首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Partially purified myelin from the brains of 17-day-old rats was separated into 4 subfractions on a three-step sucrose gradient by virtue of heterogeneity in density and particle size. Precursor-product relationships between different membrane fractions were investigated by determining the specific radioactivity of individual lipids in each subcellular fraction 15 min after intracranial injection of an appropriate precursor. Rats were injected with [2-3H]glycerol. myelin subfractions prepared, and individual lipids separated by TLC. For choline and ethanolamine phospholipids, specific radioactivity was highest in the densest fraction (D), intermediate in the next densest fraction (C), and lowest in the lighter fractions (B and A). Similar results were observed for cerebroside and sulphatide when [3H]galactose was the precursor. These data are consistent with (but do not prove) a precursor-product relationship for individual lipids from the densest to the lightest subfraction. Another experimental design involving time staggered injections of [3H] and [14C] precursors was developed which enables a more definitive result with regard to precursor-product relationships to be obtained. A precursor-product relationship between a given lipid in a dense myelin membrane fraction, and the same lipid in a lighter subfraction, would be indicated by a change in isotope ratio. If there is no precursor-product relationship. Ihe isotope ratio should be constant. Such experiments were done with [3H] and [14C]glycerol. The data indicated that phosphatidyl ethanolamine and its plasmalogen analog were added first to the densest subfraction and then in turn to the lighter subfractions. In contrast, phosphatidyl choline and its plasmalogen analog were added “simultaneously” (i.e. with delays of much less than 15min) to each of the subfractions. Similar experiments with [3H] and [14C]galactose showed that cerebroside, sulphatide and galactosyl diglyceride also entered the subfractions simultaneously rather than in sequential order. Thus the assembly of the myelin sheath involves an obligate order of addition of certain lipids. while other lipids are probably added in a random order.  相似文献   

2.
Abstract— Partially purified myelin from brains of 17-day-old rats was separated into 4 subfractions on a discontinuous sucrose gradient by virtue of heterogeneity in density and particle size. The protein composition of each subfraction was determined by densitometry following separation of proteins on polyacrylamide gels in buffers containing sodium dodecyl sulphate. The major proteins studied included two basic proteins, proteolipid protein, the major high molecular weight protein (W) and a group of high molecular weight proteins. The percentage of high molecular weight proteins decreased sequentially from fraction D to A, that of the W protein remained constant, while relative amounts of the two basic proteins increased. Proteolipid protein concentration also increased as a percentage of the total protein from fraction D to B, but the uppermost fraction. A, had a markedly lower amount than fraction B. At 1 h after intracranial injection of [3H]leucine, the specific radioactivity of the basic and proteolipid proteins decreased from fraction D to B, with proteolipid protein in fraction A again anomalous (specific radioactivity higher than expected). These results are consistent with (but do not prove) a precursor-product relationship for individual proteins from denser to lighter subfractions, with the exception of myelin subfraction A. Experiments involving time staggered injections of a [14C] and later a [3H] labelled amino acid gave data which demonstrated that the W and basic proteins were added simultaneously (or with delays of much less than 20 min) to all of the subfractions, while proteolipid protein was added sequentially, from lower to upper fractions on the gradient. This double isotope technique also confirmed our previous observations that proteolipid protein shows a lag in entry into myelin compared to basic protein.  相似文献   

3.
Myelin prepared from brain tissue of the developing rat (15 days post partum) can be separated into several subfractions. These are (1) ;myelin-like' and ;purified myelin', by the technique of Davison and co-workers (Agrawal et al., 1970b) and (2) ;membrane fraction,' ;light myelin' and ;heavy myelin' by the discontinuous-sucrose-gradient procedure described in the present paper. ;Myelin-like' and ;membrane-fraction' subfractions appear to be similar in chemical properties, but different in detailed morphology by electron microscopy. Both fractions are related to myelin, on the basis of demonstrable myelin basic protein by polyacrylamide-gel electrophoresis in sodium dodecyl sulphate and the presence of a myelin-marker enzyme, 2':3'-cyclic nucleotide 3'-phosphohydrolase. These two fractions have a low lipid content (17% for ;myelin-like' and 40% for ;membrane-fraction' subfractions) compared with myelin (67-72%). No cerebroside was detected in these two fractions, whereas cerebrosides are a major component of myelin itself. The administration of [2,3-(3)H]tryptophan to young rats results in more rapid incorporation into proteins of the ;myelin-like' and ;membrane-fraction' subfractions when compared with incorporation into myelin. Data are presented which are consistent with a precursor-product relationship for conversion of ;myelin-like' and ;membrane-fraction' subfractions into myelin.  相似文献   

4.
Abstract: Studies on the synthesis of the four immunologically related mouse myelin basic proteins (MBPs) were carried out to determine if these proteins were metabolically related. Two in vitro systems were used: (a) a homologous brain system consisting of free polysomes, pH 5 enzymes, and initiation factors; and (b) a reticulocyte lysate system directed with mRNA and supplemented with brain factors. Incorporation of [35S]methionine into the four MBPs (14K, 17K, 18.5K, and 21.5K) was detected by immunoprecipitation of the in vitro products of synthesis followed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The four MBPs were identified by cross-reactivity with purified anti-MBP antibodies and their apparent molecular weights in SDS gels. Synthesis of all four proteins was detected in both systems soon after the incubations were begun. The kinetics of the labeling of the proteins showed no evidence of a precursor-product relationship (i.e., 21.5K→ 18.5K; 17K → 14K) in either system. Inhibition studies with puromycin and "chase" experiments with unlabeled methionine demonstrated that neither system contained posttranslational "processing" activity. Thus, the 21.5K and 17K proteins were not being processed into the 18.5K and 14K MBPs by either . in vitro system. Detection of the synthesis of all four proteins in the reticulocyte system programmed with brain mRNA indicates that the four proteins are probably coded for by separate mRNAs. This conclusion was supported by studies using polyribosomes separated into different size classes, which suggest that the mRNAs for the four proteins may be translated on proteins of differing size class. It is proposed, therefore, that the four MBPs are the primary translation products of independent brain mRNAs and are not metabolically related.  相似文献   

5.
Sciatic nerve from streptozotocin-induced diabetic rats has previously been shown to incorporate more 32P into phosphatidylinositol-4,5-bisphosphate (PIP2) and the principal myelin proteins than normal nerve. In the present study, labeling of ATP and PIP2 was compared. Using nerve segments, [gamma-32P]ATP specific activity reached a plateau after incubation for 4 h with [32P]orthophosphate, whereas the specific activity of [32P]PIP2 rose much more slowly and was still increasing after 8 h. The rate of disappearance of radioactivity from prelabeled ATP was biphasic, with 75% being lost within 30 min and the remainder declining much more slowly for several hours thereafter. In contrast, no decrease in prelabeled PIP2 radioactivity could be detected for up to 4 h. The kinetics of ATP metabolism were not appreciably different for normal and diabetic nerve. However, after incubation with [32P]orthophosphate for 2 h, the specific activity of PIP2 was 50-120% higher in diabetic nerve. This phenomenon, therefore, cannot be ascribed to altered specific activity of the ATP precursor pool. Greater labeling of PIP2 in 32P-labeled diabetic nerve was present in purified myelin isolated using a simple discontinuous sucrose density gradient, but not in a "nonmyelin" fraction. When nerve homogenate was fractionated on a more complex gradient, three myelin-enriched subfractions were obtained which were heterogeneous as judged by morphological appearance, protein profile, and lipid metabolic activity. The proportion of total lipid radioactivity accounted for by PIP2 was elevated in all the subfractions relative to the homogenate. As compared to myelin subfractions from normal nerve, an increased percentage of 32P in PIP2 was obtained only in the major myelin subfraction from diabetic nerve. The phosphorylation of P0 relative to the other myelin proteins was also enhanced in this subfraction in nerve from diabetic animals.  相似文献   

6.
The present study has examined the effects of maternal protein and protein-calorie deficiency during lactation on the development of CNS myelin subfractions in rat offspring. The offspring of both the protein and protein-calorie deficient rats had decreased brain and body weights, as well as delayed CNS myelination. Delayed active CNS myelination was demonstrated by the fact that 53-day-old nutritionally stressed pups incorporated significantly more [3H]leucine and [14C]glucose into all myelin subfractions than age-matched controls. Delayed myelination was also supported by the tremendous accretion of myelin proteins in the nutritionally deprived pups between 25 and 53 days of age. Despite the delayed active synthesis of myelin, the myelin deficit persisted in the offspring of protein deficient rats. These offspring had a deficiency of light + medium myelin throughout the study. At 17 days, both groups of nutritionally stressed rats had an excess of the high molecular weight proteins in heavy myelin. Heavy myelin from 17 day offspring of protein-calorie deficient rats had a deficiency of basic proteins, while that from the offspring of protein deficient rats had a deficiency of proteolipid protein. The protein composition of all myelin subfractions was normal at 53 days.  相似文献   

7.
The rate of leucine incorporation into brain proteins was studied in rats with experimental brain tumors produced by intracerebral transplantation of the glioma clone F98. Incorporation was measured with [14C]leucine using a controlled infusion technique for maintaining constant specific activity of [14C]leucine in plasma, followed by quantitative autoradiography and biochemical tissue analysis. After 45 min the specific activity of free [14C]leucine in plasma was 2.5-3 times higher than in brain and brain tumor, indicating that the precursor pool for protein synthesis was fueled both by exogenous (plasma-derived) and endogenous (proteolysis-derived) amino acids. Endogenous recycling of amino acids amounted to 73% of total free leucine pool in brain tumors and to 60-70% in normal brain. Taking endogenous amino acid recycling into account, leucine incorporation was 78.7 +/- 16.0 nmol/g of tissue/min in brain tumor, and 17.2 +/- 4.2 and 9.7 +/- 3.3 nmol/g/min in normal frontal cortex and striatum, respectively. Leucine incorporation within tumor tissue was markedly heterogeneous, depending on the local pattern of tumor proliferation and necrosis. Our results demonstrate that quantitative measurement of leucine incorporation into brain proteins requires estimation of recycling of amino acids derived from proteolysis and, in consequence, biochemical determination of the free amino acid precursor pool in tissue samples. With the present approach such measurements are possible and provide the quantitative basis for the evaluation of therapeutic interventions.  相似文献   

8.
Abstract: Rats that Received intracranial injections of [3H]leucine at 14 days of age were killed on days 17, 24, 38, 55, and 89 post-injection. Brains were homogenized and the myelin membranes separated in a sucrose density gradient. At day 17 sodium dodecylsulfate polyacrylamide gels of water-shocked, delipidated membrane fractions showed a difference in the specific activity of myelin proteins across the gradient. A decrease in specific activity was found in all of the proteins in the denser fractions, compared with the lighter fractions. As time after injection progressed, the difference became more pronounced; a two- to threefold decrease in specific activity was seen across the gradient in the various myelin proteins. The proteins of the lightest membrane fractions retained their high specific activity throughout the experiment in spite of extensive new myelin synthesis. Taking this new myelin into account, the decrease in specific activity in the denser myelin fractions could be explained by isotope dilution. Therefore, proteins present in at least some of the myelin are essentially stable.  相似文献   

9.
Effects of Monensin on Assembly of Po Protein into Peripheral Nerve Myelin   总被引:1,自引:1,他引:0  
Abstract: The ionophore monensin has been used in a variety of systems to block secretion of glycoproteins or assembly of glycoproteins into membranes. We examined the effects of monensin on assembly of the Po glycoprotein into PNS myelin, and compared this agent with the glycosylation inhibitor tunicamycin in our system. Sciatic nerves from 9-day-old rat pups were sliced and incubated in vitro . Electron microscopy of the Schwann cells in slices incubated with monensin revealed extensive swelling of the Golgi complex. Incubation with 10−7 M monensin inhibited total protein synthesis by about 20% and fucose incorporation into protein about 35%. Following isolation of myelin, proteins were separated by sodium dodecyl sulfate gel electrophoresis. Monensin inhibited the appearance of Po in myelin, while causing its accumulation in a denser membrane fraction. In addition, a slightly faster-migrating species of Po labeled with both [3H]fucose and [14C]glycine was observed in all fractions. Assembly of basic proteins into myelin was not affected. Preincubation with 10 μg/ml tunicamycin for 30 min prior to incubation with [3H]fucose and [14C]glycine for 2 h resulted in a 65% decrease in [3H]fucose incorporation into Po, and the appearance of a new [14C]glycine-labeled peak that migrated in the region of the 23K protein reported by Smith and Sternberger. [3H]Fucose incorporation was inhibited earlier, and to a greater extent, than protein synthesis. Our results show that processing of the Po glycoprotein is sensitive to both monensin and tunicamycin, and that monensin partially blocks assembly of Po into myelin.  相似文献   

10.
Purified myelin, isolated from rat brain, was subfractionated into light, medium and heavy myelin. The metabolism of [3H] leucine in myelin subfractions was studied at intervals from 1 to 24 hours and from 18 hours to 85 days after the injection of 12-day-old rats. The metabolism of [14C] glucose in myelin subfractions was also examined during the 85 day interval. In addition, the development of each of these subfractions, as reflected by protein accretion, was determined.Between 13 and 97 days of age, the amount of the three myelin subfractions increased 10- to 44-fold. At 13 days of age the heavy subfraction accounted for the greatest percentage of myelin protein. However, beyond 13 days, light myelin predominated.The total 3H-radioactivity in the light, medium and heavy subfractions increased throughout most of the 85 day interval examined. The 3H specific radioactivity (3H dpm/μgram protein) of light myelin peaked at 12 hours after injection. The specific radioactivity of both 3H and 14C (14C dpm/μgram lipid) in light myelin declined beyond the initial time point in the long term (18 hour – 85 day) study. In contrast, the specific radioactivity of both 3H and 14C peaked in the medium and heavy subfractions at 4 days after injection of radioactive precursor.The possible existence of a membranous precursor to myelin is discussed.  相似文献   

11.
Abstract: Proteins of the paniculate fraction of sciatic nerve of rats ranging from 1 to 55 days of age were analyzed by polyacrylamide gel electrophoresis. The major myelin protein, P0, could not be detected at 1 day of age, but by 10 days it comprised from 15 to 20% of the particulate protein, the same proportion as in adult rats. Growth of nerve continued throughout the period studied. Rat sciatic nerves were incubated with [32P]orthophosphate or [3H]fucose. Particulate matter proteins from sciatic nerve (and in certain cases proteins of myelin purified from sciatic nerve) were separated by polyacrylamide disc gel electrophoresis and the distribution of protein and of radioactivity along the gels was determined. [32P]Phosphate appeared to label all myelin proteins. Labeling with fucose was more specific; myelin basic proteins were not fucosylated. A developmental study showed that sciatic nerves from 2-day-old rats could incorporate radioactive fucose and [32P]-phosphate into several proteins at the P0 region of polyacrylamide gels. Specific radioactivity of [3H]fucose in P0 protein was highest in preparations from 5-day-old rats and declined by 80% over the next 5 days as it was diluted by accumulating myelin. The specific radioactivity of incorporated [32P] phosphate was high at the early age points and declined as a result of the accumulation of compact myelin. The results indicate an association of fucosylation and/or phosphorylation with some step in the formation of myelin.  相似文献   

12.
Incorporation of [14C]leucine into the myelin sheath was studied in brain stem slices prepared from 22-day-old rats. Individual major myelin proteins were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. There was a time lag before incorporation of the label into proteolipid protein (PLP) and intermediate protein (IP) reached maximal rates. Labelling of basic proteins (BP) and Wolfgram proteins (WP) revealed a much shorter lag in entry. Appearance of radioactive proteins in the myelin sheath was significantly hampered by triethyllead (PbEt3) added to the incubation medium at micromolar concentrations. Inhibition values were highest in the case of PLP and were closely followed by the values for IP. BP and WP were less inhibited, although incorporation of these proteins into myelin was still suppressed more than was synthesis of total homogenate protein. Thus, myelin-forming cells seem to be unduly vulnerable to the toxin relative to the rest of the tissue. Furthermore, the results indicate an interference of PbEt3 with certain posttranslational processes involved in furnishing of integral myelin proteins.  相似文献   

13.
Morphological, biochemical, and physicochemical studies of myelin subfractions were undertaken on the progeny of Sprague-Dawley rats fed diets containing lipids either extracted from yeasts grown on n-alkanes or from margarine. Myelin subfractions obtained from pooled brain homogenates of littermates by sucrose density gradient centrifugation at 7, 14, and 21 days postnatally were subjected to electron microscopy, sodium dodecylsulfate polyacrylamide gel electrophoresis and assayed for 2', 3' cyclic nucleotide 3'-phosphohydrolase activity (CNPase; EC 3.1.4.37). Additionally, surface pressure measurements were made of lipid monolayers derived from myelin subfractions, which were subsequently injected with myelin basic proteins. The myelin subfractions of test animals, when compared with those of controls, show an earlier increase in the specific activity of CNPase, the earlier appearance of low-molecular-weight proteins, and an increase in the affinity of basic proteins for lipids derived from the myelin light fraction. This biochemistry suggests the presence of a more mature myelin between 7 and 14 days in the experimental group. The morphological studies, however, do not seem to concur with the biochemical data. The observed changes are discussed in relation to the influence of dietary lipids on myelinogenesis.  相似文献   

14.
—Purified myelin incorporated l -[14C]leucine and l -[14C]lysine into myelin proteins in an enzymatic process similar to that of renal brush border membranes. The system was not inhibited by cycloheximide or puromycin or by pretreatment with ribonuclease; the reaction was inhibited by cetophenicol. ATP was an effector, shifting the optimal pH from 7.2 to 8.3. In the presence of ATP, myelin was less dense in a sucrose gradient. Ammonia was released from the membrane during the incorporation of amino acids. Myelin preloaded with cold leucine did not incorporate [14C]leucine but did incorporate [14C]lysine; there was no cross inhibition between the two amino acids. The incorporation was into or onto proteins of the Wolfgram proteolipid fraction of myelin. The incorporation was of the high affinity type with a Km of 10?7m and was restricted to the natural amino acids.  相似文献   

15.
Isoprenylated Proteins in Myelin   总被引:1,自引:0,他引:1  
Abstract: Incubation of rat brainstem slices with [3H]- mevalonate ([3H]MVA) in the presence of lovastatin resulted in the incorporation of label into three groups of myelin-associated proteins with molecular masses of 47, 21–27, and 8 kDa, as revealed on sodium dodecyl sulfate- polyacrylamide rod gel electrophoresis. Although the gel patterns of [3H]MVA-derived prenylated proteins were similar, the relative level of 3H incorporated into each protein species differed between myelin and the brainstem homogenate. Immunoprecipitation studies identified the 47-kDa prenylated protein as a 2′-3′-cyclic nucleotide phospho- diesterase, whereas the 8-kDa protein proved to be the γ subunit of membrane-associated guanine nucleotide regulatory protein. The 3H-labeled 21–27-kDa group in myelin corresponds to the molecular mass of the extensive Ras- like family of monomeric GTP-binding proteins known to be prenylated in other tissues. Increase in lovastatin concentration resulted in reduced levels of [3H]MVA-labeled species in myelin and concomitantly increased levels in the cytosol. A cold MVA chase restored to normality the appearance of [3H]MVA-labeled proteins in myelin. Furthermore, a high lovastatin concentration in the brainstem slice incubation mixture altered the appearance of newly synthesized nonprenylated myelin proteins, including proteolipid protein and the 17-kDa subspecies of myelin basic protein. Because other myelin proteins were unaffected by the high lovastatin concentration, restricting the availability of MVA in myelin-forming cells may selectively alter processes required for myelinogenesis. Although the molecular basis for the” different MVA requirements in myelin- forming cells remains undefined, it may involve an alteration in the biological activity of certain proteins that require prenylation to be functionally active, and that are responsible for promoting insertion of specific proteins into the myelin membrane.  相似文献   

16.
Effect of Reactive Oxygen Species on Myelin Membrane Proteins   总被引:5,自引:0,他引:5  
Fresh myelin, isolated from brainstems of adult rats, was incubated in the presence of Cu2+ and H2O2. Electrophoretic analysis of the reisolated myelin membrane revealed a gradual loss of the protein moiety from the characteristic pattern and an increase in aggregated material appearing at the origin of the gel. The aggregation of proteins was time-dependent and was concomitant with the accumulation of lipid peroxidation products reactive with thiobarbituric acid. Furthermore, during the course of incubation, there was a gradual decrease in the amount of recovered light myelin and a quantitatively similar increase in heavier myelin subfractions. The aggregation of proteins seems not to be directly related to the buoyant densities of myelin fragments. The peroxidative damage to the myelin proteins may be an important contributor to pathochemistry of myelin sheath, in particular, and in general it implies the susceptibility of the protein moiety of cell membranes to oxygen-induced deterioration.  相似文献   

17.
14CO2 production and incorporation of label into proteins from the labeled branched-chain amino acids, leucine, valine, and isoleucine, were determined in primary cultures of neurons and of undifferentiated and differentiated astrocytes from mouse cerebral cortex in the absence and presence of 3 mM ammonium chloride. Production of 14CO2 from [1-14C]leucine and [1-14C]valine was larger than 14CO2 production from [U-14C]leucine and [U-14C]valine in both astrocytes and neurons. In most cases more 14CO2 was produced in astrocytes than in neurons. Incorporation of labeled branched-chain amino acids into proteins varied with the cell type and with the amino acid. Addition of 3 mM ammonium chloride greatly suppressed 14CO2 production from [1-14C]-labeled branched chain amino acids but had little effect on 14CO2 production from [U-14C]-labeled branched-chain amino acids in astrocytes. Ammonium ion, at this concentration, suppressed the incorporation of label from all three branched-chain amino acids into proteins of astrocytes. In contrast, ammonium ion had very little effect on the metabolism (oxidation and incorporation into proteins) of these amino acids in neurons. The possible implications of these findings are discussed, especially regarding whether they signify variations in metabolic fluxes and/or in magnitudes of precursor pools.  相似文献   

18.
In this article the existence of A1 adenosine receptors and the absence of A2 adenosine receptors in myelin membranes purified from pig brain white matter are demonstrated. The characterization of (R)-[3H]phenylisopropyladenosine ([3H]R-PIA) binding to purified myelin fractions was performed. The distribution of high- and low-affinity species of the A1 adenosine receptor was different in heavy, medium, and light myelin. The fluidity of myelin subfractions and of pig brain cortical membranes was estimated; the microviscosity of heavy myelin (5.4 poises) and of cortical membranes (5.1 poises) was similar and less than that of medium (7.8 poises) and light (8.2 poises) myelin. It was also demonstrated that the agonist R-PIA modifies the microviscosity of myelin membranes and that the degree of modification depends on the fluidity of the membrane assayed. These results suggest that adenosine receptors may have an important role in the functionality of myelin membranes.  相似文献   

19.
The metabolism of myelin undergoing breakdown as a result of edema induced by chronic administration of triethyl tin (TET) dissolved in the drinking water (10 mg/l.) was examined. The spinal cord showed more edema and loss of myelin than the brain. Uptake in vitro of [1-14C]acetate into myelin lipids of slices of brain or spinal cord from TET-treated rats was depressed until 4–5 weeks after the beginning of the regime, then rose to above normal levels. The uptake of [l-14C]leucine into myelin protein rose within several weeks of TET treatment to levels averaging over 300 per cent of normal and remained high even after the TET was removed. The high levels of [l-14C]leucine incorporation were inhibited by cycloheximide and were not explained by an increase in the size of the free amino acid pool. The three classes of myelin proteins, basic, proteolipid protein, and Wolfgram protein shared in the increased incorporation. Spinal cord myelin showed the greatest metabolic response, brain stem myelin less, and myelin from the forebrain was minimally affected by the TET treatment. Myelin prelabelled by intracisternal injection of [l-14C]acetate and [l-14C]leucine before the onset of TET administration showed faster turnover in myelin proteins in relation to the myelin lipids than the control in the most severely affected animals, but not in others less affected. A ‘floating fraction’ was observed floating on 10.5% (w/v) sucrose during the myelin purification. This fraction showed metabolic characteristics typical of myelin, and myelin-labelling studies at various stages of the animal's development showed it to be derived from recently synthesized myelin. The floating fraction from the brain contained less cerebroside and more lecithin than myelin, while the spinal cord floating fraction composition was much like that of myelin. The floating fractions contained less protein typical of myelin (basic and proteolipid protein) and more highmolecular-weight protein which may have been derived from contaminating microsomes. The floating fraction was presumed to be partially deproteinated myelin. The use of TET-treatment as model for demyelination as a result of edema and proceeding in the absence of macrophages is discussed.  相似文献   

20.
Basis for Phospholipid Incorporation into Peripheral Nerve Myelin   总被引:1,自引:1,他引:0  
Abstract: To characterize the mechanism(s) for targeting of phospholipids to peripheral nerve myelin, we examined the kinetics of incorporation of tritiated choline-, glycerol-, and ethanolamine-labeled phospholipids into four subfractions: microsomes, mitochondria, myelin-like material, and purified myelin at 1, 6, and 24 h after precursors were injected into sciatic nerves of 23–24-day-old rats. As validation of the fractionation scheme, a lag (> 1 h) in the accumulation of labeled phospholipids in the myelin-containing subfractions was found. This lag signifies the time between synthesis on organelles in Schwann cell cytoplasm and transport to myelin. In the present study, we find that sphingomyelin (choline-labeled) accumulated in myelin-rich subfractions only at 6 and 24 h, whereas phosphatidylserine (glycerol-labeled) and plasmalogen (ethanolamine-labeled) accumulated in the myelin-rich fractions by 1 h. The later phospholipids accumulate preferentially in the myelin-like fraction. These results are consistent with the notion that the targeting of sphingomyelin, a lipid present in the outer myelin leaflet, is different from the targeting of phosphatidylserine and ethanolamine plasmalogen, lipids in the inner leaflet. These findings are discussed in light of the possibility that sphingomyelin targeting is Golgi apparatus based, whereas phosphatidylserine and ethanolamine plasmalogen use a more direct transport system. Furthermore, the routes of phospholipid targeting mimic routes taken by myelin proteins P0 (Golgi) and myelin basic proteins (more direct).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号