首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Minichromosome maintenance (MCM) proteins form a complex and possess helicase activity to unwind the DNA duplex and establish a replication fork. To assure that origins only fire once per cell cycle, the MCM complex is removed from chromatin and inactivated as cells exit S phase. In this report, we demonstrate that CDK2 depletion in human cells leads to an overall phosphorylation defect at mitosis with increased rereplication, correlated with the accumulation of chromatin-bound MCM proteins. We show that CDK2 suppression results in decreased MCM4 phosphorylation at multiple serine and threonine sites. In addition, CDK2 inhibition induces an increase in chromatin-bound replication protein A (RPA) which should bindto single-stranded DNA regions, possibly establishing a replication intermediate that activates the ATR cascade. Finally, we observe that loss of CDK2 function in G1 delays replication initiation while it promotes rereplication in G2/M. Thus, by modulating the phospho-status of MCM4 and regulating origin firing, S phase CDK2 appears to be an integrated component of cellular machinery required for temporally controlling replication activity and maintaining genomic stability.  相似文献   

2.
Activation (in the following referred to as firing) of replication origins is a continuous and irreversible process regulated by availability of DNA replication molecules and cyclin-dependent kinase activities, which are often altered in human cancers. The temporal, progressive origin firing throughout S phase appears as a characteristic replication profile, and computational models have been developed to describe this process. Although evidence from yeast to human indicates that a range of replication fork rates is observed experimentally in order to complete a timely S phase, those models incorporate velocities that are uniform across the genome. Taking advantage of the availability of replication profiles, chromosomal position and replication timing, here we investigated how fork rate may affect origin firing in budding yeast. Our analysis suggested that patterns of origin firing can be observed from a modulation of the fork rate that strongly correlates with origin density. Replication profiles of chromosomes with a low origin density were fitted with a variable fork rate, whereas for the ones with a high origin density a constant fork rate was appropriate. This indeed supports the previously reported correlation between inter-origin distance and fork rate changes. Intriguingly, the calculated correlation between fork rate and timing of origin firing allowed the estimation of firing efficiencies for the replication origins. This approach correctly retrieved origin efficiencies previously determined for chromosome VI and provided testable prediction for other chromosomal origins. Our results gain deeper insights into the temporal coordination of genome duplication, indicating that control of the replication fork rate is required for the timely origin firing during S phase.  相似文献   

3.
在真核生物中,DNA复制在染色体上特定的多位点起始.当细胞处在晚M及G1期,多个复制起始蛋白依次结合到DNA复制源,组装形成复制前复合体.pre.RC在Gl-S的转折期得到激活,随后,多个直接参与DNA复制又形成的蛋白结合到DNA复制源,启动DNA的复制,形成两个双向的DNA复制又.在染色体上,移动的DNA复制又经常会碰到复制障碍(二级DNA结构、一些蛋白的结合位点、损伤的碱基等)而暂停下来,此时,需要细胞周期检验点的调控来稳定复制叉,否则,会导致复制又垮塌及基因组不稳定.本文就真核细胞染色体DNA复制起始的机制,以及复制又稳定性的维持机制进行简要综述.  相似文献   

4.
Wuarin J  Buck V  Nurse P  Millar JB 《Cell》2002,111(3):419-431
We show that in fission yeast the mitotic B type cyclin Cdc13/Cdc2 kinase associates with replication origins in vivo. This association is dependent on the origin recognition complex (ORC), is established as chromosomes are replicated, and is maintained during G2 and early mitosis. Cells expressing an orp2 (ORC2) allele that reduces binding of Cdc13 to replication origins are acutely prone to chromosomal reduplication. In synchronized endoreduplicating cells, following Cdc13 ablation, replication origins are coordinately licensed prior to each successive round of S phase with the same periodicity as in a normal cell cycle. Thus, ORC bound mitotic Cyclin B/Cdc2 kinase imposes the dependency of S phase on an intervening mitosis but not the temporal licensing of replication origins between each S phase.  相似文献   

5.
During the G1 phase of the cell cycle, replication origins are prepared to fire, a process that is referred to as origin licensing. It was often pondered what a cell's fate would be if not all of its replication origins were licensed and subsequently activated during S phase. One obvious prediction was that S phase would simply be prolonged. As it turns out, however, the consequences are much more complex. A short G1 phase enforced by premature entry into S phase, or other events that negatively affect origin licensing, will ultimately compromise the cell's ability to complete DNA replication before entering mitosis. As a result, the cell becomes genomically unstable when it attempts to repair unreplicated DNA during anaphase. Thus, the density of active replication origins in the chromosomes of eukaryotic cells determines S phase dynamics and chromosome stability during mitosis.  相似文献   

6.
During the G1 phase of the cell cycle, replication origins are prepared to fire, a process that is referred to as origin licensing. It was often pondered what a cell’s fate would be if not all of its replication origins were licensed and subsequently activated during S phase. One obvious prediction was that S phase would simply be prolonged. As it turns out, however, the consequences are much more complex. A short G1 phase enforced by premature entry into S phase, or other events that negatively affect origin licensing, will ultimately compromise the cell’s ability to complete DNA replication before entering mitosis. As a result, the cell becomes genomically unstable when it attempts to repair unreplicated DNA during anaphase. Thus, the density of active replication origins in the chromosomes of eukaryotic cells determines S phase dynamics and chromosome stability during mitosis.  相似文献   

7.
8.
Mammalian chromosomes consist of multiple replicons; however, in contrast to yeast, the details of this replication process (origin firing, fork progression and termination) relative to specific chromosomal domains remain unclear. Using direct visualization of DNA fibers, here we show that the rate of replication fork movement typically decreases in the early-mid S phase when the replication fork proceeds through the R/G chromosomal band boundary and pericentromeric heterochromatin. To support this, fluorescence in situ hybridization (FISH)-based replication profiles at the human 1q31.1 (R-band)-32.1 (G-band) regions revealed that replication timing switched around at the putative R/G chromosomal band boundary predicted by marked changes in GC content at the sequence level. Thus, the slowdown of replication fork movement is thought to be the general property of the band boundaries separating the functionally different chromosomal domains. By simultaneous visualization of replication fork movement and pericentromeric heterochromatin sequences on DNA fibers, we observed that this region is duplicated by many replication forks, some of which proceed unidirectionally, that originate from clustered replication origins. We showed that histone hyperacetylation is tightly associated with changes in the replication timing of pericentromeric heterochromatin induced by 5-aza-2'-deoxycytidine treatment. These results suggest that, similar to the yeast system, histone modification is involved in controlling the timing of origin firing in mammals.  相似文献   

9.
Cyclin-dependent kinases (CDKs) activate the firing of replication origins during the S phase of the cell cycle. They also block re-initiation of DNA replication within a single cell cycle, by preventing the assembly of prereplicative complexes at origins. We show here that, in budding yeast, CDKs exclude the essential prereplicative-complex component Mcm4 from the nucleus. Although origin firing can be triggered by the B-type cyclins only, both G1-phase and B-type cyclins cause exit of Mcm4 from the nucleus. These results suggest that G1 cyclins may diminish the cell's capacity to assemble prereplicative complexes before B-type cyclins trigger origin firing during S phase.  相似文献   

10.
Lengronne A  Schwob E 《Molecular cell》2002,9(5):1067-1078
G(1) cell cycle regulators are often mutated in cancer, but how this causes genomic instability is unclear. Here we show that yeast lacking the CDK inhibitor Sic1 initiate DNA replication from fewer origins, have an extended S phase, and inefficiently separate sister chromatids during anaphase. This leads to double-strand breaks (DSBs) in a fraction of sic1 cells as evidenced by the accumulation of Ddc1 foci and a 575-fold increase in gross chromosomal rearrangements. Both S and M phase defects are rescued by delaying S-CDK activation, indicating that Sic1 promotes origin licensing in late G(1) by preventing the untimely activation of CDKs. We propose that precocious CDK activation causes genomic instability by altering the dynamics of S phase, which then hinders normal chromosome segregation.  相似文献   

11.
Deoxyribonucleic acid (DNA) replication and chromosome segregation must occur in ordered sequence to maintain genome integrity during cell proliferation. Checkpoint mechanisms delay mitosis when DNA is damaged or upon replication stress, but little is known on the coupling of S and M phases in unperturbed conditions. To address this issue, we postponed replication onset in budding yeast so that DNA synthesis is still underway when cells should enter mitosis. This delayed mitotic entry and progression by transient activation of the S phase, G2/M, and spindle assembly checkpoints. Disabling both Mec1/ATR- and Mad2-dependent controls caused lethality in cells with deferred S phase, accompanied by Rad52 foci and chromosome missegregation. Thus, in contrast to acute replication stress that triggers a sustained Mec1/ATR response, multiple pathways cooperate to restrain mitosis transiently when replication forks progress unhindered. We suggest that these surveillance mechanisms arose when both S and M phases were coincidently set into motion by a unique ancestral cyclin–Cdk1 complex.  相似文献   

12.
Passage through mitosis is required to reset replication origins for the subsequent S phase. During mitosis, a series of biochemical reactions involving cyclin-dependent kinases (CDKs), the anaphase promoting complex or cyclosome (APC/C), and a mitotic exit network including Cdc5, 14, and 15 coordinates the proper separation and segregation of sister chromatids. Here we show that cyclin B/CDK inactivation can drive origin resetting in either early S phase or mitosis. This origin resetting occurs efficiently in the absence of APC/C function and mitotic exit network function. We conclude that CDK inactivation is the single essential event in mitosis required to allow pre-RC assembly for the next cell cycle.  相似文献   

13.
Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics.  相似文献   

14.
Subunits and substrates of the anaphase-promoting complex   总被引:13,自引:0,他引:13  
The initiation of anaphase and exit from mitosis depend on a ubiquitination complex called the anaphase-promoting complex (APC) or cyclosome. The APC is composed of more than 10 constitutive subunits and associates with additional regulatory factors in mitosis and during the G1 phase of the cell cycle. At the metaphase-anaphase transition the APC ubiquitinates proteins such as Pds1 in budding yeast and Cut2 in fission yeast whose subsequent degradation by the 26S proteasome is essential for the initiation of sister chromatid separation. Later in anaphase and telophase the APC promotes the inactivation of the mitotic cyclin-dependent protein kinase 1 by ubiquitinating its activating subunit cyclin B. The APC also mediates the ubiquitin-dependent proteolysis of several other mitotic regulators, including other protein kinases, APC activators, spindle-associated proteins, and inhibitors of DNA replication.  相似文献   

15.
The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim) associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1). Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication.  相似文献   

16.
Lau E  Zhu C  Abraham RT  Jiang W 《EMBO reports》2006,7(4):425-430
The Cdc6 protein is required for licensing of replication origins before the onset of DNA replication in eukaryotic cells. Here, we examined whether Cdc6 has other roles in mammalian cell-cycle progression from S to G2/M phase. Using RNA interference, we showed that depletion of Cdc6 in synchronous G1 cells blocks G1 to S transition, confirming the essential role of Cdc6 in the initiation of DNA replication. In contrast, depletion of Cdc6 in synchronous S-phase cells slowed DNA replication and led to mitotic lethality. The Cdc6-depleted S-phase cells showed fewer newly fired origins; however, established replication forks remained active, even during chromatin condensation. Despite such DNA replication abnormalities, loss of Cdc6 failed to activate Chk1 kinase. These results show that Cdc6 is not only required for G1 origin licensing, but is also crucial for proper S-phase DNA replication that is essential for DNA segregation during mitosis.  相似文献   

17.
Peters JM 《Current biology : CB》2005,15(12):R461-R463
Cyclin degradation is required for exit from mitosis and enables a new round of DNA replication in the subsequent S phase. A recent study in fission yeast shows that, during exit from meiosis I, the Mes1 protein partially inhibits cyclin degradation and thereby allows entry into meiosis II without an intervening S phase.  相似文献   

18.
In eucaryotic cells chromosomes must be fully replicated and repaired before mitosis begins. Genetic studies indicate that this dependence of mitosis on completion of DNA replication and DNA repair derives from a negative control called a checkpoint which somehow checks for replication and DNA damage and blocks cell entry into mitosis. Here we summarize our current understanding of the genetic components of the cell cycle checkpoint in budding yeast. Mutants were identified and their phase and signal specificity tested primarily through interactions of the arrest-defective mutants with cell division cycle mutants. The results indicate that dual checkpoint controls exist in budding yeast, one control sensitive to inhibition of DNA replication (S-phase checkpoint), and a distinct but overlapping control sensitive to DNA repair (G2 checkpoint). Six genes are required for arrest in G2 phase after DNA damage (RAD9, RAD17, RAD24, MEC1, MEC2, and MEC3), and two of these are also essential for arrest in S phase when DNA replication is blocked (MEC1 and MEC2).  相似文献   

19.
20.
DNA replication is precisely regulated in time and space, thereby safeguarding genomic integrity. In eukaryotes, replication initiates from multiple sites along the genome, termed origins of replication, and propagates bidirectionally. Dynamic origin bound complexes dictate where and when replication should initiate. During late mitosis and G1 phase, putative origins are recognized and become "licensed" through the assembly of pre-replicative complexes (pre-RCs) that include the MCM2-7 helicases. Subsequently, at the G1/S phase transition, a fraction of pre-RCs are activated giving rise to the establishment of replication forks. Origin location is influenced by chromatin and nuclear organization and origin selection exhibits stochastic features. The regulatory mechanisms that govern these cell cycle events rely on the periodic fluctuation of cyclin dependent kinase (CDK) activity through the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号