首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the electrophysiological changes in patients with acute tetrodotoxin (TTX) poisoning from ingestion of globefish (Tetraodontidae) patients exposed to TTX were compared with age-matched controls. The cohort of TTX-poisoning cases was clinically subdivided into mild, moderate, or severe cases. The motor nerve conduction velocity (MCV), sensory nerve conduction velocity (SCV), F-wave, H-reflex, and somatosensory-evoked potentials (SEP) of the median, ulnar, and common peroneal nerve (CPN) were determined using established techniques. Four of the 64 (6.3%) TTX-poisoning cases died and were omitted from the final analysis. The MCV and SCV of the median, ulnar, and CPN nerves in all the TTX-poisoning cases were significantly slower than the healthy controls. Severe cases of TTX poisoning had more significant reduction in nerve function. Thus, electroneurophysiological analysis could be used to determine the extent, course, and range of nerve system damage in patients with acute TTX poisoning.  相似文献   

2.
Isolated rat duodenum shows spontaneous mechanical and electrical activities. Mechanical activity consists in changes both in endoluminal pressure and in isometric tension. Electrical activity is characterized by slow waves with superimposed bursts. This spontaneous activity is tetrodotoxin (TTX) resistant and therefore it is myogenic in origin. Indeed, TTX pretreatment, even in the presence of atropine and guanethidine, caused an increase in amplitude and in frequency of the electrical and mechanical activities. This finding indicates the presence of tonically active inhibitory intramural non adrenergic, non cholinergic (NANC) nerves. Duodenal longitudinal strips showed a spontaneous mechanical activity resembling that one recorded from isolated segment. Instead, circular strips are quiescent under resting condition and a contractile activity can be detected only after TTX pretreatment suggesting that: i) the circular smooth muscle layer is tonically inhibited by intramural NANC nerves and, ii) the contractions observed in the rat duodenum are due to the activity of the longitudinal one.  相似文献   

3.
Aims: To study the pathological changes in neurophysiological examination of lower-limb peripheral nerves in patients with long-term statin treatment. Methods: Forty-two patients (23 males, 19 females, mean age 51.9 and 52.3 years) with a definitive diagnosis of combined hyperlipidemia were studied. Other metabolic disorders or chronic ethanol abuse were excluded. Initial examinations included laboratory and neurophysiological measures (peroneal and tibial nerves: MNCV, CMAP, Fwave mean latency; superficial peroneal and sural nerve: SNCV, SNAP). Subsequently, treatment with simvastatin 20mg daily was initiated. Patients were followed for 24 months with examinations at 1, 6, 12 and 24 months after statin treatment initiation. Results: None of the patients reported subjective symptoms typical for polyneuropathy. In laboratory findings, there was no elevation of muscle enzymes. Nevertheless, electrophysiological examination of lower-limb peripheral nerves demonstrated statistically significant prolongation of F-wave mean latency on peroneal and tibial nerves (p < 0.0001, paired t-test). A control group of 50 patients with combined hyperlipidemia but no statin treatment showed no changes over the same time interval. The study demonstrated that long-term Conclusions: The study demonstrated that long-term treatment with statins might cause a clinically silent but still electrophysiologically definite damage to peripheral nerves.  相似文献   

4.
The receptor-site for the sea anemone toxin II from Anemonia sulcata (ATX) and its functional relationship with the Na+ channel were studied in plasma membrane preparations from lobster walking leg nerves. The modification of the 22Na influx by ATX was determined in membrane vesicles and in proteoliposomes prepared by reconstitution of detergent-extracted, unfractionated membrane particles into soybean liposomes. The effects of two other toxins, veratridine (VER) and tetrodotoxin (TTX), which bind to Na+ channel receptor-sites other than that for polypeptide toxins, were also studied, ATX and VER stimulated 22Na flux into membrane vesicles with K0.5 values in the order of 10(-7) and 10(-5) M, respectively. Positive cooperativity among these toxins was also seen; ATX displaces the K0.5 for VER towards lower VER concentrations. TTX abolishes the 22Na influx increment caused by ATX and/or VER with a K0.5 in the order of 10(-8) M. In proteoliposomes, in contrast, ATX modified the 22Na influx only at high concentrations (greater than 1 microM) and in the presence of VER. VER stimulation and TTX inhibition of the VER and the VER plus ATX modified fluxes, had the same characteristics as in the vesicle preparations. Measurable ATX and VER toxin effects were only seen in the presence of an outwardly directed K+ gradient for both vesicles and proteoliposomes. Detergent treatment and the reconstitution procedure seem to affect the functional properties of the ATX receptor site whereas the VER and the TTX sites remain unaltered.  相似文献   

5.
The effects of substance P and met5-enkephalin in dog ileum   总被引:1,自引:0,他引:1  
Substance P initiated tonic contraction of dog ileum when administered in doses from 1 pg to 20 micrograms intraarterially (ED50 = 67 ng). Low doses acted to excite cholinergic postganglionic neurones since atropine or tetrodotoxin (TTX) increased the ED50 of substance P about 25-fold, while hexamethonium and local field stimulation had only a small effect to increase the ED50. Also atropine and tetrodotoxin effects were not additive. Higher doses apparently acted to stimulate smooth muscle directly, but no evidence was obtained that local field stimulation could release substance P to act on smooth muscle. Substance P tachyphylaxis prevented substance P actions on cholinergic nerves, but it did not affect responses to intraaterial acetylcholine or block distal inhibition from proximal distention or field stimulation. Met-enkephalin given intraarterially, was also excitatory in doses from 1 ng to 20 micrograms; the amplitude of tonic and phasic contractions produced was significantly decreased by TTX and atropine but was not diminished by hexamethonium or substance P tachyphylaxis. Partial tachyphylaxis to met-enkephalin was produced but was not diminished by hexamethonium or substance P tachyphylaxis. Partial tachyphylaxis to met-enkephalin was produced without affecting the ED50 for substance P. We conclude that substance P acts in small amounts on receptors in myenteric nerves to release acetylcholine by a mechanism, presumably involving postganglionic cholinergic nerves, while met-enkephalin also apparently may act at least in part through a similar TTX- and atropine-sensitive mechanism. These peptides also caused activation of other receptors, probably on smooth muscle by noncholinergic. TTX-insensitive mechanisms. Also the receptors for each peptide which are located on nerves were distinct and independent since tachyphylaxis could be produced to each without affecting the response to the other.  相似文献   

6.
Magnetic stimulation of peripheral nerves at distal and proximal sites of the upper and lower extremities and at the midlumbar level were used to elicit cortical somatosensory evoked potentials. Evidence is provided that peripheral nerve trunks, rather than distal receptor afferents, are the anatomical structures stimulated by the electromagnetic fields. Magnetic stimulation of peripheral nerves is considered to be useful for an evaluation of the integrity of proximal nerves, nerve roots and central conduction along sensory pathways. In contrast to electrical nerve stimulation, magnetic stimulation is painless and can be applied to proximal nerves and plexus. By means of proximal nerve stimulation central sensory conduction can be tested even in patients with peripheral nerve lesions or polyneuropathy.  相似文献   

7.
目的 本文分析使用经皮神经肌肉电刺激治疗外伤性周围神经损伤的临床疗效,探讨经皮电刺激对神经周围微循环的影响.方法 采用丹迪Keypoint型肌电图仪对40例上肢周围神经不全损伤的患者,行经皮神经肌肉电刺激治疗,配合运动疗法.治疗中使用激光多普勒血流仪(LDF)检测电刺激前、后神经周围微循环血流改变情况,并分析电刺激对微循环的影响.同时在治疗前、后行神经电生理检查对比检测,并对不同病程患者治疗后的效果作对比分析.利用以上分析手段观察受损神经功能的恢复情况.结果 40例臂丛神经、正中神经、桡神经、尺神经不全损伤的患者,经2-10个疗程的治疗后,受损神经功能治愈率达63% (25/40),有效率为90% (36/40).LDF检测结果显示电刺激后神经周围微循环血流量较刺激前增加23.36%-26.96%,改善受损神经局部微循环,神经肌电检测结果显示较治疗前有明显好转.在不同病程的患者中进行比较,病程越短者,效果越好.结论 经皮神经肌肉电刺激在外伤性周围神经损伤的治疗中,是一种行之有效的方法,可提高受损神经肌肉的兴奋度,促进受损神经局部的血液循环,有利于周围神经的再生.运动疗法的干预,能改善肌萎缩,增强肌协调力,预防关节僵硬,保持关节活动度,最终取得对外伤性周围神经损伤的满意疗效.应用激光多普勒血流成像技术,测得电刺激前、后神经周围微循环出现明显的血流量增加,证实电刺激能改善受损神经局部微循环.  相似文献   

8.
Pulsed magnetic fields (PMFs) have well‐known beneficial effects on nerve regeneration. However, little research has examined the nerve conduction characteristics of regenerating peripheral nerves under PMF. The main goal of this study was to examine the conduction characteristics of regenerating peripheral nerves under PMFs. The sucrose‐gap recording technique was used to examine the conduction properties of injured sciatic nerves of rats exposed to PMF. Following the injury, peripheral nerves were very sensitive to repetitive stimulation. When the stimulation frequency was increased, the amplitude of the compound action potential (CAP) decreased more at 15 days post‐crush injury (dpc) than at 38 dpc. PMF treatment for 38 days after injury caused significant differences in the conduction of CAPs. Moreover, application of PMF ameliorated the abnormal electrophysiological activities of nerves such as hyperpolarizing afterpotentials and delayed depolarizations that were revealed by 4‐aminopyridine (4‐AP). Consequently, characteristic findings in impulse conduction of recovered nerves under PMF indicate that the observed abnormalities in signaling or aberrant ion channel functions following injury may be restored by PMF application. Bioelectromagnetics 32:200–208, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Summary This study deals with the effects of two amphiphilic lipidosis-inducing drugs (chlorphentermine, iprindole) upon the ultrastructure of peripheral nerves of rats. After prolonged drug treatment the preterminal and terminal axoplasm of motor and sensory nerves within skeletal muscles contain numerous abnormal inclusions (osmiophilic conglomerates, autophagic vacuoles, lamellated bodies). By contrast, the axons within large peripheral nerves are little affected. The present observations are tentatively interpreted as resulting from interference with catabolic processes involved in the normal turnover of axoplasmic constituents at the nerve terminal. The exact pathogenesis and the functional significance of these alterations remain to be elucidated.  相似文献   

10.
The close spatial relationship between peripheral nerves and blood vessels in the adult is well known. However, evidence supporting the congruent development of these structures in embryos remains anecdotal. Neurovascular relationships also have been shown to be conserved in other vertebrates. This homology suggests that either peripheral nerves or blood vessels, or both, might have fundamental morphogenetic roles during embryologic development. Both peripheral nerves and blood vessels have been independently implicated as etiologic agents in the pathogenesis of congenital disabilities, and several congenital anomalies fit their distribution patterns. This article presents a technique for the simultaneous visualization of peripheral nerves and blood vessels at different stages in the developing embryo. The forelimbs of 310 quail embryos were dissected over a 1-year period. Peripheral nerves were labeled with the neural crest and axon antibody, HNK-1, followed by fluorescein-conjugated secondary antibodies. Blood vessels were labeled by a perfusion technique using the fluorescent dye, dioctadecyl-tetramethylindocarbocyanine. Specimens were processed and imaged in whole-mount with confocal microscopy, and images were reconstructed using three-dimensional modeling software. Both nerves and blood vessels seem to undergo a highly stereotypic sequence of development in the embryonic quail forelimb. Furthermore, the existence of a close spatial relationship between nerves and blood vessels suggests either a high degree of developmental interdependence or shared patterning mechanisms. This technique permits further evaluation of the possible role peripheral nerves and blood vessels might play in the pathogenesis of congenital disabilities and provides a starting point for further studies aimed at elucidating the means by which peripheral nerves and blood vessels are patterned in the forelimb of the avian embryo.  相似文献   

11.

Purpose

Ultrasound (US)-guided high intensity focused ultrasound (HIFU) has been proposed for noninvasive treatment of neuropathic pain and has been investigated in in-vivo studies. However, ultrasound has important limitations regarding treatment guidance and temperature monitoring. Magnetic resonance (MR)-imaging guidance may overcome these limitations and MR-guided HIFU (MR-HIFU) has been used successfully for other clinical indications. The primary purpose of this study was to evaluate the feasibility of utilizing 3D MR neurography to identify and guide ablation of peripheral nerves using a clinical MR-HIFU system.

Methods

Volumetric MR-HIFU was used to induce lesions in the peripheral nerves of the lower limbs in three pigs. Diffusion-prep MR neurography and T1-weighted images were utilized to identify the target, plan treatment and immediate post-treatment evaluation. For each treatment, one 8 or 12 mm diameter treatment cell was used (sonication duration 20 s and 36 s, power 160–300 W). Peripheral nerves were extracted < 3 hours after treatment. Ablation dimensions were calculated from thermal maps, post-contrast MRI and macroscopy. Histological analysis included standard H&E staining, Masson’s trichrome and toluidine blue staining.

Results

All targeted peripheral nerves were identifiable on MR neurography and T1-weighted images and could be accurately ablated with a single exposure of focused ultrasound, with peak temperatures of 60.3 to 85.7°C. The lesion dimensions as measured on MR neurography were similar to the lesion dimensions as measured on CE-T1, thermal dose maps, and macroscopy. Histology indicated major hyperacute peripheral nerve damage, mostly confined to the location targeted for ablation.

Conclusion

Our preliminary results indicate that targeted peripheral nerve ablation is feasible with MR-HIFU. Diffusion-prep 3D MR neurography has potential for guiding therapy procedures where either nerve targeting or avoidance is desired, and may also have potential for post-treatment verification of thermal lesions without contrast injection.  相似文献   

12.
A L Dellon 《Plastic and reconstructive surgery》1992,89(4):689-97; discussion 698-9
Symptomatic diabetic sensorimotor polyneuropathy is considered progressive and irreversible. The hypothesis that symptoms of diabetic neuropathy may be due to entrapment of peripheral nerves was investigated in a prospective study from 1982 to 1988 in which diabetics (38 type I, 22 type II) had surgical decompression of 154 peripheral nerves in 51 upper extremities and 31 lower extremities. Mean postoperative follow-up was 30 months (range 6 to 83 months). Considering the entire series, an excellent final result was noted for motor function in 44 percent and for sensory function in 67 percent of the decompressed nerves. Ten percent of the patients were not improved, and 2 percent were worse in sensorimotor function. Upper extremity nerve decompressions achieved better results than lower extremity nerve decompressions. Improvement in postoperative electrodiagnostic studies varied in relationship to the preoperative electrodiagnosis. Improvement was noted in 100 percent of those nerves with the preoperative diagnosis of "localized entrapment," 80 percent for "peripheral neuropathy with superimposed entrapment," and 50 percent for "peripheral neuropathy." Progressive neuropathy occurred in a nontreated limb of 50 percent of those patients whose surgically treated limb maintained improvement. The results of this study suggest that symptoms of sensorimotor diabetic neuropathy may be due partly to compression of multiple peripheral nerves. The results further suggest that surgical decompression of such nerves may result in symptomatic improvement.  相似文献   

13.
14.
In the present experiments the effect of systemic capsaicin treatment on the retrograde labelling of sensory ganglion cells was studied following the injection of choleratoxin B subunit-horseradish peroxidase conjugate (CTX-HRP) into intact and chronically transected peripheral nerves. In the control rats CTX-HRP injected into intact sciatic nerves labelled medium and large neurons with a mean cross-sectional area of 1,041 +/- 39 gm2. However, after injection of the conjugate into chronically transected sciatic nerves of the control rats, many small cells were also labelled, shifting the mean cross-sectional area of the labelled cells to 632 +/- 118 microm2. Capsaicin pretreatment per se induced a moderate but significant decrease in the mean cross-sectional area of the labelled neurons (879 +/- 79 microm2). More importantly, systemic pretreatment with capsaicin prevented the peripheral nerve lesion-induced labelling of small cells. Thus, the mean cross-sectional areas of labelled neurons relating to the intact and transected sciatic nerves, respectively, did not differ significantly. These findings provide direct evidence for a phenotypic switch of capsaicin-sensitive nociceptive neurons after peripheral nerve injury, and suggest that lesion-induced morphological changes in the spinal cord may be related to specific alterations in the chemistry of C-fibre afferent neurons rather than to a sprouting response of A-fibre afferents.  相似文献   

15.
Tetrodotoxin (TTX) binding was measured in muscles which were either in normal condition or which had been "detubulated" by glycerol-induced osmotic shock. In both cases the binding of TTX was found to saturate at high TTX concentrations. Maximum binding in normal fibers was 35 pmol/g wet weight, and that figure was reduced to 16 pmol/g after glycerol treatment. The dissociation constant for binding to the surface membrane was 3 nM, which is the range of values obtained by electrophysiological measurements of the effect of TTX on the maximum rate of rise of the action potential. The results suggest that the dissociation constant in the transverse tubules may be higher than that in the surface. Control experiments indicate that the effects of glycerol treatment are limited to the accessibility of the receptors to the toxin and result in no alteration of the affinity of the binding site. TTX receptors in the transverse tubules may be recovered after glycerol treatment by homogenization of the fibers. The measurements suggest that the density of sodium channels in surface membrane is about 175/muM2 and that in the transverse tubular membrane is 41-52/mum2.  相似文献   

16.
The projection of peripheral sensory and motor nerves was investigated in the pigeon (Columba livia) by means of retrogradely transported fluorescent dyes. Two combinations of fluorescent tracers were used that could be identified within the same cell when excited by light of 405 nm: 1) Propidium iodide and Bisbenzimide, which label the cytoplasm orange and the nucleus blue, respectively; 2) Fast Blue, which labels the cytoplasm blue, and Nuclear Yellow, which labels the nucleus (especially the nucleolar ring) yellow. The presence of the tracers in a given cell was confirmed microspectrophotometrically. Following injection of the tracers into peripheral nerves, labelled sensory neurones were seen in the dorsal root ganglia and motoneurones of the spinal cord. The peroneal and tibial nerves projected to L2-L5 and L2-L7, respectively, whereas the median and ulnar nerves projected to C12-Th2 and C13-Th1. Double-labelled sensory neurones were observed when both peroneal and tibial, or median and ulnar nerves were injected with different tracers. This indicates that some sensory neurones possess peripheral processes that dichotomize to pass down two different peripheral nerves. Double labelling was never seen in motoneurones, or in sensory neurones after tracer injection into the sciatic and femoral nerves.  相似文献   

17.
K Kawamoto  K Shimizu 《Human cell》1991,4(3):197-203
Axoplasmic flow is essential to the regeneration of peripheral nerves. We observed a mean of 12 mm/day for the slow axoplasmic flow and a mean of 410mm/day for the fast axoplasmic flow. In the process of regeneration of peripheral nerves, however, slow transport increased to 14.7mm/day and fast transport to 572mm/day on day 7. We reviewed the relevant literature on the axoplasmic flow and described the topics in this report. Some central nerves may show poor regeneration but it has been confirmed that nerve cells grow and survive by intracerebral nerve transplantation, and this technique has been applied to the treatment of Parkinson's disease. Further development can be expected for the regeneration of central nerves through transplantation.  相似文献   

18.
The effects of cholecystokinin-octapeptide (CCK-OP) and pentagastrin on electrical and motor activities of circular muscle of the canine colon were studied with the sucrose gap technique. Additional organ bath experiments were performed to further characterize the motor response to the peptides and to elucidate their site of action. The electrical activity consisted of slow waves having an initial potential followed by a plateau potential, at a regular frequency of 4.5 cycles/min. Both peptides prolonged the duration and increased the amplitude of the plateau phase of the slow waves. Concomitantly, the slow wave frequency was reduced. In addition, CCK-OP increased spiking activity. Both spiking activity and the prolonged plateau potential generated contractile activity, prolonged phasic contraction occurring with slow waves with a prolonged plateau. In organ bath experiments, both CCK-OP and pentagastrin increased the basal tone of the muscle strips and prolonged the duration of the phasic contractions. The prolongation of the duration of the contractions was not antagonized by tetrodotoxin (TTX) and atropine. CCK-OP but not pentagastrin increased the force of contractions, this action was not affected by atropine but was reduced in the presence of TTX, suggesting that the increase in force may be partially mediated by noncholinergic excitatory nerves. The increase in basal tension by the peptides was enhanced in the presence of TTX indicating that myenteric inhibitory neurones were tonically active under our experimental conditions. The results provide the electrophysiological basis for CCK-OP and pentagastrin induced changes in colonic motility.  相似文献   

19.
Norepinephrine (NE), dopamine (DA) and its metabolites homovanillic acid (HVA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) were analyzed in human ventral spinal nerve roots and peripheral nerves by gas chromatography-mass spectrometry. High concentrations of DA and HVA were found in almost all tissues analyzed. The concentration of DA and HVA was usually higher than in blood. In vagus nerve and in some spinal nerve roots, the concentration of DA was higher than that of NE, while in other nerves (splanchnic nerve and genitofemoral nerve) DA represented 20 or more percent of NE. The concentration of HVA was usually higher than the concentration of DA indicating that a large portion of DA in peripheral nerves is catabolized and not converted to NE. High concentrations of DA and HVA in human peripheral nerves indicate that a wide distribution of peripheral DA-containing nerves might exist. The distribution of DA in different nerves suggests an association of potential DA-containing nerves with the autonomic nervous system.  相似文献   

20.
(1) Voltage-clamped nerve fibres of the frog Rana esculenta were treated with periodate in the extracellular solution. (2) Periodate treatment irreversibly reduced the effect of tetrodotoxin (TTX) on the Na+ currents. (3) The effect of saxitoxin (STX) was also reduced but less than that of TTX. (4) The presence of STX during the application of periodate to the nerve fibre almost completely prevented the effect of the chemical reagent on the TTX sensitivity of the Na+ channels. (5) The reduction of the TTX effect is not due to the reaction of small amounts of periodate with the diol group of this toxin, because the effect was seen after prolonged washing with reagent-free Ringer solution with or without high amounts of ribose. (6) Carboxyl groups present in the Na+ channel seem to be quite important for the binding of TTX and STX. Periodate modifies several amino acid side chains, however, it does not attack carboxyl groups in a peptide chain. Thus, these results suggest that periodate modifies a further group critically involved in the binding of TTX and STX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号