首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resonances in the two-dimensional 1H NMR spectra of a weak toxin (WTX) from the venom of cobra Naja kaouthiafor all 65 amino acid residues were assigned. The amino acid sequence of WTX, determined by the sequential assignment of spin systems, was found to be similar to that of the CM-9a toxin from the N. kaouthiavenom. Unlike CM-9a, WTX contains an additional Trp36 residue; Lys50 and Tyr52 are interchanged; and there is a Thr residue in place of Arg2. For some residues of WTX, the presence of two components of approximately equal intensities in the spectra was shown, which is explained by the conformational heterogeneity of the polypeptide owing to the cistransisomerization of the peptide bond Arg32–Pro33. The data (contacts of the nuclear Overhauser effect, constants of spin–spin coupling of protons, and rates of exchange of amide protons for deuterium of the solvent) made it possible to determine the secondary structure of two forms of WTX, which is characterized by the presence of two antiparallel -sheets, one of which consists of two strands (regions 1–5 and 13–17) and the other, of three strands (regions 23–28, 38–43, and 55–59).  相似文献   

2.
Three toxins (CM-2e, CM-4a and CM-7) were purified from the venom of Naja haje annulifera by gel filtration on Sephadex and by ion-exchange chromatography on CM-cellulose. They comprise 60 amino acid residues and are cross-linked by four intrachain disulphide bridges. The complete amino acid sequences of the three toxins have been elucidated. The toxicities, the serological properties, the sequences and the invariant amino acid residues of toxin CM-2e, CM-4a and CM-7 resemble the corresponding properties of the cytotoxin group.  相似文献   

3.
Selective cloning of the cDNA coding for a weak neurotoxin (WTX) from cobra N. kaouthia including the 5'- and 3'-non-translated regions (NTR) is described. The known amino acid sequence of WTX was used together with the nucleotide sequence of a weak neurotoxin NNAM2 from cobra Naja atra, to design WTX-specific primers for direct amplification of an internal WTX cDNA fragment by RT- PCR. The sequence of the complete WTX cDNA was determined in sequencing runs on internal PCR products, cloned 3'- and 5'-RACE-fragments and several full-length cDNA clones. The cDNA coding sequence is in excellent agreement with the previously determined WTX amino acid sequence, has a high homology with other known weak toxin cDNAs, whereas even higher homology (up to 96%) with several classes of 3-finger toxins was detected in the 59 bp 3'-NTR consensus sequence. A possible function of the highly conserved nucleotide sequence elements is discussed.  相似文献   

4.
Toxin CM-13b was purified from the venom of Naja haje annulifera by gel filtration on Sephadex G-50 and by ion-exchange chromatography on CM-cellulose. The toxin comprises 65 amino acid residues and is cross-linked by five disulphide bridges. The complete amino acid sequence of toxin CM-13b was elucidated. The reduced and S-carboxymethylated toxin was digested with trypsin and chymotrypsin and the peptides purified by DEAE-cellulose chromatography and chromatography or electrophoresis on paper. The amino acid sequences of the intact toxin and its constituent peptides were determined by the Edman-Begg procedure, either through the use of the automatic sequenator or by manual manipulation. The chymotryptic digest provided the necessary overlapping peptides for aligning the tryptic peptides. The primary structure of toxin CM-13b shows a high degree of homology with that of protein S4C11 from Naja melanoleuca venom[1], but their toxicities are very different.  相似文献   

5.
Three toxins (CM-8, CM-11, and CM-13a) were purified from the venom of Naja haje annulifera by gel filtration on Sephadex G-50 and by ion-exchange chromatography on CM-cellulose. Whereas toxin CM-8 and CM-11 comprise 60 amino acid residues, toxin CM-13a contains 61 residues. All three toxins are cross-linked by four intrachain disulphide bridges. The complete amino acid sequences of these toxins have been elucidated. The reduced and S-carboxymethylated toxins were digested with trypsin and chymotrypsin and the peptides purified by ion-exchange chromatography, gel filtration and chromatography or electrophoresis on paper. The Edman procedure, either through the use of the automatic sequencer or by manual manipulation, was employed to obtain the sequence of the intact toxins and the pure peptides. The chymotryptic digests provided the necessary overlapping peptides which allowed the alignment of the tryptic peptides. The properties of the three toxins were compared with those of the cytotoxin group. The toxicities the serological properties, the sequences and the invariant amino acid residues of toxin CM-8 and CM-11 resemble the corresponding properties of the cytotoxin group. The sequence and serological properties of toxin CM-13a show that it is related to the cytotoxin group, but its toxicity is much lower than those encountered in the cytotoxin group.  相似文献   

6.
Zhang N  Chen X  Li M  Cao C  Wang Y  Wu G  Hu G  Wu H 《Biochemistry》2004,43(39):12469-12476
BmKK4 is a 30 amino acid peptide purified from the venom of the Chinese scorpion Buthus martensi Karsch. It has been classified as the first member of scorpion toxin subfamily alpha-KTx 17. The 3D structure of BmKK4 in solution has been determined by 2D NMR spectroscopy. This toxin adopts a common alpha/beta-motif, but shows a distinctive local conformation. The most novel feature is that the regular arrangements of the side chains of the residues involved in the beta-sheet of BmKK4 are distorted by a classic beta-bulge structure, which involves two residues (Asp18 and Arg19) in the first strand opposite a single residue (Tyr26) in the second strand. The bulge produces two main changes in the structure of the antiparallel beta-sheet: (1) It disrupts the normal alteration of the side chain direction; the side chain of Asp18 turns over to form a salt bridge with that of Arg19. (2) It accentuates the twist of the sheet, and alters the direction of the antiparallel beta-sheet. The unusual structural feature of the toxin is attributed to the shorter peptide segment (Leu15-Arg19) between the third and fourth Cys residues and two unique residues (Asp18 and Arg19) at the position preceding the fourth Cys. In addition, the lower affinity of the peptide for the Kv channel is correlated to the structural features: residue Arg19 instead of a Lys residue at the critical position for binding and the salt bridge formed between residues Arg19 and Asp18.  相似文献   

7.
A novel short neurotoxin, cobrotoxin c (CBT C) was isolated from the venom of monocellate cobra (Naja kaouthia) using a combination of ion-exchange chromatography and FPLC. Its primary structure was determined by Edman degradation. CBT C is composed of 61 amino acid residues. It differs from cobrotoxin b (CBT B) by only two amino acid substitutions, Thr/Ala11 and Arg/Thr56, which are not located on the functionally important regions by sequence similarity. However, the LD50 is 0.08 mg/g to mice, i.e. approximately five-fold higher than for CBT B. Strikingly, a structure-function relationship analysis suggests the existence of a functionally important domain on the outside of Loop III of CBT C. The functionally important basic residues on the outside of Loop III might have a pairwise interaction with alpha subunit, instead of gamma or delta subunits of the nicotinic acetylcholine receptor (nAChR).  相似文献   

8.
A novel "weak toxin" (WTX) from Naja kaouthia snake venom competes with [(125)I]alpha-bungarotoxin for binding to the membrane-bound Torpedo californica acetylcholine receptor (AChR), with an IC(50) of approximately 2.2 microm. In this respect, it is approximately 300 times less potent than neurotoxin II from Naja oxiana and alpha-cobratoxin from N. kaouthia, representing short-type and long-type alpha-neurotoxins, respectively. WTX and alpha-cobratoxin displaced [(125)I]alpha-bungarotoxin from the Escherichia coli-expressed fusion protein containing the rat alpha7 AChR N-terminal domain 1-208 preceded by glutathione S-transferase with IC(50) values of 4.3 and 9.1 microm, respectively, whereas for neurotoxin II the IC(50) value was >100 microm. Micromolar concentrations of WTX inhibited acetylcholine-activated currents in Xenopus oocyte-expressed rat muscle AChR and human and rat alpha7 AChRs, inhibiting the latter most efficiently (IC(50) of approximately 8.3 microm). Thus, a virtually nontoxic "three-fingered" protein WTX, although differing from alpha-neurotoxins by an additional disulfide in the N-terminal loop, can be classified as a weak alpha-neurotoxin. It differs from the short chain alpha-neurotoxins, which potently block the muscle-type but not the alpha7 AChRs, and is closer to the long alpha-neurotoxins, which have comparable potency against the above-mentioned AChR types.  相似文献   

9.
H NMR resonances of [cyclo (9----18) Lys1, Gly6]bradykinin (CBK) in (CD3)2SO and H2O solution have been assigned by combined analysis of two-dimensional COSY and NOESY spectra. The presence of two slowly interchangeable conformers of CBK in (CD3)2SO is established, the minor conformer not exceeding 15% in the population. The minor conformer is absent from the aqueous solution, chemical shifts of the CBK and bradykinin NH and C alpha H protons differ insignificantly. The major CBK conformer contains at least two X-Pro trans-peptide groups and three amide protons NH Phe5, NH Arg9 and N zeta H Lys1 protected from solvent. A system of cross-peaks from the NOESY spectra of CBK in (CD3)2SO has been analysed and the maximum distance between backbone protons and neighbouring amino acid residues evaluated. The experimental data agree well with the assumed type II beta-bend in the sequence Pro2-Pro3-Gly4-Phe5. Spatial structure models for the backbone fragment 6-9 of CBK containing two intramolecular hydrogen bonds that involve the NH Arg9 and N zeta H Lys1 protons and the carbonyl groups of Phe5 and Gly4 are proposed.  相似文献   

10.
From the venom of a population of the sea snake Laticauda colubrina from the Solomon Islands, a neurotoxic component, Laticauda colubrina a (toxin Lc a), was isolated in 16.6% (A280) yield. Similarly, from the venom of a population of L. colubrina from the Philippines, a neurotoxic component, Laticauda colubrina b (toxin Lc b), was obtained in 10.0% (A280) yield. The LD50 values of these toxins were 0.12 microgram/g body wt. on intramuscular injection in mice. Toxins Lc a and Lc b were each composed of molecules containing 69 amino acid residues with eight half-cystine residues. The complete amino acid sequences of these two toxins were elucidated. Toxins Lc a and Lc b are different from each other at five positions of their sequences, namely at positions 31 (Phe/Ser), 32 (Leu/Ile), 33 (Lys/Arg), 50 (Pro/Arg) and 53 (Asp/His) (residues in parentheses give the residues in toxins Lc a and Lc b respectively). Toxins Lc a and Lc b have a novel structure in that they have only four disulphide bridges, although the whole amino acid sequences are homologous to those of other known long-chain neurotoxins. It is remarkable that toxins Lc a and Lc b are not coexistent at the detection error of 6% of the other toxin. Populations of Laticauda colubrina from the Solomon Islands and from the Philippines have either toxin Lc a or toxin Lc b and not both of them.  相似文献   

11.
A protein with M 7485 Da containing five disulfide bonds was isolated from the venom of cobra Naja oxiana using various types of liquid chromatography. The complete amino acid sequence of the protein was determined by protein chemistry methods, which permitted us to assign it to the group of weak toxins. This is the first weak toxin isolated from the venom of N. oxiana. In a similar way, two new toxins with M 7628 and 7559 Da, which fall into the range of weak toxin masses, were isolated from the venom of the cobra N. kaouthia. The characterization of these proteins using Edman degradation and MALDI mass spectrometry has shown that one of these proteins is a novel weak toxin, and the other is the known weak toxin WTX with an oxidized methionine residue in position 9. Such a modification was detected in weak toxins for the first time. A study of the biological activity of the toxin from N. oxiana showed that, like other weak toxins, it can be bound by α7 and muscle-type nicotinic acetylcholine receptors.  相似文献   

12.
Protein CM-3 from Dendroaspis polylepis polylepis venom was purified by gel filtration and ion exchange chromatography. It comprises 65 amino acids including eight half-cystines. The complete amino acid sequence of protein CM-3 has been elucidated. The sequence (residues 1-50) resembles that of the N-terminal sequence of the subunits of a synergistic type protein and residues 51-65 that of the C-terminal sequence of an angusticeps type protein. Mixtures of protein CM-3 and angusticeps type proteins showed no apparent synergistic effect, in that their toxicity in combination was no greater than the sum of their individual toxicities.  相似文献   

13.
Sequence-specific assignments of the 1H-nuclear magnetic resonance (NMR) spectra of the cardiotoxins CTXIIa and CTXIIb from Naja mossambica mossambica were obtained using two-dimensional NMR experiments at 500 MHz and the independently determined amino acid sequences. Assignments were obtained from data at 25 degrees C and 45 degrees C for all but one backbone proton of the 60 residues in each protein. Complete or partial assignments are also reported for the side-chain protons. These assignments supercede those published previously for the toxin preparation VII2 [Hosur, R. V., Wider, G. & Wüthrich K. (1983) Eur. J. Biochem. 130, 497-508]. The 1H/2H-exchange kinetics were measured in 2H2O at 20 degrees C for the amide protons and the N-terminal amino group. These and additional NMR data enabled the determination of the secondary structure in aqueous solution, which is virtually identical in CTXIIa and CTXIIb. Both proteins contain a short double-stranded antiparallel beta-sheet comprising the residues 2-4 and 11-13, and a triple-stranded antiparallel beta-sheet consisting of the residues 20-26, 35-39, and 49-55. The two peripheral strands of the triple-stranded beta-structure were found to be connected by a right-handed cross-over, and the locations of several tight turns were also identified.  相似文献   

14.
The assignment of the 1H nuclear magnetic resonance (n.m.r.) spectrum of the trypsin inhibitor homologue K from the venom of Dendroaspis polylepis polylepis is described and documented. The assignments are based entirely on the amino acid sequence and on 2-dimensional n.m.r. experiments at 360 and 500 M Hz. Individual assignments were obtained for the backbone and C beta protons of all 57 residues of the inhibitor homologue K, with the exceptions of the N-terminal amino group, the amide protons of Arg16, Gly37 and Gly40 and the C beta protons of Arg16 and Pro19. The assignments for the non-labile protons of the amino acid side-chains are complete, with the exception of Gln29, Glu49 and all the proline, lysine and arginine residues. For Asn and Trp the labile side-chain protons have also been assigned. The chemical shifts for the assigned resonances are listed for an aqueous solution at 50 degrees C and pH 3.4.  相似文献   

15.
The local structure (torsion angles phi, psi and chi 1 of amino acid residues) of insectotoxin I5A (35 residues) of scorpion Buthus eupeus has been determined from cross-peak integral intensities in two-dimensional nuclear Overhauser enhancement (NOESY) spectra and spin coupling constants of vicinal H--NC alpha--H and H--C alpha C beta--H protons. The local structure determination was carried out by fitting complete relaxation matrix of peptide unit protons (protons of a given residue and NH proton of the next residue in the amino acid sequence) with experimental NOESY cross-peak intensities. The obtained intervals of backbone torsional angles phi and psi consistent with NMR data were determined for all but Gly residues. The predominant C alpha--C beta rotamer of the side chain has been unambiguously determined for 42% of the insectotoxin amino acid residues whereas for another 46% residues experimental data are fitted equally well with two rotamers. Stereospecific assignments were obtained for 38% of beta-methylene groups. The determined torsional angles phi, psi and chi 1 correspond to the sterically allowed conformations of the amino acid residues and agree with the insectotoxin secondary structure established earlier by 1H NMR spectroscopy.  相似文献   

16.
Neurotoxin M9 isolated from the venom of Central Asian scorpion Buthus eupeus (66 amino acid residues, 4 disulfide bridges) has two slowly exchangeable conformations at the acidic pH. 2D-1H-NMR spectroscopy has been used to determine the polypeptide backbone foiding in the conformer that dominates under physiological conditions. The conformer contains the right alpha-helix (residues 22-31) and the antiparallel beta-sheet, which consists of the three strands (residues 1-5, 46-52, 35-40). All five Xxx-Pro bonds are in the trans configuration. Comparison of the obtained data with the crystal structure of the homologous scorpion toxin v-3 Centruroides sculpturatus (65 residues) and the solution spatial structure of the "short" type insectotoxin I5A Buthus eupeus (35 residues) shows close similarity in the first case and similarity of the types and mutual disposition of the regular secondary structure elements in the second case.  相似文献   

17.
The amino acid sequence of a short-chain neurotoxin Acanthophis antarcticus c (toxin Aa c) from the venom of an Australian elapid snake, the common death adder (Acanthophis antarcticus, subfamily Acanthophiinae) was elucidated. Toxin Aa c is composed of 62 amino acid residues, including eight half-cystine residues and a cysteine residue. The amino acid sequence of toxin Aa c is homologous with those of other short-chain neurotoxins found in snakes of the family Elapidae, especially with those from snakes of the subfamily Hydrophiinae. The single cysteine residue was located in position 4. Toxin Aa c has a lethal dose (LD50) of 0.08 micrograms/g body weight of mouse on intramuscular injection.  相似文献   

18.
The further characterization of toxin I from venom of the scorpion Centruroides sculpturatus Ewing (region, Southwestern United States) is reported. Toxin I is a single polypeptide chain of 64 amino acid residues crosslinked by four disulfide bridges. The complete amino acid sequence of toxin I was deduced from the sequence of its tryptic peptides and overlaps provided by its chymotryptic peptides. Toxin I has an amino terminal lysyl residue and a carboxyl terminal threonyl residue.The amino acid sequences of toxin I and neurotoxic variants 1, 2, and 3, likewise isolated from C. sculpturatus venom, differ at 26 positions.The sequences of toxin I from C. sculpturatus and toxins I and II from the North African scorpion, Androctonus australis Hector, are also compared.  相似文献   

19.
The venom of an Australian elapid snake, the common death adder (Acanthophis antarcticus), was chromatographed on a CM-cellulose CM52 column. One of the neurotoxic components, Acanthophis antarcticus b (toxin Aa b) was isolated in about 9.4% (A280) yield. The complete amino acid sequence of toxin Aa b was elucidated. Toxin Aa b is composed of 73 amino acid residues, with ten half-cystine residues, and has a formula weight of 8135. Toxin Aa b has no histidine or methionine residue in its sequence. The amino acid sequence of toxin Aa b is homologous with those of other neurotoxins with known sequences, although it is novel in having a valine residue at its N-terminus and an arginine residue at position-23, where a lysine residue is found in almost all the so-far-known neurotoxins. Irrespective of the latter replacement, the toxin Aa b is fully active, with an LD50 value (in mice) of 0.13 microgram/g body weight on intramuscular injection.  相似文献   

20.
High-resolution proton nuclear magnetic resonance spectra of the trp repressor of Escherichia coli under various conditions are reported and analysed. The spectrum of the denatured state agrees with that predicted from the amino acid composition, with the exception of the two histidine residues, which have different chemical shifts although they titrate normally. The spectrum of the native protein shows the presence of extensive secondary and tertiary structure. Using information from chemical shifts, numbers of protons, titration behaviour, homonuclear chemical-shift-correlated spectroscopy and nuclear Overhauser enhancement correlated spectroscopy, most of the aromatic protons have been assigned to residue type. Further, about 30% of the aliphatic protons have been assigned to residue type by two-dimensional spectroscopy. Nuclear Overhauser enhancements establish that high-field methyl groups belonging to a valine residue lie directly over an aromatic ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号