首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of Mass Spectrometry in Proteomics   总被引:6,自引:0,他引:6  
Mass spectrometry has arguably become the core technology in proteomics. The application of mass spectrometry based techniques for the qualitative and quantitative analysis of global proteome samples derived from complex mixtures has had a big impact in the understanding of cellular function. Here, we give a brief introduction to principles of mass spectrometry and instrumentation currently used in proteomics experiments. In addition, recent developments in the application of mass spectrometry in proteomics are summarised. Strategies allowing high-throughput identification of proteins from highly complex mixtures include accurate mass measurement of peptides derived from total proteome digests and multidimensional peptide separations coupled with mass spectrometry. Mass spectrometric analysis of intact proteins permits the characterisation of protein isoforms. Recent developments in stable isotope labelling techniques and chemical tagging allow the mass spectrometry based differential display and quantitation of proteins, and newly established affinity procedures enable the targeted characterisation of post-translationally modified proteins. Finally, advances in mass spectrometric imaging allow the gathering of specific information on the local molecular composition, relative abundance and spatial distribution of peptides and proteins in thin tissue sections.  相似文献   

2.
The field of single-cell omics is rapidly progressing. Although DNA and RNA sequencing-based methods have dominated the field to date, global proteome profiling has also entered the main stage. Single-cell proteomics was facilitated by advancements in different aspects of mass spectrometry (MS)-based proteomics, such as instrument design, sample preparation, chromatography and ion mobility. Single-cell proteomics by mass spectrometry (scp-MS) has moved beyond being a mere technical development, and is now able to deliver actual biological application and has been successfully applied to characterize different cell states. Here, we review some key developments of scp-MS, provide a background to the field, discuss the various available methods and foresee possible future directions.  相似文献   

3.
Recent developments in combined separations with mass spectrometry for sensitive and high-throughput proteomic analyses are reviewed herein. These developments primarily involve high-efficiency (separation peak capacities of approximately 10(3)) nanoscale liquid chromatography (flow rates extending down to approximately 20 nl/min at optimal liquid mobile-phase separation linear velocities through narrow packed capillaries) in combination with advanced mass spectrometry and in particular, high-sensitivity and high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Such approaches enable analysis of low nanogram level proteomic samples (i.e., nanoscale proteomics) with individual protein identification sensitivity at the low zeptomole level. The resultant protein measurement dynamic range can approach 10(6) for nanogram-sized proteomic samples, while more abundant proteins can be detected from subpicogram-sized (total) proteome samples. These qualities provide the foundation for proteomics studies of single or small populations of cells. The instrumental robustness required for automation and providing high-quality routine performance nanoscale proteomic analyses is also discussed.  相似文献   

4.
This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.  相似文献   

5.
Recent developments in combined separations with mass spectrometry for sensitive and high-throughput proteomic analyses are reviewed herein. These developments primarily involve high-efficiency (separation peak capacities of ~103) nanoscale liquid chromatography (flow rates extending down to approximately 20 nl/min at optimal liquid mobile-phase separation linear velocities through narrow packed capillaries) in combination with advanced mass spectrometry and in particular, high-sensitivity and high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Such approaches enable analysis of low nanogram level proteomic samples (i.e., nanoscale proteomics) with individual protein identification sensitivity at the low zeptomole level. The resultant protein measurement dynamic range can approach 106 for nanogram-sized proteomic samples, while more abundant proteins can be detected from subpicogram-sized (total) proteome samples. These qualities provide the foundation for proteomics studies of single or small populations of cells. The instrumental robustness required for automation and providing high-quality routine performance nanoscale proteomic analyses is also discussed.  相似文献   

6.
Recent advances in the development of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) now permit the near routine analysis of oligonucleotides and intact nucleic acids. These developments have led to the use of mass spectrometry (MS) as a detection platform for genomics studies. Among the various uses of mass spectrometry in genomics, applications focused on the characterization of single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs) are particularly well-suited to MALDI or ESI-based analysis. It is predicted that continued developments in methodology and instrumentation will further improve the capabilities of mass spectrometry for nucleic acid analysis.  相似文献   

7.
The lethal species of malaria parasite, Plasmodium falciparum, continues to exact a huge toll of mortality and morbidity, particularly in sub-Saharan Africa. Completion of the genome sequence of this organism and advances in proteomics and mass spectrometry have opened up unprecedented opportunities for understanding the complex biology of this parasite and how it responds to drug challenge and other interventions. This review describes recent progress that has been made in applying proteomics technology to this important pathogen and provides a look forward to likely future developments.  相似文献   

8.
Protein assemblies are critical for cellular function and understanding their physical organization is the key aim of structural biology. However, applying conventional structural biology approaches is challenging for transient, dynamic, or polydisperse assemblies. There is therefore a growing demand for hybrid technologies that are able to complement classical structural biology methods and thereby broaden our arsenal for the study of these important complexes. Exciting new developments in the field of mass spectrometry and proteomics have added a new dimension to the study of protein-protein interactions and protein complex architecture. In this review, we focus on how complementary mass spectrometry-based techniques can greatly facilitate structural understanding of protein assemblies.  相似文献   

9.
High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics.  相似文献   

10.
11.
Interfacing ion mobility spectrometry to mass spectrometry (IMS–MS) has enabled mass spectrometric analyses to extend into an extra dimension, providing unrivalled separation and structural characterization of lowly populated species in heterogeneous mixtures. One biological system that has benefitted significantly from such advances is that of amyloid formation. Using IMS–MS, progress has been made into identifying transiently populated monomeric and oligomeric species for a number of different amyloid systems and has led to an enhanced understanding of the mechanism by which small molecules modulate amyloid formation. This review highlights recent advances in this field, which have been accelerated by the commercial availability of IMS–MS instruments. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   

12.
Lipids fulfill multiple specialized roles in neuronal function. In brain, the conduction of electrical impulses, synaptic function, and complex signaling pathways depend on the temporally and spatially coordinated interactions of specialized lipids (e.g., arachidonic acid and plasmalogens), proteins (e.g., ion channels, phospholipases and cyclooxygenases) and integrative lipid-protein interactions. Recent technical advances in mass spectrometry have allowed unparalled insight into the roles of lipids in neuronal function. Through shotgun lipidomics and multidimensional mass spectrometry, in conjunction with the identification of new classes of phospholipases (e.g., calcium dependent and calcium independent intracellular phospholipases), new roles for lipids in cerebral function have been accrued. This review summarizes the advances in our understanding of the types of lipids and phospholipases in the brain and the role of functional lipidomics in increasing our chemical understanding of complex neuronal processes.  相似文献   

13.
Highly selective techniques of gas chromatography mass spectrometry have been used in the unequivocal identification of salivary steroids at concentrations ranging from 20 pg ml-1 to 20 ng ml-1. Oestradiol-17 beta, for example, has been identified in pregnancy saliva by gas chromatography high resolution mass spectrometry selected ion monitoring of the bis-TMS ether and by gas chromatography mass spectrometry metastable peak monitoring of the bis-tert-butyldimethylsilyl ether. Dehydroepiandrosterone sulphate has been identified in saliva, following enzymic hydrolysis, by gas chromatography high resolution mass spectrometry selected ion monitoring of the tert-butyldimethylsilyl ether and methyloxime tert-butyldimethylsilyl ether. These initial analyses have been designed to guide the development of routine immunoassay procedures which may subsequently be validated by comparison with reference gas chromatographic mass spectrometric methods.  相似文献   

14.
Due to their versatility, quadrupole ion traps have become popular mass spectrometers in the growing field of proteomics. High sensitivity, user friendliness and low cost are the key features that have contributed to the success of the technology. However, mass measurement accuracy, resolution and mass range are still not comparable to the analytical performances obtained on other mass spectrometers. In the past 5 years, researchers have tried to overcome these drawbacks, focusing their attention on two different aspects of ion-trap mass spectrometry, development of novel types of ion traps and manipulation of the gas-phase ion chemistry, in order to obtain alternative techniques for tandem mass spectrometry analysis. In the field of trapping devices, improvements in instrumental design have led to the linear ion trap, digital ion trap and orbitrap. Activation methods based on electrons, chemically produced by an anion or from irradiation with an electron beam, have demonstrated their utility in providing complementary sequence information for improving confidence in protein identification.  相似文献   

15.
Due to their versatility, quadrupole ion traps have become popular mass spectrometers in the growing field of proteomics. High sensitivity, user friendliness and low cost are the key features that have contributed to the success of the technology. However, mass measurement accuracy, resolution and mass range are still not comparable to the analytical performances obtained on other mass spectrometers. In the past 5 years, researchers have tried to overcome these drawbacks, focusing their attention on two different aspects of ion-trap mass spectrometry, development of novel types of ion traps and manipulation of the gas-phase ion chemistry, in order to obtain alternative techniques for tandem mass spectrometry analysis. In the field of trapping devices, improvements in instrumental design have led to the linear ion trap, digital ion trap and orbitrap. Activation methods based on electrons, chemically produced by an anion or from irradiation with an electron beam, have demonstrated their utility in providing complementary sequence information for improving confidence in protein identification.  相似文献   

16.
State-of-the-art proteomics workflows involve multiple interdependent steps: sample preparation, protein-peptide separation, mass spectrometry and data analysis. While improvements in any of these steps can increase the depth and breadth of analysis, advances in mass spectrometry have catalysed many of the most important developments. We discuss common classes of mass analysers and how these analysers are put together to produce some of the most popular mass spectrometry platforms. The capabilities of these platforms determine how they can be used in a variety of common proteomic strategies and, in turn, what types of biological questions can be addressed. Moving forward, powerful new hybrid mass spectrometers and application of emerging types of tandem mass spectrometry promise that our ability to analyse complex mixtures of proteins will continue to advance.  相似文献   

17.
A wide range of biophysical approaches has been applied to structural biology, all with the same overall goal-to understand the molecular machines that allow cells to function. While knowledge of the identity and composition of component protein subunits is an important foundation for understanding these macromolecular complexes it has become increasingly clear that knowledge of the exact composition alone is insufficient for understanding dynamic interactions and regulatory mechanisms. In this review we focus on recent developments of mass spectrometry (MS) that allow us to unravel the functional 'secrets' of non-covalent molecular machines.  相似文献   

18.
In the past few years, the emergence of combinatorial chemistry has drawn increasing attention and a great deal of analytical research has been centered around this new methodology. These new methods capable of producing vast numbers of samples, which are in many cases highly complex, demand fast and reliable analytical techniques able to provide high quality information concerning sample compositions. Mass spectrometry (MS) is the method of choice to face these analytical challenges. In particular, the introduction of electrospray ionization (ESI and matrix assisted laser desorption/ionization (MALDI)) have been the driving forces for many of the recent innovations, not only within the fields of the biosciences, but also in combinatorial chemistry. These ionization techniques are extremely versatile for the characterization of both single compound collections and compound mixture collections. The high-throughput capabilities, as well as many possible couplings with separation techniques (HPLC, CE) have been thus facilitated. However, mass spectrometry is not only limited to use as an instrument for synthesis control, but also plays an increasing role in the identification of active compounds from complex libraries. Recently, new initiatives for library analysis and screening have arisen from the application of the latest developments in mass spectrometry, Fourier transform ion cyclotron resonance (FTICR).  相似文献   

19.
James DC 《Cytotechnology》1996,22(1-3):17-24
The advent of new technologies for analysis of biopolymers by mass spectrometry has revolutionised strategies for recombinant protein characterization. The principal recent developments have been matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Using these tools, accurate molecular mass determinations can now be obtained routinely-often using minute (picomole-femtomole) quantities of protein or protein fragments. These techniques have proved indispensible for detailed characterization of the post-translational modifications of recombinant proteins produced by eukaryotic systems. Glycosylation is arguably the most important and complex of these modifications and has prompted widespread use of these new techniques. In this mini-review article I describe recent advances in the use of mass spectrometry for analysis of recombinant glycoproteins.  相似文献   

20.
The precise structural mechanism of G protein–coupled receptor (GPCR)–G protein coupling has been of significant research interest because it provides fundamental knowledge on cellular signaling and valuable information for GPCR-targeted drug development. Over the last decade, several GPCR–G protein complex structures have been identified. However, these structures are mere snapshots of guanosine diphosphate (GDP)-released stable GPCR–G protein complexes, which have limited the understanding of the allosteric conformational transition during receptor binding to GDP release and the GPCR–G protein coupling selectivity. Recently, deeper insights into the mechanism underlying stepwise conformational changes during GPCR–G protein coupling were obtained using hydrogen/deuterium exchange mass spectrometry, hydroxyl radical footprinting-mass spectrometry, X-ray crystallography, cryoelectron microscopy, and molecular dynamics simulation techniques. This review summarizes these recent developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号