首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
It has long been thought that long-chain free fatty acids (FFAs) stimulate insulin secretion via mechanisms involving their metabolism in pancreatic beta-cells. Recently, it was reported that FFAs function as endogenous ligands for GPR40, a G protein-coupled receptor, to amplify glucose-stimulated insulin secretion in an insulinoma cell line and rat islets. However, signal transduction mechanisms for GPR40 in beta-cells are little known. The present study was aimed at elucidating GPR40-linked Ca(2+) signaling mechanisms in rat pancreatic beta-cells. We employed oleic acid (OA), an FFA that has a high affinity for the rat GPR40, and examined its effect on cytosolic Ca(2+) concentration ([Ca(2+)](i)) in single beta-cells by fura 2 fluorescence imaging. OA at 1-10 microM concentration-dependently increased [Ca(2+)](i) in the presence of 5.6, 8.3, and 11.2 mM, but not 2.8 mM, glucose. OA-induced [Ca(2+)](i) increases at 11.2 mM glucose were inhibited in beta-cells transfected with small interfering RNA targeted to rat GPR40 mRNA. OA-induced [Ca(2+)](i) increases were also inhibited by phospholipase C (PLC) inhibitors, U73122 and neomycin, Ca(2+)-free conditions, and an L-type Ca(2+) channel blocker, nitrendipine. Furthermore, OA increased insulin release from isolated islets at 8.3 mM glucose, and it was markedly attenuated by PLC and L-type Ca(2+) channel inhibitors. These results demonstrate that OA interacts with GPR40 to increase [Ca(2+)](i) via PLC- and L-type Ca(2+) channel-mediated pathway in rat islet beta-cells, which may be link to insulin release.  相似文献   

2.
In normal beta-cells glucose induces insulin secretion by activating both a triggering pathway (closure of K(ATP) channels, depolarization, and rise in cytosolic [Ca(2+)](i)) and an amplifying pathway (augmentation of Ca(2+) efficacy on exocytosis). It is unclear if and how nutrients can regulate insulin secretion by beta-cells lacking K(ATP) channels (Sur1 knockout mice). We compared glucose- and amino acid-induced insulin secretion and [Ca(2+)](i) changes in control and Sur1KO islets. In 1 mm glucose (non-stimulatory for controls), the triggering signal [Ca(2+)](i) was high (loss of regulation) and insulin secretion was stimulated in Sur1KO islets. This "basal" secretion was decreased or increased by imposed changes in [Ca(2+)](i) and was dependent on ATP production, indicating that both triggering and amplifying signals are involved. High glucose stimulated insulin secretion in Sur1KO islets, by an unsuspected, transient increase in [Ca(2+)](i) and a sustained activation of the amplifying pathway. Unlike controls, Sur1KO islets were insensitive to diazoxide and tolbutamide, which rules out effects of either drug at sites other than K(ATP) channels. Amino acids potently increased insulin secretion by Sur1KO islets through both a further electrogenic rise in [Ca(2+)](i) and a metabolism-dependent activation of the amplifying pathway. After sulfonylurea blockade of their K(ATP) channels, control islets qualitatively behaved like Sur1KO islets, but their insulin secretion rate was consistently lower for a similar or even higher [Ca(2+)](i). In conclusion, fuel secretagogues can control insulin secretion in beta-cells without K(ATP) channels, partly by an unsuspected influence on the triggering [Ca(2+)](i) signal and mainly by the modulation of a very effective amplifying pathway.  相似文献   

3.
Glucose increases insulin secretion by raising cytoplasmic Ca(2+) ([Ca(2+)](i)) in beta-cells (triggering pathway) and augmenting the efficacy of Ca(2+) on exocytosis (amplifying pathway). It has been suggested that glutamate formed from alpha-ketoglutarate is a messenger of the amplifying pathway (Maechler, P., and Wollheim, C. B. (1999) Nature 402, 685-689). This hypothesis was tested with mouse islets depolarized with 30 mm KCl (+ diazoxide) or with a saturating concentration of sulfonylurea. Because [Ca(2+)](i) was elevated under these conditions, insulin secretion was stimulated already in 0 mm glucose. The amplification of secretion produced by glucose was accompanied by an increase in islet glutamate. However, glutamine (0.5-2 mm) markedly augmented islet glutamate without affecting insulin secretion, whereas glucose augmented secretion without influencing glutamate levels when these were elevated by glutamine. Allosteric activation of glutamate dehydrogenase by BCH (2-amino 2-norbornane carboxylic acid) lowered islet glutamate but increased insulin secretion. Similar insulin secretion thus occurred at very different cellular glutamate levels. Glutamine did not affect islet [Ca(2+)](i) and pH(i), whereas glucose and BCH slightly raised pH(i) and either slightly decreased (30 mm KCl) or increased (tolbutamide) [Ca(2+)](i). The general dissociation between changes in islet glutamate and insulin secretion refutes a role of beta-cell glutamate in the amplification of insulin secretion by glucose.  相似文献   

4.
The release of sPLA(2) from single mouse pancreatic beta-cells was monitored using a fluorescent substrate of the enzyme incorporated in the outer leaflet of the plasma membrane. Stimulation of beta-cells with agents that increased cytosolic free Ca(2+) concentration ([Ca(2+)](i)) induced a rapid release of sPLA(2) to the extracellular medium. Exogenous sPLA(2) strongly stimulated insulin secretion in mouse pancreatic islets at both basal and elevated glucose concentrations. The stimulation of insulin secretion by sPLA(2) was mediated via inhibition of ATP-dependent K(+) channels and an increase in [Ca(2+)](i). Measurements of cell capacitance in single beta-cells revealed that sPLA(2) did not modify depolarisation-induced exocytosis. Our data suggest that a positive feedback regulation of insulin secretion by co-released sPLA(2) is operational in pancreatic beta-cells and point to this enzyme as an autocrine regulator of insulin secretion.  相似文献   

5.
IGFBP-1 is involved in glucohomeostasis, but the direct action of IGFBP-1 on the beta-cell remains unclear. Incubation of dispersed mouse beta-cells with IGFBP-1 for 30min inhibited insulin secretion stimulated by glucose, glucagon-like peptide 1 (GLP-1) or tolbutamide without changes in basal release of insulin and in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and NAD(P)H evoked by glucose. In contrast, IGFBP-1 augmented glucose-stimulated insulin secretion in intact islets, associated with a reduced somatostatin secretion. These results suggest a suppressive action of IGFBP-1 on insulin secretion in isolated beta-cells through a mechanism distal to energy generating steps and not involving regulation of [Ca(2+)](i). In contrast, IGFBP-1 amplifies glucose-stimulated insulin secretion in intact islets, possibly by suppressing somatostatin secretion. These direct modulatory influences of IGFBP-1 on insulin secretion may imply an important regulatory role of IGFBP-1 in vivo and in the pathogenesis of type 2 diabetes, in which loss of insulin release is an early pathogenetic event.  相似文献   

6.
Hormones, such as glucagon and glucagon-like peptide-1, potently amplify nutrient stimulated insulin secretion by raising cAMP. We have studied how cAMP affects Ca(2+)-induced Ca(2+) release (CICR) in pancreatic beta-cells from mice and rats and the role of CICR in secretion. CICR was observed as pronounced Ca(2+) spikes on top of glucose- or depolarization-dependent rise of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)). cAMP-elevating agents strongly promoted CICR. This effect involved sensitization of the receptors underlying CICR, because many cells exhibited the characteristic Ca(2+) spiking at low or even in the absence of depolarization-dependent elevation of [Ca(2+)](i). The cAMP effect was mimicked by a specific activator of protein kinase A in cells unresponsive to activators of cAMP-regulated guanine nucleotide exchange factor. Ryanodine pretreatment, which abolishes CICR mediated by ryanodine receptors, did not prevent CICR. Moreover, a high concentration of caffeine, known to activate ryanodine receptors independently of Ca(2+), failed to mobilize intracellular Ca(2+). On the contrary, a high caffeine concentration abolished CICR by interfering with inositol 1,4,5-trisphosphate receptors (IP(3)Rs). Therefore, the cell-permeable IP(3)R antagonist 2-aminoethoxydiphenyl borate blocked the cAMP-promoted CICR. Individual CICR events in pancreatic beta-cells were followed by [Ca(2+)](i) spikes in neighboring human erythroleukemia cells, used to report secretory events in the beta-cells. The results indicate that protein kinase A-mediated promotion of CICR via IP(3)Rs is part of the mechanism by which cAMP amplifies insulin release.  相似文献   

7.
In adult beta-cells glucose-induced insulin secretion involves two mechanisms (a) a K(ATP) channel-dependent Ca(2+) influx and rise of cytosolic [Ca(2+)](c) and (b) a K(ATP) channel-independent amplification of secretion without further increase of [Ca(2+)](c). Mice lacking the high affinity sulfonylurea receptor (Sur1KO), and thus K(ATP) channels, have been developed as a model of congenital hyperinsulinism. Here, we compared [Ca(2+)](c) and insulin secretion in overnight cultured islets from 2-week-old normal and Sur1KO mice. Control islets proved functionally mature: the magnitude and biphasic kinetics of [Ca(2+)](c) and insulin secretion changes induced by glucose, and operation of the amplifying pathway, were similar to adult islets. Sur1KO islets perifused with 1 mm glucose showed elevation of both basal [Ca(2+)](c) and insulin secretion. Stimulation with 15 mm glucose produced a transient drop of [Ca(2+)](c) followed by an overshoot and a sustained elevation, accompanied by a monophasic, 6-fold increase in insulin secretion. Glucose also increased insulin secretion when [Ca(2+)](c) was clamped by KCl. When Sur1KO islets were cultured in 5 instead of 10 mm glucose, [Ca(2+)](c) and insulin secretion were unexpectedly low in 1 mm glucose and increased following a biphasic time course upon stimulation by 15 mm glucose. This K(ATP) channel-independent first phase [Ca(2+)](c) rise was attributed to a Na(+)-, Cl(-)-, and Na(+)-pump-independent depolarization of beta-cells, leading to Ca(2+) influx through voltage-dependent calcium channels. Glucose indeed depolarized Sur1KO islets under these conditions. It is suggested that unidentified potassium channels are sensitive to glucose and subserve the acute and long-term metabolic control of [Ca(2+)](c) in beta-cells without functional K(ATP) channels.  相似文献   

8.
Secretion from single pancreatic beta-cells was imaged using a novel technique in which Zn(2+), costored in secretory granules with insulin, was detected by confocal fluorescence microscopy as it was released from the cells. Using this technique, it was observed that secretion from beta-cells was limited to an active region that comprised approximately 50% of the cell perimeter. Using ratiometric imaging with indo-1, localized increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) evoked by membrane depolarization were also observed. Using sequential measurements of secretion and [Ca(2+)](i) at single cells, colocalization of exocytotic release sites and Ca(2+) entry was observed when cells were stimulated by glucose or K(+). Treatment of cells with the Ca(2+) ionophore 4-Br-A23187 induced large Ca(2+) influx around the entire cell circumference. Despite the nonlocalized increase in [Ca(2+)](i), secretion evoked by 4-Br-A23187 was still localized to the same region as that evoked by secretagogues such as glucose. It is concluded that Ca(2+) channels activated by depolarization are localized to specific membrane domains where exocytotic release also occurs; however, localized secretion is not exclusively regulated by localized increases in [Ca(2+)](i), but instead involves spatial localization of other components of the exocytotic machinery.  相似文献   

9.
Although intracellular Ca(2+) in pancreatic beta-cells is the principal signal for insulin secretion, the effect of chronic elevation of the intracellular Ca(2+) concentration ([Ca(2+)](i)) on insulin secretion is poorly understood. We recently established two pancreatic beta-cell MIN6 cell lines that are glucose-responsive (MIN6-m9) and glucose-unresponsive (MIN6-m14). In the present study we have determined the cause of the glucose unresponsiveness in MIN6-m14. Initially, elevated [Ca(2+)](i) was observed in MIN6-m14, but normalization of the [Ca(2+)](i) by nifedipine, a Ca(2+) channel blocker, markedly improved the intracellular Ca(2+) response to glucose and the glucose-induced insulin secretion. The expression of subunits of ATP-sensitive K(+) channels and voltage-dependent Ca(2+) channels were increased at both mRNA and protein levels in MIN6-m14 treated with nifedipine. As a consequence, the functional expression of these channels at the cell surface, both of which are decreased in MIN6-m14 without nifedipine treatment, were increased significantly. Contrariwise, Bay K8644, a Ca(2+) channel agonist, caused severe impairment of glucose-induced insulin secretion in glucose-responsive MIN6-m9 due to decreased expression of the channel subunits. Chronically elevated [Ca(2+)](i), therefore, is responsible for the glucose unresponsiveness of MIN6-m14. The present study also suggests normalization of [Ca(2+)](i) in pancreatic beta-cells as a therapeutic strategy in treatment of impaired insulin secretion.  相似文献   

10.
Platelet agonists initiate aggregation and secretion by activating receptors coupled to the G-protein G(q), thereby raising cytosolic Ca(2+), [Ca(2+)](i). The rise in [Ca(2+)](i) is facilitated via inhibition of cAMP formation by the inhibitory G-protein of adenylyl cyclase, G(i). Since insulin attenuates platelet activation, we investigated whether insulin interferes with cAMP regulation. Here we report that insulin (0.5-200 nmol/liter) interferes with agonist-induced increases in [Ca(2+)](i) (ADP, thrombin), cAMP suppression (thrombin), and aggregation (ADP). The effects of insulin are as follows: (i) independent of the P2Y(12) receptor, which mediates ADP-induced cAMP lowering; (ii) not observed during G(s)-mediated cAMP formation; (iii) unaffected by treatments that affect phosphodiesterases (3-isobutyl-1-methylxanthine); and (iv) not changed by interfering with NO-mediated regulation of cAMP degradation (N(G)-monomethyl-l-arginine). Hence, insulin might interfere with G(i). Indeed, insulin induces the following: (i) tyrosine phosphorylation of the insulin receptor, the insulin receptor substrate-1 (IRS-1) and G(i)alpha(2); (ii) co-precipitation of IRS-1 with G(i)alpha(2) but not with other G alpha subunits. Despite persistent receptor activation, the association of IRS-1 with G(i)alpha(2) is transient, being optimal at 5 min and 1 nmol/liter insulin, which is sufficient to suppress Ca(2+) signaling by ADP, and at 10 min and 100 nmol/liter insulin, which is required to suppress Ca(2+) signaling by thrombin. Epinephrine, a known platelet sensitizer and antagonist of insulin, abolishes the effect of insulin on [Ca(2+)](i), tyrosine phosphorylation of G(i)alpha(2), and aggregation by interfering with the phosphorylation of the insulin receptor beta subunit. We conclude that insulin attenuates platelet functions by interfering with cAMP suppression through IRS-1 and G(i).  相似文献   

11.
Effects of the imidazoline compound RX871024 on cytosolic free Ca(2+) concentration ([Ca(2+)]i) and insulin secretion in pancreatic beta-cells from SUR1 deficient mice have been studied. In beta-cells from wild-type mice RX871024 increased [Ca(2+)]i by blocking ATP-dependent K(+)-current (K(ATP)) and inducing membrane depolarization. In beta-cells lacking a component of the K(ATP)-channel, SUR1 subunit, RX871024 failed to increase [Ca(2+)]i. However, insulin secretion in these cells was strongly stimulated by the imidazoline. Thus, a major component of the insulinotropic activity of RX871024 is stimulation of insulin exocytosis independently from changes in K(ATP)-current and [Ca(2+)]i. This means that effects of RX871024 on insulin exocytosis are partly mediated by interaction with proteins distinct from those composing the K(ATP)-channel.  相似文献   

12.
Yanagida K  Yaekura K  Arima T  Yada T 《Peptides》2002,23(1):135-142
The present study examined whether a sustained increase in cytosolic Ca(2+) concentration ([Ca(2+)](i)) causes glucose-insensitivity in beta-cells and whether it could be modulated by pituitary adenylate cyclase-activating polypeptide (PACAP), a pancreatic insulinotropin. Rat single beta-cells were cultured for 2 days with sustained increases in [Ca(2+)](i), followed by determination of the [Ca(2+)](i) response to glucose (8.3 mM) as monitored with fura-2. High K(+) (25 mM) produced sustained increases in [Ca(2+)](i) in beta-cells, which were inhibited by nifedipine, a Ca(2+) channel blocker. After culture with high K(+), the incidence and amplitude of [Ca(2+)](i) responses to glucose were markedly reduced. This glucose-insensitivity was prevented by the presence of nifedipine or PACAP-38 (10(-13) M and 10-9) M) in high K(+) culture. PACAP-38 attenuated high K(+)-induced [Ca(2+)](i) increases. In conclusion, sustained increases in [Ca(2+)](i) induce glucose-insensitivity (Ca(2+) toxicity in beta-cells) and it is prevented by PACAP possibly in part due to its Ca(2+)-reducing capacity.  相似文献   

13.
Neuropeptide W (NPW) is a regulatory peptide that acts via two subtypes of G protein-coupled receptors, GPR7 and GPR8. Evidence has been provided that NPW is involved in the central regulation of energy homeostasis and feeding behavior. In this study, we examined the effects of NPW on insulin release and localization of NPW in the rat pancreas. NPW (10-100 nM) significantly increased insulin release in the presence of 8.3 mM, but not 2.8 mM, glucose in the isolated rat islets. By fura-2 microfluorometry, NPW (1-100 nM) concentration-dependently increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) at 8.3 mM glucose in rat single beta-cells. The NPW-induced [Ca(2+)](i) increase was abolished under external Ca(2+)-free conditions and by an L-type Ca(2+) channel blocker nifedipine (10 microM). RT-PCR analysis revealed that mRNA for NPW was expressed in the rat pancreas and hypothalamus. Double immunohistochemical analysis showed that NPW-immunoreactivity was found in islets and co-localized with insulin-containing beta-cells, but not glucagon-containing alpha-cells and somatostatin-containing delta-cells. These results suggest that NPW could serve as a local modulator of glucose-induced insulin release in rat islets. NPW directly activates beta-cells to enhance Ca(2+) influx through voltage-dependent L-type Ca(2+) channels and potentiates glucose-induced insulin release.  相似文献   

14.
The effects of somatostatin (SRIF) are mediated through the seven transmembrane receptor family that signals via Gi/Go. To date, five distinct SRIF receptors have been characterized and designated SSTR1-5. We have characterized the SRIF receptor that mediates the increase in [Ca(2+)](i) and insulin secretion in HIT-T15 cells (Simian virus 40-transformed Syrian hamster islets) using high affinity, subtype selective agonists for SSTR1 (L-797,591), SSTR2 (L-779,976), SSTR3 (L-796,778), SSTR4 (L-803,087), SSTR5 (L-817,818) and PRL-2903, a specific SSTR2 antagonist. In the presence of arginine vasopressin (AVP), SRIF increased [Ca(2+)](i) and insulin secretion. Treatment with the SSTR2 agonist L-779,976 resulted in similar responses to SRIF. In addition, L-779,976 increased both [Ca(2+)](i) and insulin secretion in a dose-dependent manner. Treatment with L-779,976 alone did not alter [Ca(2+)](i) or basal insulin secretion. In the presence of AVP, all other SRIF receptor agonists failed to increase [Ca(2+)](i) and insulin secretion. The effects of SRIF and L-779,976 were abolished by the SSTR2 antagonist PRL-2903. Our results suggest that the mechanism underlying SRIF-induced insulin secretion in HIT-T15 cells be mediated through the SSTR2.  相似文献   

15.
Pancreatic beta-cells are biological oscillators requiring a coupling force for the synchronization of the cytoplasmic Ca(2+) oscillations responsible for pulsatile insulin release. Testing the idea that transients, superimposed on the oscillations, are important for this synchronization, the concentration of cytoplasmic Ca(2+) ([Ca(2+)](i)) was measured with ratiometric fura-2 technique in single beta-cells and small aggregates prepared from islets isolated from ob/ob-mice. Image analyses revealed asynchronous [Ca(2+)](i) oscillations in adjacent beta-cells lacking physical contact. The addition of glucagon stimulated the firing of [Ca(2+)](i) transients, which appeared in synchrony in adjacent beta-cells. Moreover, the presence of glucagon promoted synchronization of the [Ca(2+)](i) oscillations in beta-cells separated by a distance <100 microm but not in those >200 microm apart. The results support the proposal that the repolarizing effect of [Ca(2+)](i) transients provides a coupling force for co-ordinating the pulses of insulin release generated by pancreatic beta-cells.  相似文献   

16.
The effect of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition on the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) was studied in primary insulin-releasing pancreatic beta-cells isolated from mice, rats and human subjects as well as in clonal rat insulinoma INS-1 cells. In Ca(2+)-deficient medium the individual primary beta-cells reacted to the SERCA inhibitor cyclopiazonic acid (CPA) with a slow rise of [Ca(2+)](i) followed by an explosive transient elevation. The [Ca(2+)](i) transients were preferentially observed at low intracellular concentrations of the Ca(2+) indicator fura-2 and were unaffected by pre-treatment with 100 microM ryanodine. Whereas 20mM caffeine had no effect on basal [Ca(2+)](i) or the slow rise in response to CPA, it completely prevented the CPA-induced [Ca(2+)](i) transients as well as inositol 1,4,5-trisphosphate-mediated [Ca(2+)](i) transients in response to carbachol. In striking contrast to the primary beta-cells, caffeine readily mobilized intracellular Ca(2+) in INS-1 cells under identical conditions, and such mobilization was prevented by ryanodine pre-treatment. The results indicate that leakage of Ca(2+) from the endoplasmic reticulum after SERCA inhibition is feedback-accelerated by Ca(2+)-induced Ca(2+) release (CICR). In primary pancreatic beta-cells this CICR is due to activation of inositol 1,4,5-trisphosphate receptors. CICR by ryanodine receptor activation may be restricted to clonal beta-cells.  相似文献   

17.
18.
Stimulus-secretion coupling in pancreatic beta-cells involves membrane depolarization and Ca(2+) entry through voltage-gated L-type Ca(2+) channels, which is one determinant of increases in the cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)). We investigated how the endoplasmic reticulum (ER)-associated Ca(2+) apparatus further modifies this Ca(2+) signal. When fura-2-loaded mouse beta-cells were depolarized by KCl in the presence of 3 mm glucose, [Ca(2+)](i) increased to a peak in two phases. The second phase of the [Ca(2+)](i) increase was abolished when ER Ca(2+) stores were depleted by thapsigargin. The steady-state [Ca(2+)](i) measured at 300 s of depolarization was higher in control cells compared with cells in which the ER Ca(2+) pools were depleted. The amount of Ca(2+) presented to the cytoplasm during depolarization as estimated from the integral of the increment in [Ca(2+)](i) over time (integralDelta[Ca(2+)](i).dt) was approximately 30% higher compared with that in the Ca(2+) pool-depleted cells. neo-thapsigargin, an inactive analog, did not affect [Ca(2+)](i) response. Using Sr(2+) in the extracellular medium and exploiting the differences in the fluorescence properties of Ca(2+)- and Sr(2+)-bound fluo-3, we found that the incoming Sr(2+) triggered Ca(2+) release from the ER. Depolarization-induced [Ca(2+)](i) response was not altered by, an inhibitor of phosphatidylinositol-specific phospholipase C, suggesting that stimulation of the enzyme by Ca(2+) is not essential for amplification of Ca(2+) signaling. [Ca(2+)](i) response was enhanced when cells were depolarized in the presence of 3 mm glucose, forskolin, and caffeine, suggesting involvement of ryanodine receptors in the amplification process. Pretreatment with ryanodine (100 microm) diminished the second phase of the depolarization-induced increase in [Ca(2+)](i). We conclude that Ca(2+) entry through L-type voltage-gated Ca(2+) channels triggers Ca(2+) release from the ER and that such a process amplifies depolarization-induced Ca(2+) signaling in beta-cells.  相似文献   

19.
The mechanisms by which glucose may affect protein kinase C (PKC) activity in the pancreatic islet beta-cell are presently unclear. By developing adenovirally expressed chimeras encoding fusion proteins between green fluorescent protein and conventional (betaII), novel (delta), or atypical (zeta) PKCs, we show that glucose selectively alters the subcellular localization of these enzymes dynamically in primary islet and MIN6 beta-cells. Examined by laser scanning confocal or total internal reflection fluorescence microscopy, elevated glucose concentrations induced oscillatory translocations of PKCbetaII to spatially confined regions of the plasma membrane. Suggesting that increases in free cytosolic Ca(2+) concentrations ([Ca(2+)](c)) were primarily responsible, prevention of [Ca(2+)](c) increases with EGTA or diazoxide completely eliminated membrane recruitment, whereas elevation of cytosolic [Ca(2+)](c) with KCl or tolbutamide was highly effective in redistributing PKCbetaII both to the plasma membrane and to the surface of dense core secretory vesicles. By contrast, the distribution of PKCdelta.EGFP, which binds diacylglycerol but not Ca(2+), was unaffected by glucose. Measurement of [Ca(2+)](c) immediately beneath the plasma membrane with a ratiometric "pericam," fused to synaptic vesicle-associated protein-25, revealed that depolarization induced significantly larger increases in [Ca(2+)](c) in this domain. These data demonstrate that nutrient stimulation of beta-cells causes spatially and temporally complex changes in the subcellular localization of PKCbetaII, possibly resulting from the generation of Ca(2+) microdomains. Localized changes in PKCbetaII activity may thus have a role in the spatial control of insulin exocytosis.  相似文献   

20.
Elevations in intracellular Ca(2+) ([Ca(2+)](i)) initiate insulin secretion from pancreatic beta-cells, but the secretory responses become rapidly desensitised to maintained elevations in [Ca(2+)](i). We have investigated the mechanisms underlying the Ca(2+) desensitization of insulin secretion using electrically permeabilized rat islets of Langerhans. Measurements of Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) enzyme activity and immunoreactivity in permeabilized islets demonstrated Ca(2+)-induced reductions in enzyme activity which could not be attributed to reductions in CaMK II immunoreactive protein. Measurements in intact islets demonstrated that the Ca(2+)-induced reduction of CaMK II activity was also operative in intact cells, suggesting that this mechanism may have pathophysiological implications for beta-cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号