首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Förster resonance energy transfer (FRET) is a mechanism where energy is transferred from an excited donor fluorophore to adjacent chromophores via non-radiative dipole-dipole interactions. FRET theory primarily considers the interactions of a single donor-acceptor pair. Unfortunately, it is rarely known if only a single acceptor is present in a molecular complex. Thus, the use of FRET as a tool for measuring protein-protein interactions inside living cells requires an understanding of how FRET changes with multiple acceptors. When multiple FRET acceptors are present it is assumed that a quantum of energy is either released from the donor, or transferred in toto to only one of the acceptors present. The rate of energy transfer between the donor and a specific acceptor (kD→A) can be measured in the absence of other acceptors, and these individual FRET transfer rates can be used to predict the ensemble FRET efficiency using a simple kinetic model where the sum of all FRET transfer rates is divided by the sum of all radiative and non-radiative transfer rates.

Methodology/Principal Findings

The generality of this approach was tested by measuring the ensemble FRET efficiency in two constructs, each containing a single fluorescent-protein donor (Cerulean) and either two or three FRET acceptors (Venus). FRET transfer rates between individual donor-acceptor pairs within these constructs were calculated from FRET efficiencies measured after systematically introducing point mutations to eliminate all other acceptors. We find that the amount of energy transfer observed in constructs having multiple acceptors is significantly greater than the FRET efficiency predicted from the sum of the individual donor to acceptor transfer rates.

Conclusions/Significance

We conclude that either an additional energy transfer pathway exists when multiple acceptors are present, or that a theoretical assumption on which the kinetic model prediction is based is incorrect.  相似文献   

2.
Förster resonance energy transfer (FRET) is a nonradiative process for the transfer of energy from an optically excited donor molecule (D) to an acceptor molecule (A) in the ground state. The underlying theory predicting the dependence of the FRET efficiency on the sixth power of the distance between D and A has stood the test of time. In contrast, a comprehensive kinetic-based theory developed recently for FRET efficiencies among multiple donors and acceptors in multimeric arrays has waited for further testing. That theory has been tested in the work described in this article using linked fluorescent proteins located in the cytoplasm and at the plasma membrane of living cells. The cytoplasmic constructs were fused combinations of Cerulean as donor (D), Venus as acceptor (A), and a photoinsensitive molecule (Amber) as a nonfluorescent (N) place holder: namely, NDAN, NDNA, and ADNN duplexes, and the fully fluorescent quadruplex ADAA. The membrane-bound constructs were fused combinations of GFP2 as donor (D) and eYFP as acceptor (A): namely, two fluorescent duplexes (i.e., DA and AD) and a fluorescent triplex (ADA). According to the theory, the FRET efficiency of a multiplex such as ADAA or ADA can be predicted from that of analogs containing a single acceptor (e.g., NDAN, NDNA, and ADNN, or DA and AD, respectively). Relatively small but statistically significant differences were observed between the measured and predicted FRET efficiencies of the two multiplexes. While elucidation of the cause of this mismatch could be a worthy endeavor, the discrepancy does not appear to question the theoretical underpinnings of a large family of FRET-based methods for determining the stoichiometry and quaternary structure of complexes of macromolecules in living cells.  相似文献   

3.
Fluorescence resonance energy transfer (FRET) is a powerful technique to reveal interactions between membrane proteins in live cells. Fluorescence labeling for FRET is typically performed by fusion with fluorescent proteins (FP) with the drawbacks of a limited choice of fluorophores, an arduous control of donor-acceptor ratio and high background fluorescence arising from intracellular FPs. Here we show that these shortcomings can be overcome by using the acyl carrier protein labeling technique. FRET revealed interactions between cell-surface neurokinin-1 receptors simultaneously labeled with a controlled ratio of donors and acceptors. Moreover, using FRET the specific binding of fluorescent agonists could be monitored.  相似文献   

4.
Accurate measurements of oligomerization in membranes by Förster resonance energy transfer (FRET) are always compromised by a substantial contribution from random chance colocalization of donors and acceptors. Recently, Li and coworkers demonstrated the use of computer simulation in estimating the contribution of this “proximity” component to correct the FRET efficiency and estimate the free energy of dimer formation of the G380R mutants of fibroblast growth factor receptor 3 (FGFR3) transmembrane domain immersed into lipid bilayer. Because tight dimerization will result in complete energy transfer from donor to acceptor, we have used the same experimental system of fluorescein- and rhodamine-labeled G380R mutants of FGFR3 for the experimental assessment of the proximity FRET corrections using fluorescence lifetime measurements. The experimental proximity FRET correction, based on time-resolved fluorescence measurements, is expected to have general advantages over theoretical correction, especially in the case of nonrandomly distributed monomers.  相似文献   

5.
Static light scattering (SLS) is a commonly used technique for monitoring dynamics of high molecular weight protein complexes such as protein oligomers or aggregates. However, traditional methods are limited to testing a single condition and typically require large amounts of protein and specialized equipment. We show that a standard microplate reader can be used to characterize the molecular dynamics of different types of protein complexes, with the multiple advantages of microscale experimental volumes, semi-automated protocols and highly parallel processing.  相似文献   

6.
We have detected directly the interactions of sarcolipin (SLN) and the sarcoplasmic reticulum Ca-ATPase (SERCA) by measuring fluorescence resonance energy transfer (FRET) between fusion proteins labeled with cyan fluorescent protein (donor) and yellow fluorescent protein (acceptor). SLN is a membrane protein that helps control contractility by regulating SERCA activity in fast-twitch and atrial muscle. Here we used FRET microscopy and spectroscopy with baculovirus expression in insect cells to provide direct evidence for: 1) oligomerization of SLN and 2) regulatory complex formation between SLN and the fast-twitch muscle Ca-ATPase (SERCA1a isoform). FRET experiments demonstrated that SLN monomers self-associate into dimers and higher order oligomers in the absence of SERCA, and that SLN monomers also bind to SERCA monomers in a 1:1 binary complex when the two proteins are coexpressed. FRET experiments further demonstrated that the binding affinity of SLN for itself is similar to that for SERCA. Mutating SLN residue isoleucine-17 to alanine (I17A) decreased the binding affinity of SLN self-association and converted higher order oligomers into monomers and dimers. The I17A mutation also decreased SLN binding affinity for SERCA but maintained 1:1 stoichiometry in the regulatory complex. Thus, isoleucine-17 plays dual roles in determining the distribution of SLN homo-oligomers and stabilizing the formation of SERCA-SLN heterodimers. FRET results for SLN self-association were supported by the effects of SLN expression in bacterial cells. We propose that SLN exists as multiple molecular species in muscle, including SERCA-free (monomer, dimer, oligomer) and SERCA-bound (heterodimer), with transmembrane zipper residues of SLN serving to stabilize oligomeric interactions.  相似文献   

7.
The problem of extending the utilizable range of Förster resonance energy transfer (FRET) is of great current interest, due to the demand of conformation studies of larger biological structures at distances exceeding typical limiting distance of 100 Å. One of the ways to address this issue is the use of so-called antenna effect. In the present work, the influence of the antenna effect on the FRET efficiency is investigated by the Monte Carlo analysis. The previously published results Bojarski et al. (J Phys Chem B 115:10120–10125, 2011) indicate that using a simple model of donor linked with a protein labeled with multiple acceptors, significantly increases the transfer efficiency in comparison with donor–single acceptor system. The effect is stronger if the transition moments of acceptors are mutually parallel. In this work, to extend the scope of possible biological systems to be analyzed, different distributions of donor–acceptors distance are analyzed, as well as the size and shape of the attached molecule.  相似文献   

8.
The development of a dual receptor detection method for enhanced biosensor monitoring was investigated by analyzing potential fluorescent resonance energy transfer (FRET) pairs. The dual receptor scheme requires the integration of a chemical transducer system with two unique protein receptors that bind to a single biological agent. The two receptors are tagged with special molecular groups (donors and acceptors fluorophores) while the chemical transduction system relies on the well-known mechanisms of FRET. During the binding event, the two FRET labeled receptors dock at the binding sites on the surface of the biological agent. The resulting close proximity of the two fluorophores upon binding will initiate the energy transfer resulting in fluorescence. The paper focuses on the analysis and optimization of the chemical transduction system. A variety of FRET fluorophore pairs were tested in a spectrofluorimeter and promising FRET pairs were then tagged to the protein, avidin and its ligand, biotin. Due to their affinities, the FRET-tagged biomolecules combine in solution, resulting in a stable, fluorescent signal from the acceptor FRET dye with a simultaneous decrease in fluorescent signal from the donor FRET dye. The results indicate that the selected FRET pairs can be utilized in the development of dual receptor sensors.  相似文献   

9.
Probes and biosensors that incorporate luminescent Tb(III) or Eu(III) complexes are promising for cellular imaging because time-gated microscopes can detect their long-lifetime (approximately milliseconds) emission without interference from short-lifetime (approximately nanoseconds) fluorescence background. Moreover, the discrete, narrow emission bands of Tb(III) complexes make them uniquely suited for multiplexed imaging applications because they can serve as Förster resonance energy transfer (FRET) donors to two or more differently colored acceptors. However, lanthanide complexes have low photon emission rates that can limit the image signal/noise ratio, which has a square-root dependence on photon counts. This work describes the performance of a wide-field, time-gated microscope with respect to its ability to image Tb(III) luminescence and Tb(III)-mediated FRET in cultured mammalian cells. The system employed a UV-emitting LED for low-power, pulsed excitation and an intensified CCD camera for gated detection. Exposure times of ∼1 s were needed to collect 5–25 photons per pixel from cells that contained micromolar concentrations of a Tb(III) complex. The observed photon counts matched those predicted by a theoretical model that incorporated the photophysical properties of the Tb(III) probe and the instrument’s light-collection characteristics. Despite low photon counts, images of Tb(III)/green fluorescent protein FRET with a signal/noise ratio ≥ 7 were acquired, and a 90% change in the ratiometric FRET signal was measured. This study shows that the sensitivity and precision of lanthanide-based cellular microscopy can approach that of conventional FRET microscopy with fluorescent proteins. The results should encourage further development of lanthanide biosensors that can measure analyte concentration, enzyme activation, and protein-protein interactions in live cells.  相似文献   

10.
Förster resonance energy transfer (FRET) is an exquisitely sensitive method for detection of molecular interactions and conformational changes in living cells. The recent advent of fluorescence imaging technology with single-molecule (or molecular-complex) sensitivity, together with refinements in the kinetic theory of FRET, provide the necessary tool kits for determining the stoichiometry and relative disposition of the protomers within protein complexes (i.e., quaternary structure) of membrane receptors and transporters in living cells. In contrast to standard average-based methods, this method relies on the analysis of distributions of apparent FRET efficiencies, Eapp, across the image pixels of individual cells expressing proteins of interest. The most probable quaternary structure of the complex is identified from the number of peaks in the Eapp distribution and their dependence on a single parameter, termed pairwise FRET efficiency. Such peaks collectively create a unique FRET spectrum corresponding to each oligomeric configuration of the protein. Therefore, FRET could quite literally become a spectrometric method—akin to that of mass spectrometry—for sorting protein complexes according to their size and shape.  相似文献   

11.
Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET can be indicative of aggregation that may denote association of interacting species. By monitoring the excited-state (fluorescence) decay of the donor in the presence and absence of acceptors, dual-component decay analysis has been used to reveal the fraction of donors that are FRET positive (i.e., in aggregates)._However, control experiments using constructs containing both a donor and an acceptor FP on the same protein repeatedly indicate that a large fraction of these donors are FRET negative, thus rendering the interpretation of dual-component analysis for aggregates between separately donor-containing and acceptor-containing proteins problematic. Using Monte-Carlo simulations and analytical expressions, two possible sources for such anomalous behavior are explored: 1) conformational heterogeneity of the proteins, such that variations in the distance separating donor and acceptor FPs and/or their relative orientations persist on time-scales long in comparison with the excited-state lifetime, and 2) FP dark states.  相似文献   

12.
While many studies have provided evidence of homodimerization and heterodimerization of G-protein-coupled receptors (GPCRs), few studies have used fluorescence resonance energy transfer (FRET) combined with confocal microscopy to visualize receptor dimerization on the plasma membrane, and there have been no reports demonstrating the expression of serotonin receptor dimers/oligomers on the plasma membrane of living cells. In the study presented here, biochemical and biophysical techniques were used to determine if 5-HT(2C) receptors exist as homodimers on the plasma membrane of living cells. Immunoprecipitation followed by Western blotting revealed the presence of immunoreactive bands the predicted size of 5-HT(2C) receptor monomers and homodimers that were detergent and cross-linker sensitive. Bioluminescence resonance energy transfer (BRET) was assessed in HEK293 cells expressing 5-HT(2C) receptors labeled with Renilla luciferase and yellow fluorescent protein. BRET levels were not altered by pretreatment with serotonin. Confocal microscopy provided direct visualization of FRET on the plasma membrane of live cells expressing 5-HT(2C) receptors labeled with cyan (donor) and yellow (acceptor) fluorescent proteins. FRET, assessed by acceptor photobleaching, was dependent on the donor/acceptor ratio and independent of acceptor expression levels, indicating that FRET resulted from receptor clustering and not from overexpression of randomly distributed receptors, providing evidence for GPCR dimers/oligomers in a clustered distribution on the plasma membrane. The results of this study suggest that 5-HT(2C) receptors exist as constitutive homodimers on the plasma membrane of living cells. In addition, a confocal-based FRET method for monitoring receptor dimerization directly on the plasma membrane of living cells is described.  相似文献   

13.
The lipid bilayer vesicle is a model of the cellular membrane. Even in this simple system, however, measuring the thermodynamics of membrane protein association is a challenge. Here we discuss Forster resonance energy transfer (FRET) in liposomes as a method to probe the dimerization of transmembrane helices in a membrane environment. Although the measurements are labor intensive, FRET in liposomes can be measured accurately provided that attention is paid to sample homogeneity and sample equilibration. One must also take into account statistical expectations and the FRET that results from random colocalization of donors and acceptors in the bilayer. Without careful attention to these details, misleading results are easy to obtain in membrane FRET experiments. The results that we obtain in model systems are reproducible and depend solely on the concentration of the protein in the bilayer (i.e., on the protein-to-lipid ratio), thereby yielding thermodynamic parameters that are directly relevant to processes in biological membranes.  相似文献   

14.
Ezrin is a member of ezrin, radixin, moesin (ERM) protein family that links F-actin to membranes. The NH2- and COOH-terminal association domains of ERM proteins, known respectively as N-ERMAD and C-ERMAD, participate in interactions with membrane proteins and F-actin, and intramolecular and intermolecular interactions within and among ERM proteins. In gastric parietal cells, ezrin is heavily represented on the apical membrane and is associated with cell activation. Ezrin-ezrin interactions are presumably involved in functional regulation of ezrin and thus became a subject of our study. Fluorescence resonance energy transfer (FRET) was examined with cyan fluorescent protein (CFP)- and yellow fluorescent protein (YFP)-tagged ezrin incorporated into HeLa cells and primary cultures of parietal cells. Constructs included YFP at the NH2 terminus of ezrin (YFP-Ez), CFP at the COOH terminus of ezrin (Ez-CFP), and double-labeled ezrin (N-YFP-ezrin-CFP-C). FRET was probed using fluorescence microscopy and spectrofluorometry. Evidence of ezrin oligomer formation was found using FRET in cells coexpressing Ez-CFP and YFP-Ez and by performing coimmunoprecipitation of endogenous ezrin with fluorescent protein-tagged ezrin. Thus intermolecular NH2- and COOH-terminal association domain (N-C) binding in vivo is consistent with the findings of earlier in vitro studies. After the ezrin oligomers were separated from monomers, FRET was observed in both forms, indicating intramolecular and intermolecular N-C binding. When the distribution of native ezrin as oligomers vs. monomers was examined in resting and maximally stimulated parietal cells, a shift of ezrin oligomers to the monomeric form was correlated with stimulation, suggesting that ezrin oligomers are the membrane-bound dormant form in gastric parietal cells. fluorescence resonance energy transfer; acid secretion; radixin; moesin; cytoskeleton; ERM family  相似文献   

15.
F?rster resonance energy transfer (FRET) has become an important tool to study the submicrometer distribution of proteins and lipids in membranes. Although resolving the two-dimensional distribution of fluorophores from FRET is generally underdetermined, a forward approach can be used to determine characteristic FRET "signatures" for interesting classes of microdomain organizations. As a first step toward this goal, we use a stochastic Monte Carlo approach to characterize FRET in the case of molecules randomly distributed within disk-shaped domains. We find that when donors and acceptors are confined within domains, FRET depends very generally on the density of acceptors within domains. An implication of this result is that two domain populations with the same acceptor density cannot be distinguished by this FRET approach even if the domains have different diameters or different numbers of molecules. In contrast, both the domain diameter and molecule number can be resolved by combining this approach with a segregation approach that measures FRET between donors confined in domains and acceptors localized outside domains. These findings delimit where the inverse problem is tractable for this class of distributions and reframe ways FRET can be used to characterize the structure of microdomains such as lipid rafts.  相似文献   

16.
We have analysed a non-redundant set of 294 enzymes for differences in sequence and structural features between the six main Enzyme Commission (EC) classification groups. This systematic study of enzymes, and their active sites in particular, aims to increase understanding of how the structure of an enzyme relates to its functional role. Many features showed significant differences between the EC classes, including active-site polarity, enzyme size and active-site amino acid propensities. Many attributes correlate with each other to form clusters of related features from which we chose representative features for further analysis. Oxidoreductases have more non-polar active sites, which can be attributed to cofactor binding and a preference for Glu over Asp in active sites in comparison to the other classes. Lyases form a significantly higher proportion of oligomers than any other class, whilst the hydrolases form the largest proportion of monomers. These features were then used in a prediction model that classified each enzyme into its top EC class with an accuracy of 33.1%, which is an increase of 16.4% over random classification. Understanding the link between structure and function is critical to improving enzyme design and the prediction of protein function from structure without transfer of annotation from alignments.  相似文献   

17.
Current methods for fluorescence resonance energy transfer (FRET) microscopy of living cells involve taking a series of images with alternating excitation colors in separate camera exposures. Here we present a new FRET method based on polarization that requires only one camera exposure and thereby offers the possibility for better time resolution of dynamic associations among subcellular components. Polarized FRET (p-FRET) uses a simultaneous combination of excitation wavelengths from two orthogonally polarized sources, along with an emission channel tri-image splitter outfitted with appropriate polarizers, to concurrently excite and collect fluorescence from free donors, free acceptors, and FRET pairs. Based upon the throughput in each emission channel as premeasured on pure samples of each of the three species, decoupling of an unknown sample's three polarized fluorescence images can be performed to calculate the pixel-by-pixel concentrations of donor, acceptor, and FRET pairs. The theory of this approach is presented here, and its feasibility is experimentally confirmed by measurements on mixtures of cyan fluorescent protein (CFP), citrine ((Cit) a yellow fluorescent protein variant), and linked fusion proteins (CFP-L16-Cit, CFP-L7-Cit, CFP-L54-Cit) in living cells. The effects of shot noise, acceptor polarization, and FRET efficiency on the statistical accuracy of p-FRET experimental results are investigated by a noise-simulation program.  相似文献   

18.
Amelogenin self-assembles to form an extracellular protein matrix, which serves as a template for the continuously growing enamel apatite crystals. To gain further insight into the molecular mechanism of amelogenin nanosphere formation, we manipulated the interactions between amelogenin monomers by altering pH, temperature, and protein concentration to create isolated metastable amelogenin oligomers. Recombinant porcine amelogenins (rP172 and rP148) and three different mutants containing only a single tryptophan (Trp(161), Trp(45), and Trp(25)) were used. Dynamic light scattering and fluorescence studies demonstrated that oligomers were metastable and in constant equilibrium with monomers. Stable oligomers with an average hydrodynamic radius (R(H)) of 7.5 nm were observed at pH 5.5 between 4 and 10 mg · ml(-1). We did not find any evidence of a significant increase in folding upon self-association of the monomers into oligomers, indicating that they are disordered. Fluorescence experiments with single tryptophan amelogenins revealed that upon oligomerization the C terminus of amelogenin (around residue Trp(161)) is exposed at the surface of the oligomers, whereas the N-terminal region around Trp(25) and Trp(45) is involved in protein-protein interaction. The truncated rP148 formed similar but smaller oligomers, suggesting that the C terminus is not critical for amelogenin oligomerization. We propose a model for nanosphere formation via oligomers, and we predict that nanospheres will break up to form oligomers in mildly acidic environments via histidine protonation. We further suggest that oligomeric structures might be functional components during maturation of enamel apatite.  相似文献   

19.
We are performing experiments that use fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) to monitor the movement of an individual donor-labeled sliding clamp protein molecule along acceptor-labeled DNA. In addition to the FRET signal sought from the sliding clamp-DNA complexes, the detection channel for FRET contains undesirable signal from free sliding clamp and free DNA. When multiple fluorescent species contribute to a correlation signal, it is difficult or impossible to distinguish between contributions from individual species. As a remedy, we introduce "purified FCS", which uses single molecule burst analysis to select a species of interest and extract the correlation signal for further analysis. We show that by expanding the correlation region around a burst, the correlated signal is retained and the functional forms of FCS fitting equations remain valid. We demonstrate the use of purified FCS in experiments with DNA sliding clamps. We also introduce "single-molecule FCS", which obtains diffusion time estimates for each burst using expanded correlation regions. By monitoring the detachment of weakly-bound 30-mer DNA oligomers from a single-stranded DNA plasmid, we show that single-molecule FCS can distinguish between bursts from species that differ by a factor of 5 in diffusion constant.  相似文献   

20.
Classical theory states that ligand binding induces the dimerization of ErbB proteins, leading to their activation. Although we and other investigators have shown the existence of preformed homoclusters of ErbB receptors and analyzed their composition, the stoichiometry of their heteroclusters has not been quantitatively described. Here, we report the development of the fluorescence resonance energy transfer (FRET)-sensitized acceptor bleaching (FSAB) technique to quantitate the ratio of ErbB1 and ErbB2 in their heteroclusters. In FSAB, photolabile acceptors within FRET distance from photostable donors are excited and photobleached by FRET, and the fraction of acceptors that are participating in FRET is determined. In quiescent SKBR-3 breast cancer cells, ∼35% of ErbB1 and ∼10% of ErbB2 have been found in heteroclusters. Epidermal growth factor (ligand of ErbB1) increased the fraction of ErbB2 heteroclustering with ErbB1, whereas the ratio of heteroclustered ErbB1 did not change significantly. The fractions of heteroclustered ErbB1 and ErbB2 were independent of their expression levels, indicating that the formation of these clusters is not driven by the law of mass action. In contrast, the FRET efficiency depended on the donor/acceptor ratio as expected. We present a model in which preformed receptor clusters are rearranged upon ligand stimulation, and report that the composition of these clusters can be quantitatively described by the FSAB technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号