu2+, Zn2+, Co2+, Al3+, Cd2+, Ni2+ and Mn2+ ions caused 20–80 % inhibition of protocatechuate 3,4-dioxygenase activity, the above-mentioned metal ions (with the exception of Ni2+) inhibited catechol 1,2-dioxygenase to a lesser extent or even activate the enzyme. Retaining activity of at least one of three dioxygenases from strain KB2 in the presence of metal ions makes it an ideal bacterium for bioremediation of contaminated areas.  相似文献   

13.
Amidases catalyze the hydrolysis of amides to free carboxylic acids and ammonia. Hyperthermophilic archaea are a natural reservoir of various types of thermostable enzymes. Here, we report the purification and characterization of an amidase from Pyrococcus yayanosii CH1, the first representative of a strict-piezophilic hyperthermophilic archaeon that originated from a deep-sea hydrothermal vent. An open reading frame that encoded a putative member of the nitrilase protein superfamily was identified. We cloned and overexpressed amiE in Escherichia coli C41 (DE3). The purified AmiE enzyme displayed maximal activity at 85 °C and pH 6.0 (NaH2PO4–Na2HPO4) with acetamide as the substrate and showed activity over the pH range of 4–8 and the temperature range of 4–95 °C. AmiE is a dimer and active on many aliphatic amide substrates, such as formamide, acetamide, hexanamide, acrylamide, and l-glutamine. Enzyme activity was induced by 1 mM Ca2+, 1 mM Al3+, and 1–10 mM Mg2+, but strongly inhibited by Zn2+, Cu2+, Ni2+, and Fe3+. The presence of acetone and ethanol significantly decreased the enzymatic activity. Neither 5 % methanol nor 5 % isopropanol had any significant effect on AmiE activity (99 and 96 % retained, respectively). AmiE displayed amidase activity although it showed high sequence homology (78 % identity) with the known nitrilase from Pyrococcus abyssi. AmiE is the most characterized archaeal thermostable amidase in the nitrilase superfamily. The thermostability and pH-stability of AmiE will attract further studies on its potential industrial applications.  相似文献   

14.
Alcaligenes sp. MTCC 10675 has been isolated from soil sample using enrichment method and has nitrilase catalytic system which is highly specific for the hydrolysis of arylaliphatic nitriles. Optimization of culture conditions using response surface methodology and inducer-mediated approach enhanced arylacetonitrilase production significantly (2.4-fold). Isobutyronitrile acted as an effective inducer for the induction of arylacetonitrilase, and it is highly specific for arylacetonitriles (phenyl acetonitrile and mandelonitrile). Arylacetonitrilase has no effect on its relative velocity (V r) up to 20 mM substrate (mandelonitrile) concentration and at 30 mM mandelonitrile, 23.4 % degree of inhibition (I d) was recorded. Half life of arylacetonitrilase of Alcaligenes sp. MTCC 10675 was 27.5 h at 25 °C. Hg2+, Ag+, Pb3+, and Co2+ were strong inhibitor of arylacetonitrilase activity which resulted into 100 %, 91 %, 84 %, and 83 % inhibition, respectively. Polar protic solvent (dichloromethane, dimethylsulphooxide, and n-butanol) reduce arylacetonitrilase activity up to 80–94 % at 10 % concentration. Alcaligenes sp. MTCC 10675 has higher biocatalytic activity, i.e., 3.9 gg-1 dcw, which is highest in comparison to till reported organism. Arylacetonitrilase-mediated hydrolysis of racemic mandelonitrile resulted into R-(-) mandelic acid with 99.0 % enantiomeric excess (e.e.)  相似文献   

15.
A white-rot basidiomycete, isolated from decayed acacia wood (from Northwest of Tunisia) and identified as Trametes sp, was selected in a broad plate screening because of its ability to decolorize and dephenolize olive oil mill wastewater (OMW) efficiently. The major laccase was purified and characterized as a monomeric protein with apparent molecular mass of 61 kDa (SDS-PAGE). It exhibits high enzyme activity over broad pH and temperature ranges with optimum activity at pH 4.0 and a temperature of 60 °C. The purified laccase is stable at alkaline pH values. The enzyme retained 50 % of its activity after 90 min of incubation at 55 °C. Using ABTS, this laccase presented K m and V max values of 0.05 mM and 212.73 μmoL min?1 mg?1, respectively. It has shown a degrading activity towards a variety of phenolic compounds. The purified laccase was partially inhibited by Fe2+, Zn2+, Cd2+ and Mn2+, while Cu2+ acted as inducer. EDTA (10 mM) and NaN3 (10 mM) were found to completely inhibit its activity. 73 % OMW was dephenolized after 315 min incubation at 30 °C with 2 U mL?1 of laccase and 2 mM HBT.  相似文献   

16.
The uptake and accumulation of iron in cucumber roots exposed to cadmium were investigated with Fe sufficient and deficient cucumber plants using Mössbauer spectroscopy, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and ferric chelate reductase activity measurements. Both Fe sufficient and Fe deficient plants were applied. In the case of Fe sufficient cucumber roots grown in nutrient solution with 10 μM Cd no changes were found in the occurrence of Fe species (mostly hydrous ferric oxides and ferric-carboxylate complexes) compared to the control where no Cd was added. In the Fe deficient roots pretreated with 0, 0.1, 1, 10 and 100 μM Cd for 3 h then supplied also with 0.5 mM 57Fe-citrate for 30 min, FeII was identified in a hexaaqua complex form. The relative amount of FeII was decreasing simultaneously with increasing Cd concentration, while the relative occurrence of FeIII species and total Fe concentration were increasing. The results support the inhibitory effect of Cd on Fe-chelate reduction. Although the reductase activity at 10 and 100 μM Cd treatment was lower than in the iron sufficient control plants, FeII could be identified by Mössbauer spectroscopy whereas in the Fe sufficient control, this form was below detection limit. These data demonstrate that the influx and the reoxidation of FeII was decreased by Cd, consequently, they refer to the competition of Cd2+ and Fe2+ during the membrane transport and the inhibition of the reoxidation process.  相似文献   

17.
An esterase gene, est10, was identified from the genomic library of a deep-sea psychrotrophic bacterium Psychrobacter pacificensis. The esterase exhibited the optimal activity around 25 °C and pH 7.5, and maintained as high as 55.0 % of its maximum activity at 0 °C, indicating its cold adaptation. Est10 was fairly stable under room temperatures, retaining more than 80 % of its original activity after incubation at 40 °C for 2 h. The highest activity was observed against the short-chain substrate p-nitrophenyl butyrate (C4) among the tested p-nitrophenyl esters (C2–C16). It was slightly activated at a low concentration (1 mM) of Zn2+, Mg2+, Ba2+, Ca2+, Cu2+, Fe3+, urea and EDTA, but was inhibited by DTT and totally inactivated by PMSF. Interestingly, increased salinity considerably stimulated Est10 activity (up to 143.2 % of original activity at 2 M NaCl) and stability (up to 126.4 % after incubation with 5 M NaCl for 6.5 h), proving its salt tolerance. 0.05 and 0.1 % Tween 20, Tween 80, Triton X-100 and CHAPS increased the activity and stability of Est10 while SDS, CTAB had the opposite effect. Est10 was quite active after incubation with several 30 % organic solvents (methanol, DMSO, ethanediol) but exhibited little activity with 30 % isopropanol, ethanol, n-butanol and acetonitrile.  相似文献   

18.
A codon-optimized 2-deoxyribose-5-phosphate aldolase (DERA) gene was newly synthesized and expressed in Escherichia coli to investigate its biochemical properties and applications in synthesis of statin intermediates. The expressed DERA was purified and characterized using 2-deoxyribose-5-phosphate as the substrate. The specific activity of recombinant DERA was 1.8 U/mg. The optimum pH and temperature for DERA activity were pH 7.0 and 35 °C, respectively. The recombinant DERA was stable at pH 4.0–7.0 and at temperatures below 50 °C. The enzyme activity was inhibited by 1 mM of Ni2+, Ba2+ and Fe2+. The apparent K m and V max values of purified enzyme for 2-deoxyribose-5-phosphate were 0.038 mM and 2.9 μmol min?1 mg?1, for 2-deoxyribose were 0.033 mM and 2.59 μmol min?1 mg?1, respectively, which revealed that the enzyme had similar catalytic efficiency towards phosphorylated and non-phosphorylated substrates. To synthesize statin intermediates, the bioconversion process for production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose from chloroacetaldehyde and acetaldehyde by the recombinant DERA was developed and a conversion of 94.4 % was achieved. This recombinant DERA could be a potential candidate for application in production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose.  相似文献   

19.
Loading of extraplasmatic Fe, as a potential storage pool for Fe nutrition, was studied in roots of maize grown under hypoxic conditions in soil culture. Extraplasmatic Fe loading was investigated depending on (i) duration of flooding (0, 1, 2 or 4 days) and (ii) microbial activity as affected by graduated addition of carbon sources (0, 2 or 10 g each starch and cellulose kg?1 soil). Maize plants were grown in a soil culture system with root systems enclosed in membrane bags to avoid Fe contamination of the root surface by soil particles. Due to the high redox buffer capacity of the Haplic Luvisol employed for the experiments, flooding treatments induced only moderately reducing conditions (~?300 mV) and a slight increase of extraplasmatic Fe loading (41\to165 mg kg?1 d.m.). Strongly reducing conditions (?100 mV) associated with a high Fe2+ concentration in the soil solution and a significant increase of extraplasmatic Fe (1190 mg kg?1 d.m.) were obtained only after application of high amounts of organic carbon (10 g starch and 10 g cellulose kg?1 soil), which accompanied by unrealistic reducing conditions due to intense stimulation of microbial growth. The expression of effects only under extremely high application level of organic carbon (~?33 t C ha?1) suggest that similar to aerobic conditions, extraplasmatic Fe-loading under transient hypoxia is probably of limited ecological significance for the iron nutrition of higher plants, at least in soils with a high redox buffer capacity as employed in the present study. Abbreviations: DHA – dehydrogenase activity; d.m. – dry matter; DOC – dissolved organic carbon; Eh – redox potential; PIXE – proton-induced X-ray emission; STIM – scanning transmission ion microscopy.  相似文献   

20.
A new acidophilic xylanase (XYN11A) from Penicillium oxalicum GZ-2 has been purified, identified and characterized. Synchronized fluorescence spectroscopy was used for the first time to evaluate the influence of metal ions on xylanase activity. The purified enzyme was identified by MALDI TOF/TOF mass spectrometry, and its gene (xyn11A) was identified as an open reading frame of 706 bp with a 68 bp intron. This gene encodes a mature protein of 196 residues with a predicted molecular weight of 21.3 kDa that has the 100 % identity with the putative xylanase from the P. oxalicum 114-2. The enzyme shows a structure comprising a catalytic module family 10 (GH10) and no carbohydrate-binding module family. The specific activities were 150.2, 60.2, and 72.6 U/mg for beechwood xylan, birchwood xylan, and oat spelt xylan, respectively. XYN11A exhibited optimal activity at pH 4.0 and remarkable pH stability under extremely acidic condition (pH 3). The specific activity, K m and V max values were 150.2 U/mg, 30.7 mg/mL, and 403.9 μmol/min/mg for beechwood xylan, respectively. XYN11A is a endo-β-1,4-xylanase since it release xylobiose and xylotriose as the main products by hydrolyzing xylans. The activity of XYN11A was enhanced 155 % by 1 mM Fe2+ ions, but was inhibited strongly by Fe3+. The reason of enhancing the xylanase activity of XYN11A with 1 mM Fe2+ treatment may be responsible for the change of microenvironment of tryptophan residues studied by synchronous fluorescence spectrophotometry. Inhibition of the xylanase activity by Fe3+ was first time demonstrated to associate tryptophan fluorescence quenching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号