首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of hexose transport under glucose-starvation conditions was studied in cultured human skin fibroblasts. Glucose starvation enhanced the transport of 2-DG and 3-O-methyl-D-glucose (3-OMG) but not of L-glucose. Glucose-starvation enhanced transport was inhibited by cytochalasin B (10 μM). The starvation-induced change in 2-DG transport was due to an increase in the Vmax of both the high and low affinity transport sites (2.8- and 2.4-fold, respectively) with no effect on their Kms. The presence of 5.55 mM galactose, fructose, or L-glucose in the medium resulted in transport increases similar to those seen in glucose-starved cells, while the presence of 5.55 mM glucose, mannose, or 3-OMG repressed 2-DG transport. Glucose-starvation enhancement of 2-DG transport was blocked by cycloheximide (20 μg/ml) but not by actinomycin D (0.03 μg/ml) or α-amanitin (3.5 μM). Readdition of glucose (5.55 mM) for six hours to glucose-starved cells led to a rapid decrease in hexose transport that could be blocked by cycloheximide but not actinomycin D. Although readdition of 3-OMG to glucose-starved cells had little effect on reversing the transport increases, glucose plus 3-OMG were more effective than glucose alone. Serum containing cultures (10% v/v) of glucose-fed or glucose-starved cells exhibited rapid decreases in 2-DG transport when exposed to glucose-containing serum-free medium. These decreases were prevented by employing glucose-free, serum-free medium. The data indicate that hexose transport regulation in cultured human fibrob asts involves protein synthesis of hexose carriers balanced by interactions of glucose with a regulatory protein(s) and glucose metabolism as they affect the regulation and/or turnover of the carrier molecules.  相似文献   

2.
The relation between autophagy and apoptosis has not been clearly elucidated. Here, we reported that apoptosis followed autophagy in insect Spodoptera litura cells (Sl) undergoing glucose starvation. Sl cells have been adapted to Leibovitz-15 medium supplemented with glucose (1.0 g/l) and 5% fetal bovine serum (FBS), used for mammalian cell cultures. If glucose (1 g/l) or glutamine (1.6 g/l) had not been supplemented in L-15 medium with 5% FBS, Sl cells began to form many vacuoles and these vacuoles gradually enlarged in the cytoplasm, which were autophagic vacuoles. However, these large vacuoles began to disappear gradually after 48 h of glucose starvation, accompanied with remarkable apoptosis without apoptotic bodies, which was demonstrated by DNA fragmentation and activation of caspase-3-like. During glucose starvation, Sl cell ATP concentrations gradually decreased. Interestingly, if the conditioned L-15 medium without glucose was replaced with fresh L-15 medium supplemented with glucose or glutamine after the cultures had been starved seriously for 48 h or longer, the formation of apoptotic bodies was initiated. These data suggested that the partial depletion of cell ATP triggered apoptosis following autophagy in glucose-starved Sl cells and the formation of apoptotic bodies required higher level of ATP than DNA fragmentation and activation of caspase-3-like activity. Additionally, the disappearance of autophagic vacuoles, negative staining of neutral red, green staining of acridine orange and diffusion of acid phosphatase activity in Sl cells at the late stage of starvation (over 48 h) suggested that the dysfunction of lysosome was more likely to involve in apoptosis. The facts that Actinomycin D-induced apoptosis was partially inhibited and cyclosporin A, blocking the opening of mitochondrial permeability transition (MPT) pores, inhibited partially apoptosis in glucose-starved Sl cells, suggested the pathway of glucose starvation-induced apoptosis seemed to be different from that induced by actinomycin D and the opening of MPT pores on mitochondria probably involved in apoptosis triggered by glucose starvation, respectively.  相似文献   

3.
Glucose utilization was studied in isolated fat cells prepared from rat adipose tissue which had been cultured for 18 hr in TC 199 medium. When 1% bovine serum albumin (BSA) was in the culture medium, basal rates of (14)CO(2) and [(14)C]triglyceride production from [1-(14)C]glucose were markedly depressed and there was no effect of insulin. With 4% BSA, basal (14)CO(2) production was the same as in cells prepared from fresh tissue and basal triglyceride production was greatly increased. Insulin effect on these cells was minimal. One-minute uptake of [(14)C]2-deoxyglucose was stimulated by 800-1000% in fresh cells and 300-500% in cells cultured with either 1% or 4% BSA. Oxidation of [U-(14)C]glucose showed a much smaller impairment in cultured cells than for [1-(14)C]glucose, suggesting that the pentose phosphate shunt was more severely impaired than glycolysis. Glyceride-glycerol production was increased in cultured cells relative to preculture (fresh) cells. There was no effect of insulin in the culture medium in any of these systems. Rates of free fatty acid and glycerol release were markedly increased in cultured cells, especially when insulin was present in the culture medium. The acute antilipolytic effect of insulin was retained, so that insulin in the test incubation decreased lipolysis by 40-80%. Nevertheless, cell-associated fatty acids were increased in cultured cells and FFA/albumin ratios in the medium often reached potentially toxic levels. The reduction in pentose phosphate shunt activity, lipogenesis, and insulin effect resembles other models of insulin insensitivity. The impaired metabolism is probably due to an intracellular defect. A possible toxic role of either intracellular or extracellular fatty acids cannot be excluded. This system should be a useful model in which to study the cellular mechanisms of insulin insensitivity in adipocytes.-Bernstein, R. S. Insulin insensitivity and altered glucose utilization in cultured rat adipose tissue.  相似文献   

4.
Hexose transport in glucose-starved human fibroblasts was readily reversed by glucose refeeding. This hexose transport reversal was not inhibited by tunicamycin (1.5 microgram/ml) but was blocked by cycloheximide (20 micrograms/ml). The ability of insulin (100 mU/ml) to stimulate hexose transport was returned by glucose refeeding and this was not affected by tunicamycin. Cycloheximide which blocked the glucose refeeding effect on hexose transport, decreased the ability of insulin to stimulate hexose transport. Specific 125I-insulin binding was increased by glucose refeeding of glucose-starved cells and this change in binding was inhibited by tunicamycin and cycloheximide. Thus, it appears that under the conditions employed in human fibroblasts, the ability of insulin to stimulate hexose transport is differentially regulated more by factors affecting basal hexose transport than by those affecting changes in insulin binding.  相似文献   

5.
The effects of insulin and glucose on parameters of metabolism were investigated in myoblast-like (MBL) cells, a human myoblast-like cell line derived from a Wilms' tumor. Insulin responses were studied after 4 hr pre-incubation in serum free media, with or without 5 mM glucose. Insulin was added during the last 2 hr. Glucose starvation markedly increased basal glucose transport (measured as 2-deoxyglucose uptake) as well as the net uptake of [14C]glucose and [14C]glucose incorporation into glycogen. Insulin stimulated net glucose uptake and incorporation into glycogen in a dose-dependent manner in glucose-fed and starved cells. These insulin responses were markedly enhanced in glucose-starved cells. Insulin accelerated 2-deoxyglucose transport in glucose-fed cells but did not further stimulate basal glucose transport in glucose-deprived cells. Insulin increased the incorporation of [3H]leucine into protein in glucose-fed or -starved MBL cells equally. The dose of insulin required for half-maximal insulin responses was similar for all parameters studied. Cycloheximide did not prevent the increased basal glucose incorporation in glucose-starved cells, but markedly inhibited the insulin response, while in glucose-fed cells, cycloheximide stimulated basal glucose incorporation. We conclude that MBL cells resemble fibroblasts in their insulin-independent stimulation of glucose transport in response to glucose-deprivation; when provided with glucose, they respond to insulin like fibroblasts. However, after brief glucose-starvation, the stimulated glucose transport system is no longer insulin-responsive in MBL cells, while pathways leading to the synthesis of macromolecules demonstrate preserved or enhanced stimulation by insulin, suggesting that these cells may serve as models to study the regulation of receptor-response coupling by the metabolic milieu.  相似文献   

6.
Summary We have shown previously that the concentration of glucose in the growth medium regulates sodium-coupled hexose transport in epithelia formed by the porcine renal cell line LLC-PK1. Assayed in physiological salt solution, the ratio of the concentration of -methyl glucoside (AMG) accumulated inside the cell at steady state to its concentration outside, and the number of glucose transporters, as measured by phlorizin binding, was inversely related to the glucose concentration in the growth medium. In this study, using a cloned line of LLC-PK1 cells, we provide evidence that the difference in AMG concentrating capacity is the result of a regulatory signal and not simply due to a selection process where the growth of cells with enhanced glucose transport is favored by low glucose medium or vice-versa. By adding glucose to conditioned medium (collected after 48 hr incubation with cells and therefore containing less than 0.1mm glucose), we demonstrate that the signal in the growth medium is indeed the concentration of glucose rather than another factor secreted into or depleted from the medium. Fructose and mannose, two sugars not transported by the sodium-dependent glucose transporter, can substitute for glucose as a carbohydrate source in the growth medium and have a modest glucose-like effect on the transporter. Growth in medium containing AMG does not affect the transporter, indicating that the regulatory signal is not a direct effect of the hexose on its carrier but involves hexose metabolism.  相似文献   

7.
No information is available concerning how the maturation environment controls the metabolism of goat oocytes. The objectives of this experiment were to: (1) Determine the concentrations of glucose, lactate, and pyruvate in caprine follicular fluid; and (2) Investigate the effects of physiological concentrations of glucose and lactate in the in vitro maturation (IVM) medium on the metabolism (glycolysis and pyruvate oxidation), protein content, and developmental competence of caprine oocytes and cumulus-oocyte complexes (COCs). Abattoir-derived COCs were matured for 18-20 hr in a defined, SOF-based medium containing 0.75, 1.5 (follicular fluid = 1.4 mM), or 3.0 mM glucose, and 3.0, 6.0 (follicular fluid = 7.1 mM), or 12.0 mM L-lactate. The protein content of oocytes and COCs was not affected (P > 0.05) by the concentration of glucose and lactate in the maturation medium. Increasing glucose and lactate decreased (P < or = 0.05) glycolytic activity of oocytes, without affecting (P > 0.05) pyruvate oxidation. In COCs, increasing glucose concentrations tended (P = 0.07) to decrease glycolysis. When metabolic activity was corrected for protein content (pmol/microg protein/3 hr), increasing glucose or lactate concentrations in the medium decreased (P < or = 0.05) pyruvate oxidation in oocytes, but increased (P < or = 0.05) pyruvate oxidation in COCs. Embryonic development (cleavage and blastocyst development, hatching, and cell number) was not affected (P > 0.05) by the glucose and lactate concentrations tested. These results indicate that concentrations of glucose and lactate in the medium have cell type-specific effects on metabolism of oocytes and COCs, but do not affect developmental competence within the range of concentrations tested.  相似文献   

8.
Hexose uptake by hamster cells was increased five to ten fold by either substituting D-fructose for glucose or by completely omitting D-glucose from the culture medium for 24 to 48 hours. Conversely, when cycloheximide was present for 24 hours in media containing glucose, up to 20-fold decreases in hexose uptake were observed. However, these decreases in uptake activity were only observed over a narrow range of cycloheximide concentrations. After extended exposure to low concentrations of cycloheximide (0.05 to 10 mug/ml), the uptake by the fed cells decreased parallel with inhibition of protein synthesis whereas at high concentrations (greater than 50 mug/ml) uptake was increased. Cells deprived of glucose and maintained in the presence of cycloheximide did not show decreases in uptake activity. In separate experiments the high uptake rates of glucose-starved cells could be decreased by addition of glucose-free medium. The reversal was complete in 6 to 8 hours. The analog of glucose, 2-deoxy-D-glucose, did not promote the time-dependent decrease suggesting that the 6-phosphoester of glucose is not an inhibitor of transport. In addition, when cycloheximide is added at the same time as glucose, there is no decrease in uptake for at least 12 hours. We propose that turnover of components of hexose uptake systems could account for part of the control of hexose transport. Moreover, the results indicate that the turnover mechanism becomes inactive during glucose starvation and must be resynthetized following refeeding of the starved cells with glucose.  相似文献   

9.
Development of 8-cell bovine embryos derived from in vitro matured/in vitro fertilized (IVM/IVF) oocytes was evaluated in two simple, serum-free media (CZB and SOM) with buffalo rat liver cells co-culture (BRLC) or after conditioning compared to a commonly used, serum-supplemented complex medium TCM-199. In a 3 x 4 factorial design, 578 eight-cell embryos were randomly assigned to 12 treatment groups. The factors were: first, type of culture medium (M199/FBS, CZBg and SOM), and second, the use of BRLC (as co-culture or to condition media for 24 hr and 48 hr) and unconditioned media. Development to morula was not affected by the type of medium, but co-culture and 48 hr conditioning within media type resulted in better development when compared to the 24-hr conditioned or unconditioned groups. Blastocyst development in SOM (38.9%) was different (P < 0.05) than in CZBg (46.6%) and M199/FBS (48.7%) and was lowest in the unconditioned group (27.8%) followed by 24 hr conditioned (33.3%), 48 hr (56.3%), and co-culture (59.6%). No blastocyst expansion was observed with unconditioned media and 24 hr conditioned SOM. Significant differences (P < 0.05) were found among all treatment groups except the co-culture and 48-hr conditioned groups. Hatching occurred only with co-culture and 48-hr conditioned groups of M199/FBS and CZBg media. These data show that CZB with glucose conditioned by BRLC monolayers for 48 hr can support the development of IVM/IVF produced bovine embryos to blastocyst compared to culture in TCM-199 with serum. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Studies were carried out on cultures of human skin fibroblasts to explore the effects of culture medium glucose levels on insulin binding and action. Cell cultures in 5.55 mm glucose-containing medium depleted their medium glucose within 3 days, and at that time exhibited elevated deoxy-d-glucose (2-DG) transport (84% greater than control cultures fed 22.2 mm glucose) and failure of insulin to stimulate 2-DG transport (an insulin:control transport ratio of 1.02). There was also a significant negative correlation between basal 2-DG transport and insulin binding (r = ?0.621; n = 29; P < 0.01), while insulin binding exhibited a significant positive correlation with insulin action (r = 0.816; n = 12; P < 0.01). Glucose starvation of cultures for 18 h resulted in several changes: (i) a 49% decrease in specific 125I-insulin binding due to a reduction in binding capacity; (ii) elevated basal 2-DG transport; and (iii) an absence of insulin stimulation of 2-DG transport. Exposure to increasing concentrations of glucose for 18 h led to a glucose concentration-dependent increase in specific insulin binding. Additionally, the various changes in the glucose-starved group were reversed after as little as 6 h of glucose refeeding. The results indicate that basal sugar transport, and insulin binding and action can be regulated by the amount of glucose in the medium.  相似文献   

11.
1. The activities of glycolysis and K-+ transport have been studied in slices of Morris hepatoma 3924A incubated under anaerobic conditions in the presence of different concentrations of glucose (1-50 mM). 2. Ouabain-sensitive net transport of K-+ was observed at all glucose concentrations greater than 1 mM; ouabain reduced the rate of glycolysis by about 25% at all glucose concentrations able to support ion transport. 3. The net entry of glucose into the intracellular phase was studied at varying glucose concentrations. The rate of glucose entry was similar to the rate of glucose utilisation by anaerobic glycolysis at medium concentrations of 10 mM and less, but exceeded the rate of glycolysis at 20 mM and above. 4. The glucose entry was not Na-+-dependent and was not inhibited by ouabain. 5. The results suggest (a) that the reduction in glycolytic activity caused by ouabain is not due to an inhibition of glucose transport and (b) that the glucose transport system of this poorly differentiated hepatoma has properties similar to that of normal liver.  相似文献   

12.
The objective of this article was to study the developmental and hormonal regulation of cumulus expansion and secretion of cumulus expansion-enabling factor (CEEF) in goat follicles. M-199 medium was conditioned for 24 hr with cumulus-denuded oocytes (DOs), oocytectomized complexes (OOXs), or mural granulosa cells (MGCs) from goat follicles of different sizes. Mouse OOXs and eCG were added to culture drops of the conditioned medium and cumulus expansion was scored at 18 hr of culture to assess CEEF production. While mouse OOXs did not expand, goat OOXs underwent full cumulus expansion when cultured in nonconditioned eCG-supplemented M-199 medium. When cultured in nonconditioned medium containing 10% follicular fluid (FF) from goat medium (2-4 mm) and small (0.8-1.5 mm) follicles, 71-83% mouse OOXs expanded; but expansion rates decreased (P < 0.05) at either lower or higher FF concentrations. FF from large (5-6 mm) follicles did not support mouse OOX expansion at any concentrations. While medium conditioned with DOs from follicles of all the three sizes supported expansion of 80-90% mouse OOXs, medium conditioned with mature DOs had no effect. While cumulus cells from follicles of all the three sizes secreted CEEF in the absence of gonadotropins, MGCs from large follicles became gonadotropin dependent for CEEF production. Both FSH and LH stimulated CEEF production by large follicle MGCs, but FSH had a shorter half-life than LH to expand mouse OOXs. Few meiosis-incompetent goat oocytes from small follicles underwent cumulus expansion when cultured in medium conditioned with goat DOs or cocultured with goat COCs from medium follicles. It is concluded that (1) goat cumulus expansion is independent of the oocyte; (2) the limited CEEF activity in FF from large follicles was due mainly to the inability of MGCs in these follicles to secret the factor in absence or short supply of gonadotropins; (3) the cumulus expansion inability of the meiosis incompetent goat oocytes was due to the inability of their cumulus cells to respond to rather than to produce CEEF.  相似文献   

13.
Enhanced rates of carrier-mediated 3-O-methyl-D-glucose (0.1 mM) transport were observed in primary cell cultures of chicken embryo fibroblasts deprived of glucose for 1 day. The addition of 5.5 mM-glucose, glucosamine or 2-deoxy-D-glucose for 15 min (37 degrees C) to glucose-starved cultures followed by washing and immediate measurement of 3-O-methyl-D-glucose transport resulted in an apparent further stimulation of transport. Transport stimulation increased with increasing concentrations of the added preincubation sugar and was observed at test concentrations ranging from 0.1 mM- to 10 mM-3-O-methyl-D-glucose. This enhancement occurred when the preloaded sugar was rapidly effluxing from cells and was eliminated by allowing cultures to incubate in buffer without sugar for 30 min (37 degrees C) after the removal of hexose and before measuring transport. A transient overshoot in the cumulative uptake of 3-O-methyl-D-glucose was observed in glucose-starved cultures that were pre-incubated in the presence of 55 mM-glucose or -glucosamine for 15 min (37 degrees C). These data suggest that counter-transport accounts for the apparent enhancement of glucose-transport capability observed in glucose-starved cells when they are briefly re-exposed to hexose.  相似文献   

14.
The purpose of this study was to characterize the mechanisms by which glucose regulates IGF-I gene expression in rat C6 glioma cells and in rat GH3 pituitary adenoma cells. Glucose starvation for periods of 12 to 48 h decreased IGF-I mRNA levels. In contrast, there was no stimulation of IGF-I mRNA by medium glucose between 1 and 25 mM over a 24-h period. Studies with hexoses and glycolytic metabolites suggested that glucose metabolism was required to maintain IGF-I mRNA. Glucose starvation lowered IGF-I mRNA half-life in both C6 and GH3 cells. Protein synthesis inhibition lowered IGF-I mRNA by about 20% in glucose-fed C6 and GH3 cells, while potently increasing IGF-I mRNA in glucose-starved C6 cells and not altering IGF-I mRNA in glucose-starved GH3 cells. Our results suggest that in these tumor cells, IGF-I mRNA stability is reduced by glucose starvation, secondary to a deficiency in intracellular glucose metabolism. Ongoing protein synthesis is not required for this mRNA de-stabilizing effect in GH3 cells. Rather, in glucose-starved C6 cells, decreased IGF-I mRNA stability may result from the action of a labile protein.  相似文献   

15.
16.
This study was designed to investigate the developmental competency of in vitro-matured and in vitro-fertilized bovine embryos co-cultured with a) medium alone, b) bovine oviductal cells (BOC), c) bovine conditioned medium (BCM), d) porcine oviductal cells (POC), and porcine conditioned medium (PCM). Follicular oocytes collected from cattle at local slaughterhouses were matured and fertilized in vitro. Epithelial cells were scraped from the luminal surface tissue of either bovine or porcine oviducts collected after ovulation, cultured in TALP + 10% heat-treated fetal calf serum, and the conditioned media were collected following a 3- to 5-d incubation period. After 18 to 22 h of sperm-ova co-incubation, the fertilized and/or cleaved ova were randomly assigned to 1 of 5 co-culture groups. The results revealed that the efficiency of medium alone in supporting embryo development from the 16- to 32-cell stage up to the blastocyst stage was significantly (P<0.01) lower than of embryos co-cultured with either bovine or porcine epithelial cells, or with conditioned media from such cells. Epithelial cell co-culture, regardless of cell source, was more effective (P<0.01) than culture with conditioned medium. Co-culture in medium containing or conditioned by porcine cells was more effective in supporting bovine embryo development than co-culture with bovine-derived cells or conditioned medium. These data support the concept that oviductal cells produce a soluble component which enhances embryo development to the blastocyst stage in vitro and that the effect is not species-specific.  相似文献   

17.
Cultured monkey retinal pigment epithelial (RPE) cells rapidly secrete large amounts of insulin-like growth factor binding proteins (IGF-BPs). IGF-II tracer binding activity in conditioned media is two to three times greater than that of IGF-I. Under reducing SDS-PAGE conditions, 125I-IGF affinity-crosslinked binding protein (BP) is visualized as a broad band between 36 +/- 2.9 and 49 +/- 3.3 kDa. Because the electrophoretic mobility of the crosslinked BP is increased under non-reducing conditions (33-45 kDa), intramolecular sulfhydryl bonding may be present. Frequently, the radiographic band representing affinity-crosslinked binding protein exhibits a complex pattern of non-uniform densities that suggests structural or functional IGF-BP micro-heterogeneity. IGF-BPs synthesized by RPE also exhibit heterogeneity with respect to the absence or presence of oligosaccharide side chains. In particular, the larger, but not the mid-sized or smaller IGF-BPs exhibit side chains linked to the core protein with N-glycosidic linkage. None of the crosslinked IGF-BPs exhibit O-linked side chains. Long-term (12, 24, 48 hr) conditioning studies revealed that IGF-BP fails to accumulate in culture media beyond 12 hr, but that replacement of conditioned media with fresh media allows a second period of binding protein accumulation. Other short-term (12 hr) experiments indicate that, in fresh medium, the levels of IGF-BP increase during the first 6-8 hr and then remain stable. To examine the processes contributing to these steady state levels of IGF-BP, aliquots of 8-hr conditioned medium were removed from the cells and either frozen on dry ice or incubated at 37 degrees C for 16 hr. Importantly, it was found that incubation at 37 degrees C resulted in a near total loss of binding activity. This is the first report of IGF-BP degrading activity in a cell culture system. These findings indicate that 1) primate RPE cells rapidly secrete a complex mixture of N-glycosylated and non-glycosylated IGF-BPs, and 2) the steady state levels of secreted IGF-BP are tightly regulated at least in part through a concomitant IGF-BP inactivating activity. Cultured RPE cells may be of utility in examining the mechanisms of IGF-BP synthesis, secretion, and degradation at the cellular level.  相似文献   

18.
3-BrPA (3-bromopyruvate) is an alkylating agent with anti-tumoral activity on hepatocellular carcinoma. This compound inhibits cellular ATP production owing to its action on glycolysis and oxidative phosphorylation; however, the specific metabolic steps and mechanisms of 3-BrPA action in human hepatocellular carcinomas, particularly its effects on mitochondrial energetics, are poorly understood. In the present study it was found that incubation of HepG2 cells with a low concentration of 3-BrPA for a short period (150 microM for 30 min) significantly affected both glycolysis and mitochondrial respiratory functions. The activity of mitochondrial hexokinase was not inhibited by 150 microM 3-BrPA, but this concentration caused more than 70% inhibition of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 3-phosphoglycerate kinase activities. Additionally, 3-BrPA treatment significantly impaired lactate production by HepG2 cells, even when glucose was withdrawn from the incubation medium. Oxygen consumption of HepG2 cells supported by either pyruvate/malate or succinate was inhibited when cells were pre-incubated with 3-BrPA in glucose-free medium. On the other hand, when cells were pre-incubated in glucose-supplemented medium, oxygen consumption was affected only when succinate was used as the oxidizable substrate. An increase in oligomycin-independent respiration was observed in HepG2 cells treated with 3-BrPA only when incubated in glucose-supplemented medium, indicating that 3-BrPA induces mitochondrial proton leakage as well as blocking the electron transport system. The activity of succinate dehydrogenase was inhibited by 70% by 3-BrPA treatment. These results suggest that the combined action of 3-BrPA on succinate dehydrogenase and on glycolysis, inhibiting steps downstream of the phosphorylation of glucose, play an important role in HepG2 cell death.  相似文献   

19.
The effect of maturation in vitro on metabolism of individual bovine oocytes was examined. Three maturation media were used: standard, consisting of tissue culture medium 199 supplemented with serum and pyruvate, and a chemically defined medium supplemented with either amino acids or lactate. Development to blastocyst was significantly higher (P < 0.05) after maturation in standard medium (47%) than in defined medium with lactate (17%) but was not different than maturation in defined medium with amino acids (29%). Glucose metabolism through the Krebs cycle was not different after maturation in standard or defined medium with amino acids or lactate (0.48, 0.43, 0.38 pmol/oocyte/3 hr, respectively) but was affected by the removal of unlabeled pyruvate from the metabolic measurement medium (0.16, 0.21, 0.27 pmol/oocyte/3 hr, respectively). When physiological concentrations of glucose (0.52 mM) and pyruvate (0.5 mM) were used, oxidation of pyruvate was not different after maturation in standard or defined medium with amino acids or lactate (1.38, 1.13, 1.13 pmol/ oocyte/3 hr, respectively); however, glycolysis was significantly increased (P < 0.05) in treatments that supported higher blastocyst development (standard medium, 1.77 pmol/oocyte/3 hr; defined medium with amino acids, 1.58 pmol/oocyte/3 hr; defined medium with lactate, 1.32 pmol/oocyte/3 hr). Metabolism of glucose through the Krebs cycle was low in all media. In contrast, oxidation of pyruvate readily occurred after maturation in vitro. Metabolism of glucose through the Embden-Meyerhof pathway is important during oocyte maturation in vitro, and higher glycolytic rates in in vitro matured oocytes may reflect increased developmental competence.  相似文献   

20.
The transport and metabolism of glucose was examined in monolayers of C-6 glioma cells. 1) Glucose transport appeared to have both a low (Km = 7.74 mM) and a high (Km = 1.16 mM) affinity site in C-6cells; whereas 2-deoxyglucose had only one (Km = 3.7 mM). 2) A large portion of the accumulated glucose was rapidly metabolized to the two glycolytic end products, lactate and pyruvate, and then extruded into the medium. The temperature-dependent efflux of lactate and pyruvate was linear up to 2 hrs with 6 to 10 times more lactate being extruded into the medium than pyruvate. 3) The efflux of lactate and pyruvate increased with increasing extracellular (medium) pH. The presence of 5 percent CO2 not only inhibited the acid efflux but also inhibited the short-term uptake of glucose. The CO2 effect was attributed to a lowering of the medium pH since bicarbonate alone either increased or did not inhibit efflux. 4) Valinomycin increased the levels of cellular lactate but not those of pyruvate by almost three-fold. Lactate efflux was stimulated while that of pyruvate was inhibited. The addition of 5 percent CO2 increased the cellular levels of both lactate and pyruvate, but unlike valinomycin decreased the acid efflux. Idoacetate inhibited the acid efflux by 50 percent suggesting that glycolysis is necessary for efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号