首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compared with cultures grown aerobically in batch culture with glucose, aerated cultures of lactic streptococci had a less homolactic type of metabolism when galactose was the carbohydrate source in batch cultures, or when glucose was limiting in chemostat cultures. Differences in end-products of sugar metabolism between aerated and unaerated cultures were observed. In addition to lactate, formate, acetate and ethanol were produced in anaerobic cultures, whereas acetate and acetoin were formed in aerated cultures. Acetate production in aerated cultures depended on lipoic acid, an essential cofactor of the pyruvate dehydrogenase complex. In a chemically defined medium with glucose as the energy substrate, lipoic acid (or acetate) was an essential growth factor. Formation of acetoin was inversely related to lipoic acid concentration in the growth medium. Although not observed in unaerated cultures, acetoin (and 2,3-butanediol) was produced in unaerated buffered suspensions metabolizing pyruvate. Aeration caused a modest increase in the activities of aP-acetolactate synthetase and phosphate acetyl trans-ferase, but it is unlikely that the increases were sufficient to account for the changes in end-products of sugar metabolism observed.  相似文献   

2.
Phycomyces blakesleeanus sporangiospores responded differently to activation by physical and chemical stimuli. Spores that were physically (heat shock) activated or chemically (ammonium acetate) activated germinated and grew at pH 4.5 with the hexoses glucose, fructose, galactose, andN-acetylglucosamine, and with glycerol and amino acids. Under these conditions, physically activated spores showed a lower, although significant growth with the hexoses fructose, galactose,N-acetylglucosamine and with glycerol. On the other hand, physically activated spores incubated at alkaline pH (pH 7.3) required glucose to germinate; a requirement not observed with chemically activated spores, which showed significant growth in the other hexoses tested. Both physically and chemically activated spores incubated at pH 7.3 were unable to germinate and grow with amino acids and glycerol. These results suggest that there are different targets for activation of the spores by physical and chemical treatments. The levels of the fermentative enzymes alcohol dehydrogenase and lactate dehydrogenase and of the oxidative enzyme NAD+-isocitrate dehydrogenase were higher in cells grown at pH 4.5 in medium containing glucose; however, alcohol dehydrogenase and lactate dehydrogenase appear not to be affected by a change in the pH of the growth medium.  相似文献   

3.
The nitrate-tolerant organism Klebsiella oxytoca CECT 4460 tolerates nitrate at concentrations up to 1 M and is used to treat wastewater with high nitrate loads in industrial wastewater treatment plants. We studied the influence of the C source (glycerol or sucrose or both) on the growth rate and the efficiency of nitrate removal under laboratory conditions. With sucrose as the sole C source the maximum specific growth rate was 0.3 h−1, whereas with glycerol it was 0.45 h−1. In batch cultures K. oxytoca cells grown on sucrose or glycerol were able to immediately use sucrose as a sole C source, suggesting that sucrose uptake and metabolism were constitutive. In contrast, glycerol uptake occurred preferentially in glycerol-grown cells. Independent of the preculture conditions, when sucrose and glycerol were added simultaneously to batch cultures, the sucrose was used first, and once the supply of sucrose was exhausted, the glycerol was consumed. Utilization of nitrate as an N source occurred without nitrite or ammonium accumulation when glycerol was used, but nitrite accumulated when sucrose was used. In chemostat cultures K. oxytoca CECT 4460 efficiently removed nitrate without accumulation of nitrate or ammonium when sucrose, glycerol, or mixtures of these two C sources were used. The growth yields and the efficiencies of C and N utilization were determined at different growth rates in chemostat cultures. Regardless of the C source, yield carbon (YC) ranged between 1.3 and 1.0 g (dry weight) per g of sucrose C or glycerol C consumed. Regardless of the specific growth rate and the C source, yield nitrogen (YN) ranged from 17.2 to 12.5 g (dry weight) per g of nitrate N consumed. In contrast to batch cultures, in continuous cultures glycerol and sucrose were utilized simultaneously, although the specific rate of sucrose consumption was higher than the specific rate of glycerol consumption. In continuous cultures double-nutrient-limited growth appeared with respect to the C/N ratio of the feed medium and the dilution rate, so that for a C/N ratio between 10 and 30 and a growth rate of 0.1 h−1 the process led to simultaneous and efficient removal of the C and N sources used. At a growth rate of 0.2 h−1 the zone of double limitation was between 8 and 11. This suggests that the regimen of double limitation is influenced by the C/N ratio and the growth rate. The results of these experiments were validated by pulse assays.  相似文献   

4.
S ummary : Glycerol stimulated sporulation of Saccharomyces cerevisiae Hanson, especially when the cells were precultured in a complex growth medium instead of a chemically defined medium. Optimum spore yields occurred with 1–4% of glycerol but some were produced in 16% glycerol. Sporulation in glycerol was much less sensitive to ammonium sulphate inhibition than it was in acetate. Growth occurred with glycerol as sole carbon source and glutamic acid as sole nitrogen source, but not with ammonium sulphate as the sole nitrogen source.  相似文献   

5.
1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. 1H/15N NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amido-transfer reaction. In glutamine-free media 15NH4+ was consumed and incorporated into alanine. 15NH4+ was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. 13C NMR revealed that the [1-13C] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.  相似文献   

6.
 Physiological effects of deficiency of pantothenate, a necessary precursor in the synthesis of coenzyme A, were studied using the yeast strain Saccharomyces cerevisiae CBS 8066. Cells were grown on defined media in anaerobic batch cultures with glucose (50 g/l) as the carbon and energy source. Batch cultures containing more than 60 μg/l pantothenate showed no significant differences with respect to growth rates and product yields. However, with an initial pantothenate concentration of 30 μg/l, the average glucose consumption rate was 50% lower than in rich medium and, at even lower concentrations of pantothenate, the culture did not consume all the glucose in the medium. Furthermore, pantothenate deficiency caused the acetate and pyruvate yields to increase and the biomass yield to decrease, compared to the yields in pantothenate-rich medium. The increased acetate formation could be counteracted by initial addition of acetate to the medium, and thereby the glycerol yield could be decreased. An initial addition of acetate of 1.6 g/l to pantothenate-deficient medium (30 μg/l) caused a 35% decrease in glycerol yield and a 6% increase in ethanol yield. Furthermore, the time required for complete conversion of the glucose decreased by 40%. Acetate addition affected the acetate and glycerol yields in a similar way in pantothenate-rich medium (1000 μg/l) also. Received: 27 December 1995/Received revision: 3 May 1996/Accepted: 9 May 1996  相似文献   

7.
Alanine dehydrogenase in Arthrobacter fluorescens exhibited an allosteric behaviour and two K m values for ammonium were estimated. In batch cultures at different ammonium concentrations and in continuous culture following an NH4 + pulse, the level of ADH activity seems to be regulated by the ammonium concentration, high activities being observed when extracellular ammonium was in excess. The response to the growth rate of an ammonium-limited chemostat culture of A. fluorescens seems to indicate that alanine dehydrogenase and glutamine synthetase activities were inversely related. High activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase have been found in crude extract of ammonium-limited cultures. From the results obtained in batch cultures grown at different glucose concentrations and in carbon-limited chemostat culture it appeared that the limitation by glucose influenced alanine dehydrogenase activity negatively. No glutamate dehydrogenase activity and no glutamate synthase activity could be detected with either NADH or NADPH as coenzymes.Abbreviations ADH alanine dehydrogenase - GS glutamine synthetase - GDH glutamate dehydrogenase - GOGAT glutamine oxoglutarate aminotransferase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase  相似文献   

8.
The relationship between cyclic adenosine 3',5'-monophosphate (cyclic AMP) metabolism and the induction of tryptophanase and beta-galactosidase was studied in several strains of Escherichia coli grown with succinate, acetate, glycerol, or glucose as the carbon source. No consistent relationship between the intracellular concentration of cyclic AMP in the several strains cultured and the various carbon sources was discerned. In E. coli K-12-1 the induction of tryptophanase was found to vary in the order: succinate greater than acetate greater than glycerol greater than glucose, and that of beta-galactosidase was found in the order: glycerol greater than acetate greater than succinate greater than glucose. Rate of accumulation of cyclic AMP in the culture filtrate was in the order: succinate greater than acetate greater than glycerol greater than glucose. The addition of glycerol to E. coli K-12-1 grown in acetate caused inhibition of tryptophanase and slight inhibition of accumulation of extracellular cyclic AMP. These same conditions caused beta-galactosidase induction to be stimulated. The addition of exogenous cyclic AMP to cultures grown with four different carbon sources had an effect characteristic for each of the two enzymes studied as well as each individual carbon source. The results suggest that there are control elements distinct from cyclic AMP and its receptor protein which respond to the catabolic situation of the cell.  相似文献   

9.
The amino acid composition of proteins and the fatty acid composition of the cell membranes were measured in Escherichia coli growing exponentially in batch culture on glucose, succinate, glycerol, pyruvate, and acetate, and growing under continuous culture conditions on glucose at dilutions rates equivalent to the growth rates of the batch cultures. Although the fatty acid composition of the membranes did change significantly with carbon source and dilution rate, the amino acid content of proteins did not change significantly under either condition. A previously developed stoichiometric model of metabolism was used to calculate the fluxes through the metabolic reactions and to determine their sensitivity to changes in fatty acid and amino acid composition.  相似文献   

10.
Synchronous cultures of the budding yeast Candida utilis prepared by continuous-flow size selection showed respiratory oscillations when the energy source was either glucose, acetate or glycerol. The period of the oscillations was about one-third of the cell cycle time (i.e. about 0.5 h). No fluctuations in heat evolution could be detected. In organisms growing with acetate or glycerol, the effects of cyanide, N,N'-dicyclohexylcarbodi-imide and carbonyl cyanide m-chlorophenylhydrazone (maximum inhibition of respiration at respiratory maxima, maximum uncoupling of energy conservation at respiratory minima) suggest that the control mechanism responsible for the oscillations is mitochondrial respiratory control in vivo. The effects of cyanide and N,N'-dicyclohexylcarbodi-imide on the respiration of cultures growing synchronously with glucose were different from those for cultures growing with the non-fermentable substrates; this suggests that the mitochondrial respiratory system interacts with the early reactions of glucose utilization.  相似文献   

11.
Substrate limited fed batch cultures were used to study growth and overflow metabolism in hybridoma cells. A glucose limited fed batch, a glutamine limited fed batch, and a combined glucose and glutamine limited red batch culture were compared with batch cultures. In all cultures mu reaches its maximum early during growth and decreases thereafter so that no exponential growth and decreases thereafter so that no exponential growth rate limiting, although the glutamine concentration (>0.085mM) was lower than reported K(s) vales and glucose was below 0.9mM; but some other nutrients (s) was the cause as verified by simulations. Slightly more cells and antibodies were produced in the combined fed batch compared with the batch culture. The specific rates for consumption of glucose and glutamine were dramatically influenced in fed batch cultures resulting in major metabolic changes. Glucose limitation decreased lactate formation, but increased glutamine consumption and ammonium formation. Glutamine limitation decreased ammonium and alanine formation of lactate, alanine, and ammonium was negligible in the dual-substrate limited fed batch culture. The efficiency of the energy metabolism increased, as judged by the increase in the cellular yield coefficient for glucose by 100% and for glutamine by 150% and by the change in the metabolic ratios lac/glc, ala/ln, and NH(x)/ln, in the combined fed culture. The data indicate that a larger proportion of consumed glutamine enters the TCA cycle through the glutamate dehydrogenase pathway, which releases more energy from glutamine than the transamination pathway. We suggest that the main reasons for these changes are decreased uptake rates of glucose and glutamine, which in turn lead to a reduction of the pyruvate pool and a restriction of the flux through glutaminase and lactate dehydrogenase. There appears to be potential for further cell growth in the dual-substrate-limited fed batch culture as judged by a comparison of mu in the different cultures. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
To prevent the loss of raw material in ethanol production by anaerobic yeast cultures, glycerol formation has to be reduced. In theory, this may be done by providing the yeast with amino acids, since the de novo cell synthesis of amino acids from glucose and ammonia gives rise to a surplus of NADH, which has to be reoxidized by the formation of glycerol. An industrial strain of Saccharomyces cerevisiae was cultivated in batch cultures with different nitrogen sources, i.e., ammonium salt, glutamic acid, and a mixture of amino acids, with 20 g of glucose per liter as the carbon and energy source. The effects of the nitrogen source on metabolite formation, growth, and cell composition were measured. The glycerol yields obtained with glutamic acid (0.17 mol/mol of glucose) or with the mixture of amino acids (0.10 mol/mol) as a nitrogen source were clearly lower than those for ammonium-grown cultures (0.21 mol/mol). In addition, the ethanol yield increased for growth on both glutamic acid (by 9%) and the mixture of amino acids (by 14%). Glutamic acid has a large influence on the formation of products; the production of, for example, alpha-ketoglutaric acid, succinic acid, and acetic acid, increased compared with their production with the other nitrogen sources. Cultures grown on amino acids have a higher specific growth rate (0.52 h-1) than cultures of both ammonium-grown (0.45 h-1) and glutamic acid-grown (0.33 h-1) cells. Although the product yields differed, similar compositions of the cells were attained. The NADH produced in the amino acid, RNA, and extracellular metabolite syntheses was calculated together with the corresponding glycerol formation. The lower-range values of the theoretically calculated yields of glycerol were in good agreement with the experimental yields, which may indicate that the regulation of metabolism succeeds in the most efficient balancing of the redox potential.  相似文献   

13.
Cell growth and lincomycin production were measured in batch cultures of Streptomyces lincolnensis in chemically defined media. In these fermentations the specific rate of antibiotic production was maximal during growth and always declined at the end of the growth phase. It was found that both phosphate and ammonium salts, while required for cell growth, had negative effects on antibiotic production. By increasing the concentration of magnesium sulfate, it was possible to increase both the production rates and final titers of lincomycin. The mechanism for this effect was found to be the reduction of soluble phosphate in the medium through the precipitation of ammonium magnesium phosphate. Lincomycin production rates were not inhibited by glucose at concentrations of up to 30 g/L.  相似文献   

14.
Cultivations of Streptomyces peucetius in two types of medium were monitored on-line using a Fourier transform infrared (FTIR) spectrometer combined with an attenuated total reflection probe. The quantitative measurements of the glucose, starch and acetate concentrations were implemented using partial least squares calibration models. These were regressed on spectral and concentration information obtained by adding together single constituent spectra of the main constituents in the medium according to a full factorial design. The accuracy achieved was considered to be satisfactory, with an average root mean square error of prediction of 1.5 g/l for glucose and 0.25 g/l for acetate. The methodology used is considered to be a rapid technique for generation of calibration data, and a step towards the use of library type data for calibration purposes in quantitative FTIR spectroscopy applications in bioprocesses.  相似文献   

15.
16.
Defined minimal media conditions were used to assess and subsequently enhance the production of subtilisin by genetically characterized Bacillus subtilis strains. Subtilisin production was initiated by the exhaustion or limitation of ammonium in batch and fed-batch cultures. Expression of the subtilisin gene (aprE) was monitored with a chromosomal aprE::lacZ gene fusion. The beta-galactosidase production driven by this fusion reflected subtilisin accumulation in the culture medium. Subtilisin gene expression was temporally extended in sporulation-deficient strains (spoIIG), relative to co-genic sporogenous strains, resulting in enhanced subtilisin production. Ammonium exhaustion not only triggered subtilisin production in asporogenous spoIIG mutants but also shifted carbon metabolism from acetate production to acetate uptake and resulted in the formation of multiple septa in a significant fraction of the cell population. Fed-batch culture techniques, employing the spoIIG strain, were investigated as a means to further extend subtilisin production. The constant provision of ammonium resulted in linear growth, with doubling times of 11 and 36 h in each of two independent experiments. At the lower growth rate, the responses elicited (subtilisin production, glucose metabolism, and morphological changes) during the feeding regime closely approximated the ammonium starvation response, while at the higher growth rate a partial starvation response was observed.  相似文献   

17.
Production of polygalacturonic acid (PGA) trans-eliminase was greatly stimulated under conditions of restricted growth of Aeromonas liquefaciens. This was accomplished either by substrate restriction in a continuous-feeding culture or by restricting divalent cations in a batch culture, with the use of PGA as the sole source of carbon in a chemically defined medium containing inorganic nitrogen. Slow feeding of glucose, glycerol, or PGA to carbon-limited cultures allowed PGA trans-eliminase to be formed at a maximum differential rate 500 times greater than in batch cultures with excess substrate present. The differential rate of enzyme formation obtained by slow feeding of these three substrances or of a mixture of PGA plus glucose was observed to be the same. Therefore, PGA trans-eliminase produced by A. liquefaciens, contrary to the current view, appears to be constitutive. These observations also indicate that production of PGA trans-eliminase is subject to catabolite repression and that limiting the substrate reverses this repression. It was also found that, under conditions of unrestricted growth, any compound which the bacteria can use as a source of carbon and energy repressed constitutive PGA trans-eliminase production. The heritable reversal of catabolite repression of PGA trans-eliminase synthesis was demonstrated by isolation of mutant strain Gc-6 which can readily synthesize the constitutive catabolic enzyme PGA trans-eliminase while growing in the presence of excess substrate.  相似文献   

18.
The nature and temporal development of ammonia inhbition were investigated in batch, fed-batch, and continuous cultures. Significant inhibition was observed when cells were inoculated in serum-containing or chemically defined medium containing more than 2 mM of ammonia. In contrast, no inhibition was observed at greater than 10 mM when the ammonia concentration was gradually increased over the span of a batch culture by feeding ammonium chloride. Strong growth inhibition was observed after each of five step changes (2.8 --> 3.7 --> 4.0 --> 4.9 --> 7.7 --> 13.5 mM) in continuous culture. Following a period of adaptation at each higher value, the viable cell density stabilized at a new lower value. The lowering in viable cell density was caused by an increase in specific death rate and a decreased cell yield on glucose, glutamine, and oxygen. Increased ammonia concentration had little or no effect on the steady-state specific growth kinetics or specific antibody productivity. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
The Gram-positive bacterium Bacillus cereus is a facultative anaerobe that is still poorly characterized metabolically. In this study, the aerobic vegetative growth and anaerobic vegetative growth of the food-borne pathogen B. cereus F4430/73 strain were compared with those of the genome-sequenced ATCC14579 strain using glucose and glycerol as fermentative and nonfermentative carbon sources, respectively. Uncontrolled batch cultures on several defined media showed that B. cereus strains had high amino acid or pyruvate requirements for anaerobic fermentative growth. In addition, growth performance was considerably improved by maintaining the pH of the culture medium near neutrality. Spectra of fermentation by-products were typically (per mole of glucose) 0.2-0.4 acetate, 1.1-1.4 L-lactate, 0.3-0.4 formate, and 0.05-0.2 ethanol with only traces of succinate, pyruvate, and 2,3-butanediol. These spectra were drastically changed in the presence of 20 mmol nitrate x L(-1), which stimulated anaerobic growth. During anaerobic and aerobic respiration, the persistent production of acetate and other by-products indicated overflow metabolisms. This was especially true in glucose-grown cells for which respiratory complex III made only a minor contribution to growth. Surprisingly, oxygen uptake rates linked to the cytochrome c and quinol branches of the respiratory chain were maintained at high levels in anaerobic, respiring, or fermenting cells. Growth and metabolic features of B. cereus F4430/73 are discussed using biochemical and genomic data.  相似文献   

20.
Two key autotrophic enzyme systems, hydrogenase and ribulose diphosphate carboxylase, were examined in Mycobacterium gordonae and two other chemolithotrophic, scotochromogenic mycobacteria under different cultural conditions. In all three organisms both enzymes were inducible and were produced in significant levels only in the presence of the specific substrate, hydrogen or carbon dioxide. M. gordonae exhibited increased growth rates and yields, indicating mixotrophic growth, in the presence of a number of single organic substrates, including acetate, pyruvate, glucose, fructose, and glycerol. In contrast to other aerobic hydrogen autotrophs, the presence of either acetate or pyruvate did not repress ribulose diphosphate carboxylase, and mixotrophic growth was rapid with these substrates. In the absence of carbon dioxide, growth in glycerol medium under an atmosphere of hydrogen and oxygen was severely inhibited, even with cells preadapted to heterotrophic growth on glycerol. Cyclic adenosine monophosphate was not effective in inducing hydrogenase or carboxylase in heterotrophic, mixotrophic, or hydrogen-inhibited cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号