首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used miniature data loggers to record temperature and activity in free-ranging springbok (Antidorcas marsupialis) naturally exposed to severe nocturnal cold and moderate diurnal heat. The animals were active throughout the day and night, with short rests; the intensity of activity increased during daylight. Arterial blood temperature, averaged over many days, exhibited a circadian rhythm with amplitude <1 °C, but with a wide range which resulted from sporadic rapid deviations of body temperature. Peak blood temperature occurred after sunset. Environmental thermal loads had no detectable effect on blood temperature, even though globe temperature varied by >10 °C from day to day and >20 °C within a day. Brain temperature increased approximately linearly with blood temperature but with a slope <1, so that selective brain cooling tended to be activated at high body temperature, but without a precise threshold for the onset of brain cooling. Low activity attenuated selective brain cooling and high activity abolished it, even at high brain temperature. Our results support the concept that selective brain cooling serves to modulate thermoregulation rather than to protect the brain against heat injury. Accepted: 7 January 1997  相似文献   

2.
3.
4.
To determine if rectal temperature is an adequate index of brain temperature during changing thermal conditions, we measured rectal, cerebral cortical, and carotid arterial blood temperatures simultaneously during whole body cooling in adult cats. The mean steady state rectal, brain and carotid arterial temperatures at the onset of cooling were: 39.2 +/- 0.2, 38.5 +/- 0.2, and 38.3 +/- 0.3 degrees C, respectively. Rectal temperature decreased faster than both brain and arterial blood, while only a small temperature difference was observed between brain and arterial blood, brain always exceeding blood. Rectal temperature cannot be considered an adequate index of brain temperature. Carotid arterial temperature is a better estimate of brain temperature.  相似文献   

5.
The literature supports the concept that circadian changes in body temperature reflect changes in the thermoregulatory set point. We were interested in studying the relationship between the circadian rhythm in body temperature and 24-h variations in plasma concentrations of iron, zinc, circulating leukocyte counts, and plasma interleukin 1 (IL-1) activity. Eight healthy men were studied for two separate 48-h sessions. Rectal temperature, plasma iron and zinc concentrations, plasma IL-1 activity, circulating leukocyte counts, and several other blood variables were monitored. Circadian rhythms in temperature, trace metals, and various leukocyte populations were demonstrated. The 24-h pattern of changes in plasma concentrations of iron and zinc approximate an inverse relationship with rectal temperature. Although we were unable to detect any IL-1 activity in human plasma collected at 4-h intervals, the daily changes in plasma trace metal concentrations and the variations in leukocyte populations may provide indirect evidence for a daily variation in local (e.g., in liver) or central nervous system release of IL-1.  相似文献   

6.
A mathematical theory which could be used to explain a clinical observation in some sickle-cell anemia patients is proposed. It is shown that if the energy stored in the elastic walls of the artery of such a patient is accompanied by thermal effects, then the existence of a local hot spot on the body of a sickle-cell anemia patient could be due to shock formation even when the viscosity of the blood is zero. On the other hand, if the energy stored is not accompanied by thermal effects, then a jump in the temperature can only occur if the viscosity is not zero. We give the location of such a jump in the temperature and the time of its occurrence in both cases.  相似文献   

7.
8.
The primary purpose of the present study was to compare the effectiveness of two forms of hand heating and to discuss specific trends that relate finger dexterity performance to variables such as finger skin temperature (T(fing)), finger blood flow (Q(fing)), forearm skin temperature (T(fsk)), forearm muscle temperature (Tfmus), mean weighted body skin temperature (Tsk), and change in body heat content (DeltaH(b)). These variables along with rate of body heat storage, toe skin temperature, and change in rectal temperature were measured during direct and indirect hand heating. Direct hand heating involved the use of electrically heated gloves to keep the fingers warm (heated gloves condition), whereas indirect hand heating involved warming the fingers indirectly by actively heating the torso with an electrically heated vest (heated vest condition). Seven men (age 35.6 +/- 5.6 yr) were subjected to each method of hand heating while they sat in a chair for 3 h during exposure to -25 degrees C air. Q(fing) was significantly (P < 0.05) higher during the heated vest condition compared with the heated gloves condition (234 +/- 28 and 33 +/- 4 perfusion units, respectively), despite a similar T(fing) (which ranged between 28 and 35 degrees C during the 3-h exposure). Despite the difference in Q(fing), there was no significant difference in finger dexterity performance. Therefore, finger dexterity can be maintained with direct hand heating despite a low Q(fing). DeltaH(b), Tsk, and T(fmus) reached a low of -472 +/- 18 kJ, 28.5 +/- 0.3 degrees C, and 29.8 +/- 0.5 degrees C, respectively, during the heated gloves condition, but the values were not low enough to affect finger dexterity.  相似文献   

9.
Common carotid blood temperature   总被引:1,自引:0,他引:1  
  相似文献   

10.
The prolonged and safe maintenance of general anesthesia in rabbits with commonly used injectable agents is difficult. Protracted, stable anesthesia with short recovery time has been described in humans using continuous intravenous infusion of ketamine with or without sedatives, muscle relaxants and paralytics. This study evaluated the anesthetic plane achieved and respiratory and cardiovascular effects produced with a ketamine-xylazine intravenous infusion in New Zealand White rabbits. Ten female rabbits were anesthetized with intramuscularly administered ketamine hydrochloride (35 mg/kg) and xylazine hydrochloride (5 mg/kg) after the preanesthetic, baseline measurements of arterial blood pO2, pCO2 and pH and heart and respiratory rates were recorded. The above parameters as well as mean arterial blood pressure, righting, palpebral, pedal, and jaw reflexes were monitored ten minutes after the intramuscularly administered dosage and throughout 4 hours of infusion. Results showed moderate hypotension (21.2% deviation from normal, p less than 0.008) and profound hypoxemia (45% deviation from baseline, p less than 0.001) 10 minutes after the intramuscularly administered induction dosage. Then, the 4 hour infusion of ketamine (1 mg/minute) and xylazine (0.1 mg/minute) was started. Hypotension progressed (49.1% deviation from normal, p less than 0.008), but hypoxemia and hypercarbemia gradually improved with no resultant change (p greater than 0.1) in arterial pH. There was no significant change (p greater than 0.1) in respiratory rate but varying qualities of respiration were observed. Both mean arterial pO2 and pCO2 values returned to baseline within 20 minutes after completion of infusion. Heart rate and rectal temperature remained stable during the trial. The righting reflex was abolished in all rabbits throughout the study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Esophageal, rectal, tympanic, and central blood temperature, i.e., pulmonary artery and aortic arch, were recorded in three patients during iatrogenic whole-body hyperthermia for the treatment of advanced malignant metastatic cancer. Aortic temperature closely followed changes in pulmonary arterial temperature, with an average delay time of 27 s. Esophageal temperature reflected quantitatively and more quickly (avg lag time, 80 s) the temperature changes in the pulmonary artery than tympanic membrane temperature. Tympanic temperature was consistently lower than the blood temperature of the heart during steady state. Therefore it is suggested that esophageal temperature is a preferable index of central blood temperature. Additionally, measurement of esophageal temperature can be made more easily and safely than tympanic membrane temperature.  相似文献   

13.
不同温度及时间对液状保存血液质量的影响   总被引:7,自引:0,他引:7  
目的:研究不同温度对血液液状保存时保存损害机制的影响,并探讨相应的防范措施。方法:取10名健康献血员静脉血,置于CP2D-A保存液中,于0℃和4℃环境条件下,分别于设定的时间(第1周末、第3周和第6周末)内取样检测GSH-Px、LPO、TSH、红细胞膜收缩蛋白、膜脂流动性等指标。结果:固定温度条件下随时间的延长血液过氧化反应增强,保存损害作用增加;同一时期内保存损害作用随温度的降低而减轻,以4℃组血液老化明显。结论:血液过氧化反应随保存期的延长而增加,随保存温度的降低而改善,0℃组保存血液的质量优于4℃组。  相似文献   

14.
Although the circadian blood pressure (BP) pattern has been extensively studied, the determinants of this rhythm are not fully understood. Peripheral vasodilatation is a regulatory mechanism for BP maintenance. However, it remains to be established whether the increase of nocturnal distal skin temperature associated with heat loss could also reflect the dipping status. For the first time, this paper investigates the relationship between BP and skin wrist temperature (WT), to evaluate whether the WT circadian rhythm can serve as screening procedure to detect dipping/non-dipping BP patterns. In addition, the authors compare the relationship between WT and other variables previously described as determinants of the BP pattern, such as physical activity and body position. Measurements of WT, motor activity, and body position for 5 d, plus ambulatory BP for 24-h during that span, were obtained from 28 diurnally active normotensive volunteers. WT was negatively correlated, whereas activity and body position were positively correlated, with systolic and diastolic BPs. However, these relationships were stronger during the rest than activity phase. In addition, a 78.6% concordance was detected between the observed dips in BP and the predicted BP pattern calculated based on the WT rhythm. Thus, these results suggest that the increase in WT produced by heat loss during the rest phase through peripheral skin blood vessels is the result of blood vessel vasodilatation reflexes in response to a shift from a standing to a supine position, together with shift in the circadian sympathetic/parasympathetic balance (nocturnal parasympathetic activation). In conclusion, WT could be considered as a potential new screening procedure to implement the diagnosis of non-dipping BP pattern.  相似文献   

15.
16.
17.
Summary Chicken eggs incubated for 12–18 days were catheterized via the allantoic artery and temperature was monitored simultaneously using a probe positioned in the allantoic fluid adjacent to the embryo. Fluid temperature (referred to as egg temperature), arterial pressure and heart rate were measured following abrupt exposure to a lower environmental temperature (ca., 2628°C). Egg temperature and heart rate diminished exponentially: The rate of decline of egg temperature approximated Newton's law of cooling, the rate coefficient being 0.0220.025°C/min·°C throughout the incubation period from 12 to 18 days. The half time of temperature response of the egg was 2728 min. The response was much slower than that of fertile unincubated eggs (Kaplan et al. 1978), suggesting that the extraembryonic fluids act as a thermal buffer in embryonated eggs. The heart rate response in older embryos (1718 days) changed in the same manner as egg temperature, while in younger embryos (1216 days) the heart rate diminished more quickly than the change in egg temperature. During development the cardiac pacing of the embryo suggests that it becomes resistive to mild cold stress. The systolic pressure remained almost unchanged or even increased during one hour of exposure as the embryo developed, while the diastolic pressure decreased steadily after exposure irrespective of development. The 18-day-old embryos retained the systolic pressure unaltered during 3-hour exposure. In embryos 34 days prior to hatching the functional capacity of the heart apparently allows continued pumping even after prolonged exposure to low environmental temperature. Symbols and Abbreviations: See definitions at the end of the Materials and methods section  相似文献   

18.
19.
20.
Normal brain functioning largely depends on maintaining brain temperature. However, the mechanisms protecting brain against a cooler environment are poorly understood. Reported herein is the first detailed measurement of the brain-temperature profile. It is found to be exponential, defined by a characteristic temperature shielding length, with cooler peripheral areas and a warmer brain core approaching body temperature. Direct cerebral blood flow (CBF) measurements with microspheres show that the characteristic temperature shielding length is inversely proportional to the square root of CBF in excellent agreement with a theoretical model. This "temperature shielding effect" quantifies the means by which CBF prevents "extracranial cold" from penetrating deep brain structures. The effect is crucial for research and clinical applications; the relationship between brain, body, and extracranial temperatures can now be quantitatively predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号